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Abstract: Breast cancer has been the most common cancer in women worldwide, and metastasis is the
leading cause of death from breast cancer. Even though the study of breast cancer metastasis has been
extensively carried out, the molecular mechanism is still not fully understood, and diagnosis and
prognosis need to be improved. Breast cancer metastasis is a complicated process involving multiple
physiological changes, and lung, brain, bone and liver are the main metastatic targets. Exosomes are
membrane-bound extracellular vesicles that contain secreted cellular constitutes. The biogenesis and
functions of exosomes in cancer have been intensively studied, and mounting studies have indicated
that exosomes play a crucial role in cancer metastasis. In this review, we summarize recent findings
on the role of breast cancer-derived exosomes in metastasis organotropism and discuss the potential
promising clinical applications of targeting exosomes as novel strategies for breast cancer diagnosis
and therapy.

Keywords: breast cancer; metastasis; exosome; extracellular vesicles; organotropism

1. Introduction

Breast cancer is a common frequently occurring malignancy among women world-
wide, and it has surpassed lung cancer to become the most diagnosed cancer all over
the world with around 2.3 million new cases, accounting for 11.7% of all cancer cases
and 24.5% of female cancers [1]. With recent advances in early diagnosis and therapeutic
strategies including neoadjuvant therapy, endocrine therapy, molecular targeted therapy,
and immunotherapy [2,3], the prognosis of breast cancer has greatly improved. However,
breast cancer patients with distant metastasis have worse outcomes, and the five-year
survival rate was less than 30% [4]. With approximately 685,000 deaths in 2020, it remains
the first leading cause of cancer death in women [1]. Therefore, there is an urgent need
to understand the molecular mechanisms underlying breast cancer metastasis for devel-
oping novel therapeutic strategies. Exosomes, as one type of extracellular vesicle (EVs),
have been reported to play a crucial role in cancer metastasis, namely, contributing to
form pre-metastatic niches, influence the tumor microenvironment, and identify specific
organotropic metastasis. Here, we endeavor to highlight the role of tumor-derived ex-
osomes in breast cancer metastasis, elucidate the underlying mechanism of metastasis
organotropism mediated by exosomes, and prospect the potential application of exosomes
in breast cancer therapeutics.

1.1. Breast Cancer Classification

Breast cancer develops from epithelial cells in the terminal duct lobular units and can
be classified into two subtypes histologically, including ductal carcinoma in situ (DCIS)
and invasive ductal carcinoma (IDC) [5,6]. According to the expression of estrogen receptor
(ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and
Ki-67 labelling index (Ki-67) which reflects the proliferation [7], breast cancer has four
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primary molecular subtypes, namely luminal A, luminal B, HER2-positive, and triple-
negative breast cancer (TNBC) [5,8]. The luminal A subtype is ER/PR-positive, with lower
levels of Ki-67 (<14), accounting for about 60–70% of diagnostic breast cancers. The luminal
B subtype is ER-positive combined with HER-2 positive or Ki-67 high (≥14), accounting
for about 10–20%. Both luminal A and luminal B breast cancer are likely to benefit from
endocrine therapy, and patients with luminal A breast cancer have a better prognosis
compared to luminal B. HER2-positive subtype is ER/PR-negative and HER2-positive,
with a diagnostic rate of approximately 13−15%. This subtype can benefit from treatment
targeted to HER2 and chemotherapy with good prognosis. TNBC is characterized by ER, PR,
and HER2 negativity in 10−15% of cases. Breast cancer susceptibility gene 1 (BRCA1) is a
major breast cancer suppressor gene that encodes a protein critical for maintaining genome
stability; its mutation predisposes women to TNBC [9]. As BRCA1 mutation impairs
homologous recombination repair, poly (ADP-ribose) polymerase (PARP) inhibitors have
been approved as target therapy for metastatic TNBC [10]. However, due to its highly
aggressive clinical properties, TNBC still has a poorer prognosis compared to other breast
cancer subtypes [2,5,11,12]. Although the five-year survival rate for women diagnosed with
breast cancer exceeds 90%, all breast cancer subtypes have the potential to exhibit adverse
clinic features, such as high invasiveness and recurrence, mainly caused by metastasis [5].

1.2. Breast Cancer Metastasis

Metastasis occurs frequently and accounts for as much as 90% of cancer-related
deaths [13]. Breast cancer metastasis is also frequently diagnosed and exhibits organ
tropism to lung, brain, bone and liver, which is highly heterogeneous and affects treatment
outcomes and patient prognosis [14]. As shown in Figure 1, breast cancer patients are most
prone to bone metastasis, accounting for 50.7−68.8% of all metastatic cases with different
molecular subtypes. The lung and liver were similar, with 16.0−23.9% and 13.3−19.7% of
breast cancer metastasis occurring in the lung or liver, respectively. The incidence of brain
metastasis is approximately 1.9−5.7% of all metastatic cases. Based on molecular subtypes,
lung metastasis most commonly occurs in TNBC, accounting for about 32% of patients
with metastasis, while the HER2-positive subtype is likely to have liver metastasis [15,16].

Cancer metastasis is a complicated process that goes through multiple steps such as
invasion, intravasation, extravasation and colonization on target organ (Figure 1). Metas-
tasis of tumor cells to distant organs requires not only tumor cell invasiveness, but also
a microenvironment that is conducive to tumor survival and proliferation in secondary
organs [17]. Although the molecular mechanisms of breast cancer metastasis are not fully
understood, mounting studies have shown that primary cancer cells could secrete factors
to remodel the microenvironment of the target organ and prime it into a site favorable
for cancer cell proliferation, known as pre-metastatic niche (PMN) [18–20]. Among these
factors, EVs secreted by cancer cells play important roles in microenvironment remodeling
and metastatic organotropism [21].

1.3. EVs and Exosome

EVs are membrane-bound vesicles secreted by various cells which play critical roles in
cell-cell communication under physiological and pathological conditions [22]. In general,
EVs could be divided into three types based on their morphology: exosomes (30–150 nm),
micro-vesicles (150–1000 nm) and apoptotic bodies (500–2000 nm) [23]. Nowadays, EVs
are considered non-negligible factors in cellular homeostasis and mediators of cancer
metastasis [24]. Exosomes are small EVs with phospholipid bilayers whose heteroge-
neous “cargoes”, such as protein, lipids, RNA and DNA, vary from different types of
cells [25,26]. These cargoes are located inside or on the surface of exosomes and mediate
the communication between original cells and recipient cells [26].
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Figure 1. Breast cancer metastasis to bone, lung, liver and brain [5,15,16]. Figure is created by Bi-
oRender. 
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Exosomes are generated originally from early endosomes by fusion of endocytic
vesicles with plasma membranes. Early endosomes subsequently mature into late endo-
somes and form the multivesicular bodies (MVBs) containing intraluminal vesicles (ILVs).
MVBs could either fuse with plasma membrane for exocytosis of contained ILVs (namely
exosomes) into the extracellular space, or with lysosomes or autophagosomes for degrada-
tion [27,28]. ILV formation is largely dependent on the endosomal sorting complex required
for transport (ESCRT) function. ESCRT is an intricate machinery which is made up of
five complexes, which include the ESCRT-0, -I, -II, -III and Vps4-Vta1 complexes [27,29].
Beside the ESCRT-dependent pathway, an alternative pathway could also be involved in
exosome biogenesis. Proteolipid proteins (PLP) could be incorporated into ILVs in a sphin-
golipid ceramide-dependent manner. Then, ceramide induces raft-based microdomains
formation and coalescence and promotes the budding of ILVs [30]. Moreover, tetraspanins,
such as CD63, CD81, CD9, could regulate ESCRT-independent sorting [27]. Therefore,
ESCRT dependent and independent mechanisms co-exist and function synergistically in
exosome formation.

In recent years, studies have found that cancer-derived exosome could promote the
progression of cancer, including cancer metastasis and drug resistance [31]. Exosomes have
been proved to be involved in various processes of cancer metastasis, such as vascular
leakiness, epithelial-mesenchymal transition (EMT) induction, immune escape and PMN
formation [24,32,33]. Integrins are cell surface adhesion molecules that could mediate
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cell signaling by interacting with components of the extracellular matrix [34]. It has been
demonstrated that integrins on exosomes could guide them into different organs, thereby
inducing PMN formation and promoting cancer metastasis. Exosomes with integrins α6β4
and α6β1 tend to accumulate in the lung, while integrin αvβ5 preferably drives exosomes
into the liver [35]. In addition, comparative proteomics of exosomes derived from different
breast cancer cells demonstrated that their exosomal proteins are heterogenous, which
is associated with different cancer cell metastatic properties [36]. These studies suggest
that exosomes play a crucial role in causing metastasis organotropism through various
mechanisms. In the following section, we will summarize the contribution of exosomes
to the tropism of breast cancer metastasis to different organs, namely bone, lung, liver
and brain, and the metastatic models used in these findings (Table 1), which will help to
comprehensively decipher how exosomes are involve in breast cancer metastasis.

Table 1. Breast cancer models used to study the mechanism of exosomes promoting metastasis.

Metastatic Organs Exosomal Molecules Cell Lines Metastasis Mouse Model Reference

Bone

miR-940 MDA-MB-231 Calvaria implantation [37]

miR-218 MDA-MB-231, MCF-7 Tail vein injection of EVs [38]

miR-20a-5p MDA-MB-231, MCF-7 In vitro [39]

miR-21 MDA-MB-231 Orthotopic model and Caudal artery
injection [40]

miR-19a, IBSP MDA-MB-231, MCF7,
T47D

Intra-cardiac model, intratibial
implantation and orthotopic model [41]

L-plastin MDA-MB-231 Intratibial implantation [42]

CDH11, ITGA5 MDA-MB-231, 4T1,
MCF7

Intra-cardiac model and orthotopic
model [43]

lung

miR-122 MDA-MB-231,
MCF10DCIS.com

Intra-cardiac model and orthotopic
model [44]

miR-138-5p 4T1 Tail vein injection [45]

miR-183-5p 4T1 Orthotopic model [46]

miR-200b-3p 4T1 Orthotopic model [47]

Let-7 4TO7 Orthotopic model, tail vein injection and
intra-cardiac model [48]

circPSMA1 MDA-MB-231 Orthotopic model [49]

CCL2 EO771 Tail vein injection [50]

TβRII MDA-MB-231, 4T1,
4T07

Intra-cardiac model, tail vein injection
and orthotopic model [51]

Myosin-9 MDA-MB-231 Subcutaneous xenograft, orthotopic
model [52]

MMPs MDA-MB-231 Tail vein injection, orthotopic model [53]

MMP-1 MDA-MB-231 Tail vein injection [54]

NDPK MDA-MB-231 Tail vein injection [55]

Annexin II
MDA-MB-231,
MDA-MB-831,
MDA-MB-4175

Tail vein injection and intra-cardiac
model [56]



Int. J. Mol. Sci. 2022, 23, 13993 5 of 16

Table 1. Cont.

Metastatic Organs Exosomal Molecules Cell Lines Metastasis Mouse Model Reference

Liver

miR-4443 MCF-7, MDA-MB-231 Orthotopic model [57]

miR-197 MBA-MB-231 or
SUM149PT

Subcutaneous injection and tail vein
injection [58]

E-cadherin,
p120-catenin MTPa Orthotopic model (Rat) [59]

TGFβ1 MCF7, MDA-MB-231 In vitro [60]

Brain

miR-181c MDA-MB-231 Intra-cardiac model [61]

lnc GS1-600G8.5 MDA-MB-231 Intra-cardiac model [62]

CEMIP MDA-MB-231 Intra-cardiac model, intracranial
injection and orthotopic model [63]

miR-503 MCF7, ZR75-1, SKBR3,
MDA-MB-231

Intra-cardiac model and intracranial
injection [64]

miR-301a-3p MDA-MB-231 Retro-orbital injection of EVs [65]

2. Exosomes and Breast Cancer Metastasis Organotropism
2.1. Exosomes Mediate Breast Cancer Metastasis to Bone

Bone is the most likely site for all types of breast cancer to metastasize. Patients with
bone metastasis are often accompanied by other serious complications, such as severe bone
pain, fractures, serious hypercalcemia, and nerve compression syndromes, which seriously
affect the patients’ life expectancy and quality of life [66]. Bone metastasis involves a
complicated interaction between cancer cells and bone microenvironments. Under normal
circumstances, bone undergoes a dynamic balance of bone resorption and bone formation,
mediated by osteoclasts and osteoblasts, respectively, while bone metastasis often exhibits
a disordered balance of this process [67]. Therefore, there are mainly two types of bone
metastasis, osteolytic and osteoblastic, depending on which cells are overactive [68]. Oste-
olytic bone metastasis frequently occurs in breast cancer, mainly due to the activation of the
RANK-RANKL signaling pathway that mediates osteoclastogenesis. Breast cancer stimu-
lates RANKL expression in osteoblasts by producing parathyroid hormone-related protein
(PTHrP), which in turn leads to excessive osteolysis and promotes bone metastasis by
activating RANK-RANKL signaling [66,67,69]. Besides PTHrP, many other factors such as
calcium-sensing receptor (CaSR), TNF-α, and interleukins also affect bone metastasis [67].

Furthermore, recent studies have shown that EVs, especially exosomes, play an impor-
tant role in bone metastasis of breast cancer (Figure 2a). The main role is that exosomes
can bring osteoclastogenesis-enhancing miRNA into bone, thereby promoting osteolytic
metastasis. As an osteolytic phenotype-inducing cell, MDA-MB-231 could facilitate the
osteogenic differentiation of mesenchymal stem cells via exosomal miR-940 targeting Rho
GTPase activating protein 1 (ARHGAP1) and FAM134A [37]. MDA-MB-231 also secreted
exosomal miR-218 to impede procollagen processing during osteoblast differentiation and
tip the balance toward osteolysis to form a metastatic bone niche [38]. Guo et al. found that
MDA-MB-231-derived exosomes could transfer miR-20a-5p to bone marrow macrophages,
which then enhanced osteoclast proliferation and differentiation by targeting SRC Kinase
Signaling Inhibitor 1 (SRCIN1) [39]. It is also reported that exosomal miR-21 produced
from MDA-MB-231 derived cells with high bone metastatic ability could contribute to
bone lesion and PMN formation via targeting programmed cell death 4 (PDCD4), which
has an inhibitory function on osteoclast differentiation [40]. Unlike MDA-MB-231 cells,
ER+ bone-tropic breast cancer cells could produce exosomal miR-19a, which promotes
osteoclastogenesis and bone metastasis by suppressing PTEN expression and inducing
NF-κB and AKT pathways [41].
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Besides miRNAs, exosomes can also carry other “cargoes” to facilitate bone metastasis.
L-plastin was found to be a soluble factor secreted from MDA-MB-231 cells, belonging
to the actin-binding proteins family. L-plastin could be encapsulated in exosomes, which
stimulated osteoclastogenesis and further promoted bone metastasis [42]. Breast cancer
cells with high runt-related transcription factor 2 (RUNX2) expression could secrete EVs
with high levels of cadherin 11 (CDH11) and integrin α5 (ITGA5), which synergistically
promote osteogenic PMN formation. Mechanistically, CDH11 mediated tumor-derived EVs
uptake by osteoblasts and ITGA5 was responsible for the formation of PMN that facilitated



Int. J. Mol. Sci. 2022, 23, 13993 7 of 16

cancer cell colonization in bone [43]. Integrin-binding Sialoprotein (IBSP) secreted by ER+

bone-tropic breast cancer cells could bind to αvβ3 integrin and attract osteoclasts, assisting
the delivery of exosomal miR-19a to osteoclast to induce bone metastatic lesions [41].

2.2. Exosomes Mediate Breast Cancer Metastasis to Lung

Lung is another target of frequent breast cancer metastasis. Pulmonary capillaries are
composed of endothelial cells surrounded by a based membrane and adjacent alveolar
cells. Tumor cells need to adhere to this endothelial membrane and extravasate into lung
parenchyma to establish metastatic tumors [70]. The process of lung metastasis is affected
by many factors, among which exosomes play a critical role in remodeling the immune
microenvironment and inducing EMT (Figure 2b).

Tumor-derived exosomes promote lung metastasis via non-coding RNAs that mediate
relevant signaling. Exosomal miR-122 was secreted by high metastatic breast cancer cells
and increased nutrient availability in lung metastatic cancer cells by downregulating
glycolytic enzyme pyruvate kinase (PKM) in lung fibroblasts [44]. Recent study further
found that exosomal miR-122 could also target PKM in pancreatic β-cells to suppress insulin
secretion and disrupt systemic glucose homeostasis to promote cancer progression [71].
Besides metabolism reprogramming in metastatic organ, exosome also mediated miRNA
transfer from cancer cells to other cells for microenvironment remodeling and promoting
the pre-metastatic niche formation in the lung. Exosomal miR-138-5p and miR-183-5p
secreted by cancer cells could modulate tumor-associated macrophages’ (TAMs) activity to
enhance lung metastasis via targeting KDM6B and PPP2CA, respectively [45,46]. miR-200b-
3p was enriched in tumor-derived exosomes and transferred to lung, thereby increasing the
expression of C-C motif chemokine ligand 2 (CCL2) by targeting PTEN. CCL2 could further
recruit myeloid-derived suppressor cells (MDSC) and contribute to the establishment of an
immunosuppressive microenvironment for metastasis [47]. However, exosomes that could
enhance metastasis are not always enriched with miRNA. Lin28 is an RNA-binding protein
that regulates the expression of miRNA let-7 family members and acts as a modulator for
self-renewal of embryonic stem cells [72,73]. Lin28B is mainly expressed in TNBC and
could promote breast cancer progression [74]. Recent studies indicate that Lin28B could
increase breast cancer stem cell population, a major source of low let-7 exosomes. Moreover,
these exosomes contribute to neutrophil N2 transformation and induce immunosuppressive
PMN, promoting lung metastasis [48]. In addition to miRNA, tumor-derived exosomal long
non-coding RNA (lncRNA) and circular RNA (CircRNA) also contribute to lung metastasis
of breast cancer. Abnormal expression of lncRNAs in exosomes facilitated the formation of
a lung metastatic microenvironment [75]. Exosomal circPSMA1 could act as a “sponge” to
neutralize miR-637, thereby upregulating the expression of Akt1 and affecting downstream
genes such as β-catenin and cyclin D1. The circPAMA1/miR637/Akt1/β-catenin (cyclin
D1) axis promoted not only tumorigenesis, but also TNBC metastasis to the lung [49].

Some protein factors could also be the cargo in exosomes and promote metastasis.
Recent studies found that cytokines in a tumor microenvironment can regulate the organ-
otropism of metastasis via exosome secretion. CCL2 could directly bind to tumor-derived
exosomes through the glycosaminoglycan side chains of proteoglycans. Furthermore, these
CCL2-decorated exosomes were directed to CCR2-expressing cells, especially in the lung,
leading to the lung metastasis burden [50]. Another chemokine, CCL5 expressed by tumor
cells not only induces macrophage recruitment, but also promotes the secretion of more EVs
by tumor cells, whereby EVs educated macrophages into TAMs and enhanced metastasis in
the lung [76]. Besides cytokines, tumor-derived exosomes carry other proteins to contribute
to lung metastasis. TGF-β type II receptor (TβRII) could be transferred by exosomes from
malignant cells and activate TGF-β signaling in recipient cells. On the one hand, exosomal
TβRII could induce TGF-β activation to initiate EMT in low-grade cancer cells, thus enhanc-
ing cancer stemness and metastasis. On the other hand, exosomal TβRII could also induce
CD8+ T cell exhaustion by activating SMAD3, thereby leading to immunosuppression [51].
Feng et al. found that macrophage infiltration was positively correlated with the levels
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of signal-induced proliferation-associated 1(SIPA1) in invasive breast ductal carcinoma.
SIPA1 could increase the level of myosin-9 in exosomes, which enhances macrophage
infiltration and lung metastasis [52]. Aspartate β-hydroxylase (ASPH) could induce Notch
signaling activation in breast cancers and orchestrate pro-oncogenic/pro-invasive cargoes
into tumor-derived exosomes, especially matrix metalloproteinases (MMPs). These ex-
osomal cargoes could enhance breast cancer metastasis in distant organs, especially the
lung [53]. Furthermore, exosomal MMP-1 generated by high metastatic cells could mediate
EMT in low metastatic cells by interacting with membrane G protein receptor protease
activated receptor 1 (PAR1) and enhance their migration and invasion [54]. Exosome could
also carry nucleoside diphosphate kinase A and B (NDPK) and Annexin II, thereby en-
hancing lung metastasis by promoting the vascular leakage and angiogenesis in the lung,
respectively [55,56].

2.3. Exosomes Mediate Breast Cancer Metastasis to Liver

As mentioned above, liver metastasis is also an important subgroup of breast cancer
metastasis diagnosed, often occurring in HER2-positive breast cancer with poor progno-
sis [15,16]. The microenvironment in both primary tumors and liver tissues undergoes
great changes during the establishment of secondary metastatic sites. Many factors could
be involved in breast cancer liver metastasis, such as inflammatory factors, chemokines
and the related receptors, and cell adhesion molecules, etc., which could promote the estab-
lishment of a pro-inflammatory environment and EMT in tumors. In addition, there are
some factors related to liver microenvironment that affect metastasis, such as angiogenesis-
related factors, hypoxia-regulated genes, liver metabolic status, and the interaction between
sinusoidal capillaries and cancer cells [77,78]. Recent studies indicate that exosomes are also
extensively involved in liver metastasis (Figure 2c). Similarly, exosomes could contribute
to liver metastasis by carrying miRNAs against the relevant targets. Highly invasive breast
cancer cells secreted exosomes with high level of miR-4443 against tissue inhibitors of
metalloproteinase 2 (TIMP2); the exosomes mainly accumulated in liver to upregulate
MMP-2 and induced liver metastasis [57]. Exosomal miR-197 was produced by enriched
breast cancer stem cells and downregulated the expression of PPARγ, thereby activating
EMT in cancer cells and facilitating liver metastasis [58]. Tetraspanins are transmembrane
proteins associated with cell membrane compartmentalization [79]. Tspan8, a member
of tetraspanins, enhanced breast cancer metastasis to the liver. Mechanistically, Tspan8
promoted the secretion of EVs carrying high levels of E-cadherin and p120-catenin, thereby
increasing liver metastases by modulating the EMT-MET programme [59]. One recent study
indicated that Tspan8 not only enhances exosome secretion, but also promotes the uptake of
exosome in some tissues, including liver, through confined diffusion, thus promoting tumor
progression [80]. With the development of new technologies, more molecular mechanisms
by which exosomes are involved in liver metastasis have been discovered. Based on a three-
dimensional microfluidic liver chip, Kim et al. found that breast cancer-derived exosomes
activated liver sinusoidal endothelial cells (LSECs), leading to endothelial-to-mesenchymal
transition and disruption of the vascular barrier. Furthermore, exosomes upregulated
fibronectin on LSECs through delivering TGFβ1, which facilitates cancer cell attachment to
the liver microenvironment [60].

2.4. Exosome Mediate Breast Cancer Metastasis to Brain

Unlike other tissues, brain metastasis is a heterogeneous process involving the in-
teraction between the tumor cell and the blood-brain barrier (BBB). The BBB is mainly
composed of astrocytes, pericytes and endothelial cells, which make up the neurovascular
unit. Endothelial cells are the first to crosstalk with circulating tumor cells [81]. Under
normal conditions, BBB controls the supply of essential nutrients to brain cells, protects
the brain from toxic compounds in the blood, and filters the harmful factors into the blood,
which plays an important role in maintaining central nervous system homeostasis [82].
Although BBB also acts as a barrier against circulating tumor cell (CTCs) infiltration, many
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studies have revealed that the changes in molecular and cellular signal pathways are
involved in this process to disrupt the BBB and establish the PMN for brain metasta-
sis [83]. Meanwhile, exosomes also participate in the process through multiple mechanisms
(Figure 2d). According to single cell force spectroscopy by atomic force microscopy, exo-
somes from cancer cells reduced brain endothelial adhesion when in direct contact with
breast cancer cells, suggesting that exosomes may modulate the adhesiveness of brain
endothelium and affect their permeability [84]. Tubulin tyrosine ligase-like 4 (TTLL4) is a
cytoskeleton-associated protein, and its expression was positively correlated with brain
metastasis. Mechanistically, upregulated TTLL4 increased β-tubulin glutamylation and
MVB trafficking, which increased adhesion of breast cancer cells to BBB endothelial cells
as well as permeability of these endothelial cells by altering exosome signatures [85]. It
suggests that cancer-derived exosomes could enhance brain metastasis by disrupting the
BBB through certain factors. miR-181c could be enriched in brain metastatic breast cancer
cell-derived exosomes and target 3-phosphoinositide-dependent protein kinase-1(PDPK1)
in endothelial cells. Downregulation of PDPK1 further reduced phosphorylation of cofilin
and led to abnormal actin filament organization, thereby destroying BBB and promoting
brain metastasis [61]. Cancer-derived exosomes also transferred lncRNA GS1-600G8.5 to
endothelial cells and increased the permeability of BBB to enhance the passage of cancer
cells through the BBB. However, the downstream targets of this lncRNA are unclear [62].

Recent studies have shown that exosome could also remodel a brain microenviron-
ment that favors cancer cell colonization and proliferation. Cell migration-inducing and
hyaluronan-binding protein (CEMIP), a Wnt-signaling associated protein, was identified
as a dominant exosomal protein in brain metastatic cells, with low or undetectable levels
in exosomes from lung and bone metastatic cells. CEMIP-positive exosomes were taken
up by brain endothelial and microglial cells and contribute to the establishment of PMN
by causing the cerebral vascular remodeling through upregulation of pro-inflammatory
cytokines [63]. LncRNA X-inactive-specific transcript (XIST) was found to be significantly
downregulated in brain metastatic tumors, and its expression was negatively correlated
with brain metastasis. Besides enhancing aggressiveness of cancer cells by induction
of EMT and c-Met signaling, loss of XIST could increase exosomal miR-503 secretion,
which triggered M2 polarization in microglia and suppressed T cell proliferation to form
PMN [64]. In addition, miR-301a-3p enriched exosomes were taken up by astrocytes via
non-canonical Cdc42-dependent endocytosis, and these exosomes resulted in extracellular
matrix remodeling by suppressing TIMP-2 expression in preparation for a metastasis mi-
croenvironment [65]. To enhance the effect of tumor-derived exosomes on brain metastasis,
exosomes can manipulate the brain endothelial cells to facilitate their transfer into brain
parenchyma by downregulating the expression of Rab7 [86] and can also bind with low-
density lipoprotein (LDL) during circulation, causing the LDL aggregation and promoting
monocyte uptake [87].

In conclusion, tumor-derived exosomes contribute to breast cancer metastasis to bone,
lung, liver and brain through multiple mechanisms, which provide potential therapeutic
targets for diagnosis of and therapy for this deadly disease.

3. Clinical Application
3.1. Exosomes as Diagnostic Biomarkers for Breast Cancer

With the convenience of being non-invasive and highly efficient, liquid biopsy brings
an opportunity for cancer diagnosis with detection through various body fluids such as
blood or urine, rather than invasive methods to remove a piece of cancerous tissue [88].
Liquid biopsy has made some progress in establishing the diagnosis of various cancers by
using certain molecules as biomarkers, including CTCs, circulating tumor DNA (ctDNA),
tumor-educated platelet (TEP) and exosomes [89,90]. As mentioned above, exosomes
contain specific “cargoes” derived from metastatic cancer cells, which not only play an
important role in breast cancer progression and metastasis but may also have the poten-
tial to be biomarkers for diagnosing metastasis. To discover exosome-based biomarkers,
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Wang et al. established a comprehensive database—ExoBCD—by combining four high-
throughput datasets, transcriptome of 1191 TCGA cases and manual mining of 950 studies.
The database identified 306 valuable exosomal molecules, including 49 potential biomarkers
and 257 biologically interesting molecules [91]. Since traditional detection methods, such
as real-time PCR and Western Blotting analysis, are time-consuming and laborious and re-
quire exosome enrichment, which make them unsuitable for exosome-based diagnosis, it is
necessary to develop alternative methods. A rapid, sensitive, and low-cost thermophoretic
aptasensor (TAS) was developed for the analysis of cancer-associated protein profiles of
plasma EVs. Based on this analysis, the EV protein signature was established and used to
accurately monitor and predict metastatic breast cancer [92]. Kwizera et al. developed an
inexpensive and highly efficient device based on the surface-enhanced Raman scattering
(SERS) to detect exosomes and exosomal protein profiles. Using this device, they identi-
fied exosomal HER2 and EpCAM as biomarkers in the plasma of HER2-positive breast
cancer patients [93]. Then, Lee et al. established another SERS-based platform to detect
and quantify exosomal miRNAs in serum for breast cancer diagnosis [94]. In addition, a
nano-sized fluorescent oligonucleotide probe-molecular beacon has also been developed
for the measurement of miRNAs in blood exosomes with high sensitivity and specificity,
such as miR-21 [95,96], miR-27a, miR-375 [96], and miR-1246 [97]. Recently, a microfluidic
chip-based exosomal mRNA sensor was developed to directly detect exosomal ERBB2
in blood for the diagnosis of HER2-positive breast cancer [98]. Therefore, technological
advances will enable exosomes to be used as biomarkers for breast cancer diagnosis in
the future.

3.2. Engineered Exosomes for Therapeutics of Breast Cancer

The natural characteristics of exosomes, such as low toxicity, low immunogenicity,
high-flexibility engineering, and inherent targeting and interaction with recipient cells,
make them ideal drug carriers for breast cancer therapy [99–102]. First, exosomes can
serve as delivery vesicles for chemotherapeutic drugs such as doxorubicin, with some
engineering modification on their surface to improve their targeting efficiency and reduce
side effects [103]. Hydrophobic drugs, such as Aspirin, could also be loaded into exosomes
to increase their solubility and enhance their cytotoxicity against cancer cells [104]. In
addition, to enhance the efficacy of PARP inhibitors, exosomes isolated from TNBC cells
were loaded with Olaparib (PARP inhibitor) and superparamagnetic iron oxide (SPIO)
nanoparticles, which could be tracked by magnetic particle imaging (MPI) and also effec-
tively inhibited tumor growth [105]. Second, functional small RNAs, such as siRNA and
miRNA, can be packaged into exosomes and delivered to cancer cells to downregulate
target genes, thereby inhibiting cancer progression [106–109]. Third, engineered exosomes
can be used as vaccines to stimulate an immune response against tumor cells. A novel
exosome-like nanoparticles was developed from fibroblast activation protein-α (FAP) en-
gineered cancer cells as a tumor vaccine, which induced robust and specific cytotoxic T
lymphocyte immunity against tumor cells and reprogrammed the immunosuppressive
microenvironment [110]. Exosomes from α-lactalbumin overexpressing breast cancer cells
were packaged together with immunogenic cell death inducers—human neutrophil elastase
(ELANE) and Hiltonol (a TLR3 agonist) to construct a vaccine, thereby priming dendritic
cells in situ and improving subsequent tumor-reactive CD8+ T cell responses [111]. Exo-
some can also be engineered to display both anti-CD3 and anti-HER2 antibodies to mediate
cytotoxic T cells that directly target HER2-positive breast cancer and improve immunother-
apy [112]. Fourth, exosomes can be utilized as nanocarriers to provide cancer-targeted
sonosensitizers for sonodynamic therapy (SDT), which employs reactive oxygen species
(ROS) generated by ultrasonic excitation to kill cancer cells [113]. Indocyanine green-loaded
exosomes were surface-modified with cancer-binding ligand to increase their target speci-
ficity, resulting in greater SDT against cancer cells [114]. Sinoporphyrin sodium (DVDMs)
could also be loaded into tumor-derived exosomes to increase its efficiency in SDT [115].
Exosomes can be used not only for primary tumor therapy, but also be engineered to
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treat breast cancer metastasis. As exosomes derived from metastatic breast cancers have
natural organotropism to lung [35] and brain [86], therapeutic drugs can be encapsulated
with exosomes to target the relevant metastatic foci. Gold nanorods, a nanomaterial for
photothermal therapy, were loaded into lung metastatic cancer cells-derived exosomes,
exhibiting better therapeutic effects on lung metastases [116]. Finally, more engineered
exosomes will be developed to improve precision therapy for breast cancers, especially
with regard to metastasis.

4. Conclusions

Extensive studies have been conducted on the function of exosomes in breast cancer
metastasis, and these studies have shown that exosomes can broadly affect its metastasis.
By controlling the contents encapsulated in exosomes, cancer cells can remodel the microen-
vironment of their preferred distant organs through exosome secretion, further promoting
the metastatic process of cancer and generating metastasis organotropism. Exosomes will
become new cancer diagnostic markers in cancer therapy due to their own characteristics.
Therefore, a comprehensive understanding of exosome functions in breast cancer metastasis
could provide some new insights into their clinical applications.
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