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Abstract: The eye has a complex and metabolically active neurovascular system. Repeated light
injuries induce aging and trigger age-dependent eye diseases. Damage to blood vessels is related
to the disruption of the blood-retinal barrier (BRB), altered cellular communication, disrupted mito-
chondrial functions, and exacerbated aggregated protein accumulation. Vascular complications, such
as insufficient blood supply and BRB disruption, have been suggested to play a role in glaucoma, age-
related macular degeneration (AMD), and Alzheimer’s disease (AD), resulting in neuronal cell death.
Neuronal loss can induce vision loss. In this review, we discuss the importance of the neurovascular
system in the eye, especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial
molecular pathways to prevent or slow down retinal pathologic processes will also be discussed.
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1. Introduction

The hallmarks of aging include genomic instability, telomere attrition, epigenetic
alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction,
cellular senescence, stem cell exhaustion, and altered intercellular communication [1]. In
these processes, the vascular system plays a key role in cellular metabolism by supplying
oxygen and nutrients [2]. Altered vascular systems in the eye (e.g., chronic hypoperfusion,
inflammation, blood-retinal barrier (BRB) leakage, decreased nutrient supply, mitochon-
drial damage, immune cell infiltration, stem cell exhaustion, and altered intercellular
communication) may facilitate the aging process [3–6]. Patients with glaucoma, age-related
macular degeneration (AMD), and Alzheimer’s disease (AD) have altered microvascu-
lar networks in the retina compared with those in matched non-dementia controls [7,8]
(Figure 1).

These changes in retinal microvasculature may reflect similar pathophysiological
processes in the cerebral microvasculature of AD patients [9,10]. Peripapillary capillaries
have been recognized as a highly specialized vasculature that supplies the nerve fiber layer.
The retinal thickness in the peripapillary retinal nerve fiber layer is lower in glaucoma
and AD patients than in healthy controls [8,11]. The short posterior ciliary artery has been
found to exhibit transient vasospasm upon radical exposure in in vitro models [12], and
reduced short posterior ciliary artery blood flow velocities are associated with glaucoma
progression [13]. Retinal arteriolar narrowing has also been observed in patients [8]. Di-
minished vascular networks can affect neuronal survival. Retinal ganglion cells (RGCs) are
lost by 25% near the fovea and in the nasal retina of aged individuals [14]. Thus, atrophy of
the retina in aged patients may be involved in altered microvasculature that contributes to
a reduced supply of O2 (hypoxia) and nutrients. This in turn leads to mitochondrial dys-
function, cellular senescence, stem cell exhaustion, and altered intercellular communication
(Figure 2A,B). This review discusses the importance of the neurovascular system in the eye,
especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial molecular
pathways to prevent or delay retinal pathologic processes are also discussed.
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Figure 1. Comparison between the young and old vessels in the retina. Aging results in narrowing 
arteriole, retinal capillary degeneration, pericyte depletion, hypoxia, and BRB disruption. Abbrevia-
tion. BRB, blood-retinal barrier. 

These changes in retinal microvasculature may reflect similar pathophysiological pro-
cesses in the cerebral microvasculature of AD patients [9,10]. Peripapillary capillaries have 
been recognized as a highly specialized vasculature that supplies the nerve fiber layer. The 
retinal thickness in the peripapillary retinal nerve fiber layer is lower in glaucoma and AD 
patients than in healthy controls [8,11]. The short posterior ciliary artery has been found to 
exhibit transient vasospasm upon radical exposure in in vitro models [12], and reduced 
short posterior ciliary artery blood flow velocities are associated with glaucoma progression 
[13]. Retinal arteriolar narrowing has also been observed in patients [8]. Diminished vascu-
lar networks can affect neuronal survival. Retinal ganglion cells (RGCs) are lost by 25% near 
the fovea and in the nasal retina of aged individuals [14]. Thus, atrophy of the retina in aged 
patients may be involved in altered microvasculature that contributes to a reduced supply 
of O2 (hypoxia) and nutrients. This in turn leads to mitochondrial dysfunction, cellular se-
nescence, stem cell exhaustion, and altered intercellular communication (Figure 2A,B). This 
review discusses the importance of the neurovascular system in the eye, especially in aging-
related diseases such as glaucoma, AMD, and AD. Beneficial molecular pathways to prevent 
or delay retinal pathologic processes are also discussed. 

 
Figure 2. Aging processes in the eye. Young retina shows intact cellular communications for fine 
vision (A); however, aging and consequent age-related eye diseases (i.e., glaucoma, AD) reduce 
neurovascular cell communication in the eye (B). Aging and age-dependent eye diseases show inner 
BRB breakdown and outer BRB breakdown (C). Abbreviation. AD, Alzheimer’s disease; GCL, gan-
glion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. 

  

Figure 1. Comparison between the young and old vessels in the retina. Aging results in narrowing
arteriole, retinal capillary degeneration, pericyte depletion, hypoxia, and BRB disruption. Abbreviation.
BRB, blood-retinal barrier.
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Figure 2. Aging processes in the eye. Young retina shows intact cellular communications for fine
vision (A); however, aging and consequent age-related eye diseases (i.e., glaucoma, AD) reduce
neurovascular cell communication in the eye (B). Aging and age-dependent eye diseases show inner
BRB breakdown and outer BRB breakdown (C). Abbreviation. AD, Alzheimer’s disease; GCL, ganglion
cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.

2. BRB Dysfunction in Aging and Diseases

The BRB consists of the inner and outer BRB [15]. The inner BRB is formed by tight
junctions between retinal capillary endothelial cells, while the outer BRB is formed by
tight junctions between retinal pigment epithelial (RPE) cells [16]. Glaucoma and AD are
associated with inner BRB breakdown in the retina, while AMD is closely related to outer
BRB breakdown (Figure 2C). At the early pathological stage of aging-related diseases, the
retinal capillary degeneration and compromised BRB integrity may provide important
clues for diagnosis and therapy [10]. AD brains show leakage of the cerebral capillary
endothelium [17], indicating abnormalities in the blood–brain barrier (BBB). The albumin
ratio as a marker of BBB permeability correlates with the severity of dementia [18]. In
addition to abnormalities in the BBB, inner BRB disruption and retinal capillary degener-
ation were also detected in murine AD models [10]. Along with capillary degeneration,
pericyte deficiency has been observed in the retina of AD transgenic mice [10]. RPE cells
play an important role in immune regulation because aging RPE becomes immunologi-
cally active for immune cell infiltration into retinal neurons through the damaged outer
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BRB [19]. Oxidative stress affects both the inner and outer BRB. Reactive oxygen species
(ROS) and reactive nitrogen species (RNS) reduce tight junctions between endothelial and
RPE cells [20–22].

3. Age-Related Retinal Diseases

Age-related neurodegenerative eye diseases, including glaucoma, AMD, and AD, are
characterized by the accelerated loss of retinal neurons and their axons. These diseases are
interrelated and share common molecular mechanisms induced by repeated light injury
and the consequent overexpression of oxidative stress. The prevalence and incidence of
primary open-angle glaucoma exponentially increase with age [23]. The global incidence
of glaucoma has reached approximately 79 million in 2020, and this number is expected
to increase to over 111 million by 2040. Glaucoma involves damaged optic nerves, loss
of RGCs by apoptosis, and altered connection between RGCs and the visual cortex [24].
RGCs have a limited capacity for regeneration following damage in adulthood [25]. Thus,
glaucoma-induced loss of RGCs may be irreversible in aged patients.

AMD has affected 196 million individuals aged 45–85 years worldwide in 2020, ac-
counting for approximately 8.7% of the population. The majority (>85%) of AMD patients
have the dry form of the disease, which is characterized by extracellular deposits called
drusen (heterogeneous debris, including lipid accumulation between the RPE and Bruch’s
membrane) beneath the RPE and subsequent RPE atrophy in the macula. However, there
is currently no treatment for this AMD type. In dry AMD, drusen, choroidal ischemia,
and vitreoretinal adhesion are independently determined by genetics and environment
(i.e., smoking and diet) and may occur concurrently in variable proportions. If the resulting
hypoxia and consequent vascular endothelial growth factor (VEGF) accumulation exceed
the threshold, this will trigger imbalanced choroidal neovascularization [26] (Figure 3).
Meanwhile, wet AMD patients, accounting for approximately 15% of the total AMD pa-
tients, are administered anti-VEGF antibody therapy to inhibit blindness [27,28]. Narrowing
vessels result in chronic hypoxia in endothelial cells with age. Chronic hypoxia and conse-
quent accumulation of hypoxia inducible factor (HIF)-α (e.g., HIF-1α and HIF-2α) in RPE
cells may be central AMD risk factors showing Bruch’s membrane thickening and metabolic
changes (i.e., lipid accumulation, VEGF upregulation) in RPE limit glucose delivery to
photoreceptors [29].

Approximately 1 in 9 individuals aged ≥ 65 years have AD. Dementia has already af-
fected 55 million individuals aged ≥ 65 years in 2022 [30]. Narrowing vessels and prolonged
hypoperfusion alter waste disposal systems in aging and diseases, leading to reduced clear-
ance of aggregated and misfolded proteins and BRB disruption [9,10,31]. Chronic cerebral
hypoperfusion causes significant cognitive decline concurrent with increased levels of tau
phosphorylation, dysregulated synaptic proteins, and altered mitochondrial ultrastructure
in neuronal cells [32–34]. Chronic overexpression of heme oxygenase-1 (HO-1) produces
labile iron [35], and HO-1 can be induced by hypoxia [36]. Excessive intracellular labile
iron levels lead to ferroptosis and consequent cell death, and these mechanisms under-
line the pathology of several neurodegenerative diseases [37]. Endothelial cell ferroptosis
also triggers inflammatory responses through the NOD-like receptor family pyrin domain-
containing 3 (NLRP3) [38]. As lipid peroxidation and accumulation can be related to drusen
deposition, ferroptosis may be a critical regulator of age-related eye diseases [39].
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4. Retinal Cells in Aging and Diseases

Chronic hypoxia and the accumulation of toxic agents mediate inflammasome for-
mation and ferroptosis in endothelial cells, consequently inducing insufficient nutrient
and oxygen supply to the surrounding neurovascular unit. In this section, we discuss the
various neurovascular cells that affect endothelial cells.

4.1. Stem Cells

Stem cell exhaustion has been observed during aging. Healthy vessels and intact
pericytes are important for stem cell proliferation and differentiation [31,40,41]. In the
retina, stem cells can be generated from multipotent progenitor cells and Müller glial
cells [42]. During embryonic development of the eye, a group of founder cells in the optic
vesicle gives rise to multipotent progenitor cells that generate all neurons and glia of the
mature retina. In most vertebrates, a small group of retinal stem cells persist at the margin
of the retina near the junction with the ciliary epithelium [43]. In a fish model, multipotent
adult retinal stem cells differentiated into various retinal neurons and glia and formed
an arched-continuous stripe by clone transplantation at the blastula stage (i.e., the early
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stage in embryogenesis) [44]. By applying tools available to fish, retinal stem cells can be
deciphered based on their localization, growth, and differentiation [44,45].

Boosting RGC regeneration may be a potential therapeutic strategy for glaucoma. Hu-
man pluripotent stem cells are attractive candidates for translational approaches because
of their ability to divide and differentiate into RGCs [46]. Human pluripotent stem cell-
derived retinal organoids may serve as useful models for RGC development [47]. Retinal
organoid-derived RGCs actively extend neurites in the presence of Netrin-1 (a chemotropic
factor) or brain-derived neurotrophic factor (BDNF) [47]. In zebrafish, Müller glial cells
act as radial glial-like neural stem cells and generate rod progenitors [42]. During injury,
Müller glial cells can stimulate adult neurogenesis, partly through epigenetic changes [48].
The nuclei of Müller glial cells translocate to the apical surface and divide asymmetrically
to give rise to proliferating multipotent retinal progenitors that accumulate around the
radial glial fiber and migrate to the appropriate retinal laminae to regenerate neurons [42].
In age-related diseases, stem cell extinction can be accelerated by neurovascular cell mis-
communication because vascular cells, such as endothelial cells and pericytes, are damaged
or dead.

4.2. Retinal Pigment Epithelium

The RPE is a monolayer of cells that underlie and support photoreceptors in the
retina. RPE plays two critical roles in the function of retinal photoreceptors. First, the
membranous disks in the outer segment, which house the light-sensitive photopigment
and outer proteins involved in phototransduction, are turned over within approximately
12 days. New outer segment disks are continuously formed near the base of the outer
segment, whereas the aged portion of the disks is eliminated. During their lifespan, disks
move gradually from the base of the outer segment to the tip to remove expended receptor
disks. This shedding involves “pinching off” of a clump of receptor disks by the outer
segment membrane of the photoreceptor [49]. This enclosed clump of disks that may be
exposed to photo-oxidative damage is phagocytosed by the RPE [49]. During aging, the
RPE undergoes significant morphological and functional changes. The number of RPE
declines and the size increases with decreases in phagocytic and lysosomal activities [50,51].
Second, RPE regenerates photopigment molecules (i.e., melanin) after exposure to light,
and this effect is reduced with aging [52]. Photopigment is cycled continuously between the
outer segment of the photoreceptor and RPE. Disruption of cell–cell interactions between
the RPE and retinal photoreceptors has severe consequences on vision.

Endogenous regeneration of the RPE has been reported. Injury-adjacent RPE cells
proliferate and differentiate into RPE cells in zebrafish [53]. In addition, quiescent human
RPE stem cells have been identified, and adult RPE stem cells can proliferate in vitro and
differentiate into RPE or mesenchymal cell types [54]. As RPE is susceptible to ROS/RNS,
the antioxidant milieu of the eye may be beneficial for RPE stem cells.

4.3. Glia

Glial cells are a complex population of cells expressing different transcription fac-
tors and neurotrophic factors in different environments [55–58]. Aging glial cells, such
as astrocytes, Müller glial cells, oligodendrocytes, and microglia, can be involved in un-
controlled inflammation and impaired cell–cell networks [55]. Aged astrocytes can no
longer support neuron-oligodendrocyte interactions [59]. Similar to microglia, astrocytes
are also involved in eliminating neurons by phagocytosis [60]. Autophagy-dysregulated
astrocytes are observed in the aging hippocampus [61]. Autophagy is an intracellular degra-
dation process, and reduced autophagy in the aged retina causes accumulation of damaged
components [6,62]. Aged astrocytes and microglia undergo morphological alterations,
accumulation of autophagosomes, and impaired photoreceptor degradation [63–65].

Aging is also characterized by gliosis, loss of axons, demyelination, and vision loss.
Gliosis is a reactive process that includes the proliferation of glial cells, such as astrocytes,
after injury. Astrocytes express glial fibrillary acidic protein (GFAP) under physiologi-
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cal conditions, and Müller glial cells express GFAP in RPE cells during AMD [66]. In
animal models, glaucomatous optic nerve injury triggers reactive astrocytes and axonal
degeneration [67]. These are followed by microglia activation, modest loss of oligodendro-
cytes, and consequent demyelination [67].

Proper intercellular interactions can be important to delay the aging process. Given
that glial cells comprise the neurovascular unit linking endothelial cells and neurons, dis-
ruption of these cellular interactions can exaggerate neurovascular miscommunications.
The astrocytic water channel aquaporin-4 is densely expressed by astrocytes almost exclu-
sively at the end-feet; however, aquaporin-4 loses its polarization in reactive astrocytes
and is found to be diffusively expressed [5,68]. Glia-cell-derived VEGF and its receptor
VEGFR2 expressed in endothelial cells stimulate the survival of endothelial cells and angio-
genesis [29,69–71], which are reduced in aging [72]. Müller glial cells can inhibit excessive
retinal endothelial cell proliferation by upregulating transforming growth factor β2 [73].
Thus, morphological and functional changes in glia affect the neurovascular system under
pathological conditions with aging.

4.4. Pericytes

Pericytes are vulnerable to ischemic conditions [40]. Aging retina with chronic is-
chemia reduces the ability of pericytes to relax after constriction, leading to a further
decrease in blood flow [74,75]. In the aged rat retina, interactions between pericyte and
endothelial cells become weak and disrupted [76]. A substantial vascular pericyte defi-
ciency, along with prominent vascular Aβ deposition, was detected in the retina of AD
(APPSWE/PS1∆E9) mice, and this was inversely correlated with the extent of degenerated
capillaries [10]. Angiopoietin-1 is expressed in retinal pericytes, and its receptor Tie2 is ex-
pressed in retinal endothelial cells [77]. Interactions between pericytes and endothelial cells
through the angiopoietin-1–Tie2 pathway promote angiogenesis and protect retinal neurons
during ischemic injury [77]. However, the interaction between pericytes and endothelial
cells is weakened during aging, resulting in loss of capillary coverage, distorted retinal
vessels, and breakdown of BRB foci [10,76] and possibly leading to impaired exchange of
metabolites required for optimal neurovascular function. Moreover, pericytes respond to
carbon monoxide (CO), nitric oxide (NO), and adenosine triphosphate (ATP) [78,79] and
may communicate with neural stem cells, endothelial cells, and photoreceptors. Reduced
capillary diameter and impaired blood flow at pericyte locations in eyes correlate with high
intraocular pressure [80]. Considering the critical role of pericytes in ocular perfusion and
blood flow in aged retinas, protecting healthy pericytes from age-related damage may be
crucial for maintaining healthy vision.

5. Metabolic Disturbances in the Retina

Adequate evidence supports that metabolic disruptions are closely related to eye
aging. The retina requires large amounts of ATP through mitochondrial functions for
phototransduction as well as for maintaining a depolarized state in the absence of light,
leading to the induction of chronic hypoxia. Repeated light injury and ischemic stress
triggers ROS/RNS production and uncontrolled inflammatory responses. The retina is an
immune-privileged tissue that is highly sensitive to inflammatory damage. Aging-related
reductions in cellular defense mechanisms against inflammation make the retina vulnerable
to such damage.

5.1. Mitochondria

Age-related metabolic dysfunction may play a key role in the etiology of neurodegen-
erative eye diseases [81]. Mitochondria are involved in ATP generation through oxidative
phosphorylation (OXPHOS) and regulate cell death through apoptosis. Age-related mi-
tochondrial damage and decreased ATP production have been reported [6]. Glaucoma
pathology is related to the apoptosis of RGCs [82], implying that malfunctional mitochon-
dria underlie its pathogenesis. In an animal model of glaucoma, glucose transporter levels
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were markedly lower in GFAP-positive retinal glial cells than in normal control cells [83].
The retina obtained from the glaucoma-induced model showed age-related decline in
the NAD+/NADH ratio and expression of peroxisome proliferator-activated receptor γ
coactivator 1α (PGC-1α) [83]. Thus, glaucoma patients may have a deficit in the generation
of new mitochondria. Mitochondrial DNA is deleted in human RPE tissues from donors
aged 60–110 years [4]. Patients with AD also show diminished mitochondrial density
and area within the cerebral capillary endothelium [17]. Postmortem brains from AD
patients demonstrate a mitochondria-on-a-string phenotype (mitochondrial fission arrest)
in the hippocampus and entorhinal cortex [84]. This altered mitochondrial phenotype is
mimicked in young (10 weeks) wild-type mice exposed to acute hypoxic conditions [84].

Imports of nuclear-encoded proteins into the mitochondria through translocase of
the outer membrane are vital for mitochondrial functions [85]. Analysis of mitochondria-
enriched homogenates from the postmortem neocortex of AD and age-matched controls
revealed that Tom20 and Tom70 expression was reduced in AD [86]. Tom20 and Tom22
may play key roles in ATP production and OXPHOS in astrocytes [87]. Thus, nucleus-
mediated protein import into the mitochondria is critical for energy supply. Altered
morphological feature of ferroptosis is mitochondrial dysfunction, including a smaller
mitochondrial volume through imbalanced fission, fusion, and rupture of the mitochondrial
outer membrane [88]. Iron accumulation and lipid peroxidation in the aging retina may be
attributed to ferroptosis-induced retinal cell death in age-related retinal diseases [39]. Thus,
aging may facilitate mitochondrial depletion and consequently diminish the interactions
between the nucleus and mitochondria (Figure 4).
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5.2. Cellular Senescence

Cellular senescence is closely related to mitochondrial functional proteins such as
AMP-activated protein kinase α (AMPKα), nicotinamide phosphoribosyltransferase, and
sirtuins (SIRTs) [89]. AMPKα activation is required for the protection of photoreceptors
and RPE from acute injury and delayed inherited retinal degeneration [90]. Protective
mechanisms may include decreased oxidative stress, reduced DNA damage, and increased
mitochondrial biogenesis [90]. SIRTs (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7)
function as NAD+-dependent protein deacetylases [91]. SIRTs, except SIRT5, are expressed
in the human retina [92]. Loss of Nampt in aging RPE cells reduces NAD+ availability and
SIRT1 expression, thereby facilitating cellular senescence [93]. SIRT1 deacetylases PGC-1α,
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leading to increased PGC-1α activity, such as that seen in mitochondrial biogenesis [94].
PGC-1α protects the RPE of the aging retina against oxidative stress-induced degeneration
through the regulation of senescence and mitochondrial quality control [95]. In an optic
nerve crush model, SIRT1 overexpression in RGCs reduces RGC loss, thus preserving visual
ability [96]. Identifying additional molecular mechanisms is crucial for determining cellular
senescence pathways in the eyes.

5.3. Inflammation

In inflammatory responses, nuclear factor kappa light chain enhancer of activated
B cells are a critical transcription factor for the expression of various genes, including
NLRP3, inducible NOS, and immune cell attractants (i.e., intercellular adhesion molecule
1 and vascular cell adhesion molecule 1) [97,98]. Ferroptosis and ROS/RNS production
trigger inflammatory responses via the NLRP3 inflammasome activation, which is re-
lated to tau pathology [38,99]. NLRP1- and NLRP3-mediated inflammasome activation
induces caspase-1-induced neuronal pyroptosis in the retina during ocular hypertension in-
jury [100]. In AMD, NLRP3-mediated cell death mechanisms (i.e., pyroptosis) underlie RPE
degeneration [101]. NLRP3 deficiency reduces the number of VEGF-A-induced choroidal
neovascularization lesions and RPE barrier breakdown [102]. VEGF-A overexpression mice
show NLRP3 inflammasome activation in RPE cells [102]. Thus, the crosstalk between
VEGF-A and NLRP3 triggers age-dependent progressive AMD in vivo.

The role of autophagy in NLRP3-mediated inflammasome activation has been previ-
ously reported. Autophagy induced by inflammasomes may reduce inflammasome activity,
possibly due to sequestration and subsequent degradation of excessive cytokine precursors,
such as pro-interleukin-1β in the autophagosome [103,104]. Thus, controlling excessive
inflammation via autophagy may protect the eyes from neurovascular disruption.

6. Therapeutic Approaches

Oxidative stress-reducing agents may exert anti-aging effects in the retina. In endothe-
lial cells, appropriate levels of VEGF and endothelial nitric oxide synthase (eNOS)/NO
can maintain endothelial cell survival [105] and regulate intraocular pressure by dilating
microvessels [106]. The NO-mediated guanylate cyclase/cGMP pathway increases ocular
blood flow and confer neuroprotection [106]. In addition, the eNOS/NO pathway improves
vessel health partly through crosstalk with HO-1/CO [107], leading to vasodilation and
anti-inflammation. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription
factor for HO-1 [36]. In a rat model of glaucoma, activation of the Nrf2/HO-1 pathway pro-
tected RGCs from chronic ocular hypertension [108]. Nrf2-deficient mice show age-related
drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovasculariza-
tion, and sub-RPE deposition of inflammatory proteins after 12 months [109]. Some of
these features, such as drusen formation, are hallmarks of AMD [109]. Nrf2-deficient RPE
show increased proportions of autophagosomes, autolysosomes, swollen mitochondrial
fragments next to autophagic vacuoles, undigested photoreceptor outer segments, and
lipofuscin [109]. Healthy mitochondrial function is critical against retinal aging because the
eyes are highly metabolic tissues. In a study of oxidative stress astrocyte glial cells, Korean
red ginseng upregulated Nrf2/HO-1 pathways, leading to increased levels of OXPHOS
and cytochrome c and Tom20-mediated mitochondrial membrane potential cells [110]. In
astrocytes, Korean red ginseng-induced Tom20 expression is mediated by the upregulation
of Nrf2/HO-1-mediated SIRT1, SIRT2, and SIRT3 [110]. A ketogenic diet may help protect
the retina from chronic stress by enhancing mitochondrial activity [83]. Particularly, a
ketogenic diet increases the levels of Nrf2, HO-1, and BDNF in the retina under chronic
metabolically stressed optic nerves [83].

In addition to anti-inflammation for neuroprotection, one strategy for the repair of
retinal neurons is stem cell-based regeneration. Müller cells can differentiate into cells that
resemble pluripotent stem cells. As stem cells, Müller glial cells generate new neurons
and glial cells, including Müller cells [42]. Maintaining the functions of Müller glial cells
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is important because they protect photoreceptors through the release of neurotrophic
factors, such as BDNF [111]. Adult hippocampal neurogenesis combined with BDNF
upregulation improves cognition in AD mouse models [112], similar to the beneficial
effects of exercise [112,113]. Overall, several pathways may be required for anti-aging and
neuroprotection, and these pathways include anti-inflammation, mitochondrial activity,
stem cell-based regeneration, and cell–cell communication.
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