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Abstract: β-glucocerebrosidase (GBA)-associated mutations are a significant risk factor for Parkin-
son’s disease (PD) that aggravate the disease pathology by upregulating the deposition of α-Synuclein
(α-Syn). The resultant clinical profile varies for PD patients without GBA mutations. The current
study aimed to identify the proteomic targets involved in the pathogenic pathways leading to the
differential clinical presentation of GBA-associated PD. CSF samples (n = 32) were obtained from
PD patients with GBA mutations (n = 22), PD patients without GBA mutations (n = 7), and healthy
controls that were carriers of GBA mutations (n = 3). All samples were subjected to in-gel tryptic
digestion followed by the construction of the spectral library and quantitative SWATH-based analysis.
CSF α-Syn levels were reduced in both PDIdiopathic and PDGBA cases. Our SWATH-based mass
spectrometric analysis detected 363 proteins involved in immune response, stress response, and cell
signaling in various groups. Intergroup analysis showed that 52 proteins were significantly up- or
downregulated in various groups. Of these 52 targets, 20 proteins were significantly altered in PDGBA

cases only while 2 showed different levels in PDIdiopathic patients. Our results show that the levels of
several pathologically relevant proteins, including Contactin-1, Selenium-binding protein 1, Adhesion
G Protein-Coupled Receptor, and Apolipoprotein E are significantly different among the sporadic
and genetic variants of PD and hint at aggravated synaptic damage, oxidative stress, neuronal loss,
and aggregation of α-Syn in PDGBA cases.

Keywords: β-glucocerebrosidase; proteomics; CSF; SWATH; α-synuclein

1. Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder
and affects around 1% of the population above the age of 60 [1]. Characterized by the
intraneuronal accumulation of α-Synuclein (α-Syn) and extensive death of dopaminergic
neurons in the substantia nigra, PD results in debilitating motor symptoms [2,3]. The
patients present resting tremor, rigidity, bradykinesia, and postural instability along with
multiple non-motor symptoms such as hyposmia, REM sleep behavior disorder, mood
swings, and cognitive dysfunction [4,5]. Decades of research have identified ageing, en-
vironmental toxicants (e.g., pesticides and herbicides), and genetic predisposition as the
major risk factors for this disorder [6–8].
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Although genome-wide association studies have identified >80 risk loci for PD, mu-
tations in β-glucocerebrosidase (GBA) are amongst the most significant risk factors [9,10].
Mutations in the GBA gene were initially discovered in association with Gaucher’s disease
whereby a decrease in the activity of GBA leads to abnormalities in the metabolism of glu-
cosylceramide and multisystem damage [11]. Over the last decade, an increasing amount
of evidence has correlated the occurrence of PD with various GBA mutations. Although
around 300 mutations have been reported for the GBA gene, not all play an equal role in the
pathogenesis of PD [12]. L444P, N370S, and E326K mutations are most common among PD
patients and, interestingly, the occurrence of E326K exclusively results in PD and has no role
in Gaucher’s disease [13]. Furthermore, these PD-associated mutations show differences in
PD risk, biological profiles, and clinical trajectories based on mutation severity.

GBA mutations have various effects on the pathophysiology of PD [14,15]. Loss-of-
function mutations in the GBA gene have been hypothesized to increase the accumulation
of α-Syn, possibly initiating and aggravating the neurodegenerative process in PD [16]. PD
patients with GBA mutations, compared with those without mutations, have been reported
to present a characteristic biological and clinical phenotype with reference to aggregation of
α-Syn, impaired lipid metabolism, cognitive dysfunction, disease progression, and survival
time, indicating a definite effect of GBA mutations on the prognosis of PD [16–22]. Although
the role of the GBA gene has been established in PD, we lack proteome-wide studies in
human subjects that may allow us to pinpoint the factors that are being affected by these
mutations and establish an understanding of the disorder.

Cerebrospinal fluid (CSF) is being extensively used to understand the pathophysiology
of neurodegenerative disorders and hunt for potential biomarkers. In contrast to other bio-
logical fluids, CSF has the advantage of providing a direct window into disease-associated
changes in the nervous system. Previous studies have reported the relative levels of key
pathogenic proteins in CSF from PD patients with and without GBA mutation to highlight
the differences in the pathophysiology [20]. However, the lack of proteome-wide studies
has limited our understanding of the CSF signature of PD proteome to very few targets.
With the recent advances in mass spectrometry (MS), it is now possible to accurately iden-
tify and quantify proteins in biofluids. Approaches such as sequential window acquisition
of all theoretical spectra (SWATH) provide an ideal platform to analyze complex protein
samples reproducibly and predict potential biomarkers confidently [23].

In the current study, we used the advantages of SWATH to analyze and quantify
globe-wide proteome alterations in CSF samples from PD patients with and without GBA
mutations and identify the differentially regulated pathological targets to decipher the role
this mutation in PD.

2. Results
2.1. GBA-Mutation-Linked Proteomic Alterations in PD Patients

We created a spectral library with a traditional data-dependent acquisition (DDA)
mass spectrometry method. It contained approximately 255 distinct protein groups and
2854 peptides, and 81,037 spectral counts were identified with greater than 99% confidence
and passed the false discovery rate (FDR) from fit analysis using a critical FDR of 1%. How-
ever, at a global 1% FDR, 290 distinct protein groups, 3915 peptides, and 101,293 spectral
counts were identified with greater than 99% confidence by using ProteinPilotTM software
(Supplementary File S1). Following the generation of the spectral library, the identifica-
tion and quantification of GBA-linked altered proteins and an intergroup analysis was
conducted to identify the differentially regulated targets (Supplementary File S2). Overall,
we were able to identify altered proteins from the generated spectral libraries and could
establish clear differences in amount of the same proteins in response to GBA mutation with
high confidence (Figure 1A). After removing the common contaminants, 52 differentially
regulated proteins were obtained. Of these 52 targets, 20 proteins were significantly altered
in PDGBA cases only while 2 showed different levels in PDIdiopathic patients. Additionally,
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subtype-specific analysis showed the number of uniquely regulated proteins, in comparison
to HI in PD cases with and without GBA mutations (Figure 1B).
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Figure 1. Disease-specific alterations in CSF proteome. (A) The heat map shows the relative levels of
identified proteins across all analyzed samples. The red lines mark clustering in response to GBA
genotype in PD cases. Both rows and columns were clustered using correlation distance and average
linkage and these clusters are represented by red lines (B) Venn diagram presenting the number and
distribution of differentially regulated proteins of each group (in comparison to controls).

2.2. Pathway Analysis and Functional Characterization

A comprehensive pathway and functional analysis, using GO in conjunction with
Panther, Uniprot, and ProteinPilot software, allowed us to annotate CSF proteins to various
subgroups based on their functions. Most of the identified proteins were found to play a
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role in immune response, stress response, and response to an external and biotic stimulus.
The components of the Wnt signaling pathway, plasminogen activating cascades, and
Cadherin signaling pathways were most abundantly present in the CSF. In accordance
with these findings, most of the proteins could be assigned to the class of defense proteins
or were enzymes/enzyme modulators. Moreover, most of the proteins detected in CSF
were of extracellular origin. Supplementary Figure S1 shows a detailed overview of the
functional subclasses and roles of identified proteins along with the number of proteins
specific to each subgroup.

2.3. Proteomic Alterations in Response to GBA-Mutation in PD Patients

We compared the profiles of CSF proteins of all groups to identify differentially regulated
proteins that may play a role in disease pathology and were able to identify 52 significantly al-
tered proteins for various groups. In PDGBA, 20 proteins were found to be significantly altered
in comparison to HI, but not PDIdiopathic cases (Supplementary Figure S2). In comparison to the
other groups, PDidiopathic cases presented two unique proteins, all of which were significantly
upregulated (Supplementary Figure S3). The former category contained mainly secreted and
membrane-bound proteins involved in neuronal structure (Neurotrimin, Neural cell adhe-
sion molecule, Neural cell adhesion molecule 1, Fibronectin, Receptor-type tyrosine-protein
phosphatase delta, Seizure 6-like protein, Fibulin 1, Fibulin 5, and Reticulon-4 receptor), neu-
rotransmission (Isoform 2 of Amyloid-like protein 1), protein folding/ degradation (Clusterin,
Plasma protease C1 inhibitor, Antithrombin -III), transport (Alpha-1-acid glycoprotein 2),
immunity (Complement C6, Prostaglandin-H2), and metabolism (Galectin-3-binding protein,
B4GALT1, Sulfhydryl oxidase 1, Alpha-mannosidase 2×). The two targets in the latter cat-
egory were involved in metabolism (Beta hexoaminidase) and antioxidation (extracellular
superoxide dismutase).

The remaining targets were significantly altered in both variants of PD. Within this
category, 12 proteins showed a significant reduction in comparison to HI in both PDIdiopathic
and PDGBA cases (Supplementary Figure S4). This category involved secreted, cytoplas-
mic, and membrane-bound neuronal structure (Contactin-2, Cell surface glycoprotein
MUC 18, Gelsolin, Neural cell adhesion molecule 2, Neural cell adhesion molecule L1),
neurotransmission (Ephrin type-A receptor 4), protein folding/degradation (Procollagen
C-endopeptidase enhancer 1, Alpha-2-macroglobulin), and metabolism (Aspartate amino-
transferase, Pyruvate kinase, L-lactate dehydrogenase, Transcobalamin-2).

Significant and clinically relevant differences were evident in PDIdiopathic and PDGBA
cases among 18 cytoplasmic and secreted targets involved in neuronal structure (Contactin 1,
Receptor-type tyrosine-protein phosphatase S, Receptor-type tyrosine-protein phosphatase
zeta, Brevican core protein, Collagen alpha-3(VI) chain), signaling (Cartilage acidic protein 1,
SPARC-like protein 1, Adhesion G Protein-Coupled Receptor B2), transport (Apolipoprotein E,
Hemoglobin subunit alpha, Hemoglobin subunit alpha, Transthyretin, Beta-2-glycoprotein 1,
Retinol binding protein 4), immunity (Multiple epidermal growth factor-like domains pro-
tein and 8), and metabolism (Selenium-binding protein 1, Beta-1,4-glucuronyltransferase 1,
Isoform 6 of Peptidyl-glycine alpha-amidating monooxygenase) (Figure 2).
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Figure 2. Relative CSF concentrations of the proteins differentially regulated in PDIdiopathic vs
PDGBA cases. The graphs depict the relative amount of (A) Cartilage acidic protein 1, (B) Selenium-
binding protein 1, (C) Contactin 1, (D) SPARC-like protein 1, (E) Adhesion G Protein-Coupled
Receptor B2, (F) Receptor-type tyrosine-protein phosphatase S, (G) Beta-1,4-glucuronyltransferase 1,
(H) Apolipoprotein E, (I) Receptor-type tyrosine-protein phosphatase zeta, (J) Multiple epidermal
growth factor-like domains protein 8, (K) Brevican core protein, (L) Isoform 6 of Peptidyl-glycine
alpha-amidating monooxygenase, (M) Transthyretin, (N) Hemoglobin subunit alpha, (O) Hemoglobin
subunit alpha, (P) Beta-2-glycoprotein 1, (Q) Collagen alpha-3(VI) chain and (R) Retinol binding
protein 4 in HI, PDIdiopathic, and PDGBA cases. One-way ANOVA, followed by Tukey’s multiple
comparisons test, was used for statistical analysis. Error bars represent SEM. (* p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001; **** p ≤ 0.0001).

2.4. CSF α-Syn Profiles in PD Patients with GBA Mutations

ELISA-based quantification detected GBA genotype-associated alterations in CSF α-Syn
levels in PD patients (Figure 3). Healthy individuals with GBA mutations presented higher
levels of α-Syn in comparison to PD patients from both clinical variants; however, this trend
was statistically significant in PDGBA cases only. The mean level of α-Syn was slightly higher
in PDIdiopathic cases in comparison PDGBA cases.
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Figure 3. Correlation between α-Syn levels in CSF of PD patients with and without GBA mutations.
The graph depicts the levels of α-Syn (pg/mL) in CSF from HI, PDidiopathic, and PDGBA cases. One-way
ANOVA, followed by Tukey’s multiple comparisons test, was used for statistical analysis. Error bars
represent SEM. (** p ≤ 0.01).

2.5. Gender-Specific Proteome Alterations in PD Patients with GBA Mutations

To elucidate the effects of gender on the CSF proteome of PD patients, we segregated our
PD cohort into male and female cases. The PCA plot visualizes the effects of GBA mutation on
male and female PD patients. Although no obvious clusters can be observed for female cases,
possibly due to the low sample number, male samples present clear clustering for samples
with and without mutations (Figure 4A,B). We further analyzed the targets in a gender-specific
manner to determine the proteins that were accounting for the variation among male and
female clusters (Figure 4C,D). Modifications specific to males showed two-fold or more change
in 31 proteins while those specific to females depicted changes in 29 targets. However, the
latter group had two cases of PD cases without GBA mutations so they need to be interpreted
with caution.
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3. Discussion

GBA mutations have been previously reported to influence the clinical outcome of
PD [24]. Our study analyzed the impact of GBA mutations on the CSF proteome in PD
patients with the aim of identifying disease triggers and potential biomarkers. For the
quantitative assessment of the CSF proteome, we opted for a SWATH MS-based approach
that is based on targeted peptide identification using a reference library. It combines
the benefits of traditional discovery-based and targeted proteomics resulting in a high-
throughput, reproducible, and accurate analysis of proteins in biological samples [25]. In
the first study of its kind, we compared the CSF proteome of PD patients with and without
GBA mutations to healthy controls. Owing to the dynamic and heterogeneous nature of the
CSF proteome, it was not surprising that identified proteins belonged to many different
functional classes and biological pathways. However, most of our targets were extracellular
proteins involved in immune response, neurotransmission, and various signaling pathways.
Due to a greater incidence of PD in men, we also targeted the gender-based differences
within the proteome of the samples in our cohort [26].

Although all the differentially expressed proteins and their functional annotation
provided valuable insights into the pathophysiology of PD, we focused on proteins that
were uniquely regulated in certain groups with the aim of identifying possible causes of
phenotypic diversity in sporadic and genetic PD. In the first subset, proteomic changes
associated with PDIdiopathic cases were targeted. These patients exhibited a significant
alteration in the levels of superoxide dismutase whose activity has been previously reported
to be reduced in CSF [27]. Similarly, the increased levels of β-hexosaminidase have also
been associated with the duration and severity of PD [28]. These proteins, along with the
other amyloidogenic (Transthyretin), structural (Collagen), and metabolic (Retinol binding
protein 4) proteins hint at the alterations associated with sporadic PD only.

The second subset of altered proteins involved the targets that show significant alterations
in PDGBA patients only. This group involved immune (Complement C6, Prostaglandin-H2),
transport (Clusterin), signaling (Galectin-3-binding protein, Receptor-type tyrosine-protein
phosphatase delta, Alpha-1-acid glycoprotein 2), metabolic (B4GALT1, Plasma protease C1
inhibitor, Sulfhydryl oxidase 1, Antithrombin-III, Isoform 2 of Amyloid-like protein 1), and
structural (Neurotrimin, Fibronectin, Seizure 6-like protein, Neural cell adhesion molecule,
Neural cell adhesion molecule 1, Reticulon-4 receptor, Fibulin 1) proteins. Interestingly,
the trends in this group mimicked the trends observed in α- Syn ELISA hinting at their
direct involvement in the pathology of PD. Prostaglandins have been previously reported
to modulate the unfolding of amyloids generated in PD and their reduced levels may cause
increased aggregation of α-Syn [29]. Reduced levels of proteins involved in cell adhesion have
been associated with aberrations in the structure of neurites and altering the ratio of excitatory
neurons in comparison with inhibitory neurons, thereby contributing towards neurological
disorders [30]. Fibronectin, also downregulated in all PD cases, has been known to exert
neuroprotective effects in PD [31].

Proteins that were significantly altered in both PDIdiopathic and PDGBA cases allowed
the identification of shared pathological mechanisms. Reduced levels of Gelsolin in both
clinical variants can be attributed to its involvement in the aggregation of α-Syn and colocal-
ization with the Lewy bodies [32]. The Neural cell adhesion molecule is also downregulated
in all PD cases and is involved in the trafficking and internalization of dopamine [33]. Poly-
morphisms in Alpha-2-macroglobulin are a risk factor for PD and its CSF levels are also
significantly downregulated in all the PD cases targeted in the current study [34].

The most promising targets were identified in the last subset where PDGBA cases dif-
fered significantly from PDIdiopathic and HI cases. Reduction in the CSF levels of Contactin-1,
a target identified in this subset, has been reported previously and has been associated
with synaptic degradation caused by the accumulation of Lewy bodies [35]. In the current
study, its levels are significantly lower in PDGBA cases in comparison to PDIdiopathic samples
indicating increased synaptic damage. Selenium-binding protein 1 may contribute towards
aggravated pathology in PDGBA cases by modulating oxidative stress [36]. The reduced
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level of Adhesion G Protein-Coupled Receptor has been correlated with dopaminergic cell
death and unveils another mechanism which may lead to aggravated pathology in PDGBA
patients [37]. Decreased levels of Apolipoprotein E in CSF can be explained by increased
aggregation of α-Syn in the brain as the former is known to increase the aggregation of
the latter which may influence its release into the CSF [38]. The amount of Hemoglobin,
another target identified in this subset, has been known to correlate with the severity of
PD [39]. Interestingly, several targets identified in this subset showed a greater fold change
in samples from males (known to have a greater incidence of PD) further validating their
contribution to the disease pathology.

To establish the impact of GBA mutation on α-Syn accumulation, one of the key
pathological markers of PD, we compared the levels of α-Syn in CSF. In accordance with
the previously published data, our cohort also showed lowered α-Syn levels in CSF from
PD patients, possibly in response to its increased aggregation in the brain and decreased
elimination into CSF [40,41]. Previous studies have postulated that different GBA mutations
may have a different impact on the phenotype of PD and these mutations may further
reduce the levels of α-Syn in CSF [42–44]. However, this difference was not as evident
in our cohort, possibly due to the smaller size of the PDIdiopathic group. The mean level
of α-Syn was slightly higher in PDIdiopathic cases in comparison to PDGBA cases, but the
difference was not significant.

Although GBA mutations have been known to increase the incidence of PD and contribute
towards its clinical presentation (published previously for the current cohort [45,46]), the exact
mechanism of their pathogenicity was not understood. We addressed this problem using
proteomic approaches and could highlight some major differences that occur in PD patients
in the response to GBA mutations. Our results show that the levels of several pathologically
relevant proteins, including Contactin-1, Selenium-binding protein 1, Adhesion G Protein-
Coupled Receptor, and Apolipoprotein E are significantly different among the sporadic and
genetic variants of PD and hint at aggravated synaptic damage, oxidative stress, neuronal loss,
and aggregation of α-Syn in PDGBA cases. However, the limited number of samples, especially
those of controls (n = 3), and the dynamic nature of the CSF proteome demand the replication of
the results in a larger cohort. Similarly, the gender-based differences also need to be interpreted
cautiously due to a smaller number of female patients and a considerable difference in group
size. A comprehensive analysis, that includes sequenced GBA mutations in larger cohorts,
might be needed to establish the relative pathogenicity of specific polymorphisms on the
GBA gene in PD in addition to their effects on the age at onset in different genders and their
response to various medications. Nevertheless, the outcomes of this study provide important
candidates for further validation as diagnostic, prognostic, and therapeutic markers.

4. Materials and Methods
4.1. Participants and Ethical Approval

A total of 32 participants (Table 1) were included in this study. A detailed neurological
assessment was conducted and the patients who fulfilled Movement Disorder Society
Clinical Diagnostic Criteria for PD were included in the study. Genetic assessment of GBA
mutations (N370S, L444P, and E326K) was conducted through genotyping and restriction
digestion using slight modifications in previously established criteria [45,46]. The control
cases underwent clinical examination to exclude any neurological disorders that may
affect the study. All participants provided informed consent prior to the collection of
CSF samples and the study was approved by the ethical committee of the University of
Tübingen (702/2013BO1).
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Table 1. List of samples used in the study. A total of 32 CSF samples were used for the study including
22 PD cases with GBA mutation (PDGBA), 7 PD cases without mutations (PDIdiopathic), and 3 healthy
controls with GBA mutation (HIGBA).

No. Patient ID Age Gender Age at Onset

PDIdiopathic (Mean age 63.4 ± 7.78 years)

1 PDIdiopathic-1 66 Male 63

2 PDIdiopathic-2 74 Male 62

3 PDIdiopathic-3 62 Female 53

4 PDIdiopathic-4 53 Male 42

5 PDIdiopathic-5 60 Male 51

6 PDIdiopathic-6 74 Female 67

7 PDIdiopathic-7 55 Male 50

PDGBA (Mean age 60.5 ± 9.97 years)

8 PDGBA-1 76 Female 47

9 PDGBA-2 58 Male 50

10 PDGBA-3 65 Female 55

11 PDGBA-4 61 Male 45

12 PDGBA-5 44 Male 28

13 PDGBA-6 60 Male 49

14 PDGBA-7 59 Male 52

15 PDGBA-8 51 Male 41

16 PDGBA-9 50 Male 44

17 PDGBA-10 75 Male 70

18 PDGBA-11 41 Male 39

19 PDGBA-12 67 Female 56

20 PDGBA-13 73 Female 65

21 PDGBA-14 63 Male 58

22 PDGBA-15 58 Female 51

23 PDGBA-16 70 Male 60

24 PDGBA-17 67 Male 63

25 PDGBA-18 42 Male 40

26 PDGBA-19 64 Female 51

27 PDGBA-20 59 Male 51

28 PDGBA-21 68 Male 56

29 PDGBA-22 62 Male 52

HIGBA (Mean age 52.6 ± 13.76 years)

30 HIGBA-1 72 Female -

31 HIGBA-2 45 Male -

32 HIGBA-3 41 Female -

4.2. Sample Collection, Preparation and In-Gel Tryptic Digestion

CSF samples were collected through a lumbar puncture, centrifuged at 2000× g
for 10 min at 4 ◦C and stored at −80 ◦C until further analysis. Samples (50 µL) were
concentrated using SpeedVac (sc100, American laboratory trading, Groton, CT, USA) and
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resuspended in 40 µL of lysis buffer (7M Urea, 2M thiourea and 4% CHAPS, protease, and
phosphatase inhibitor cocktail). They were loaded onto a 4–12% NuPAGE Novex Bis-Tris
Minigels (Invitrogen, Carlsbad, CA, USA) and allowed to run to a length of 1.5 cm. The
gels were subjected to Coomassie staining and protein bands were excised.

In-gel tryptic digestion was performed as previously described [47]. Briefly, the protein
bands were diced, reduced, and alkylated followed by overnight digestion with trypsin.
The solution containing Tryptic peptides was dried in a SpeedVac and stored at −20 ◦C
until further analysis.

4.3. Quantitative SWATH Analysis

For the generation of spectral library, equal amounts of proteins from each sample
were pooled to a final concentration of 80 µg and separated into eight fractions using
reversed-phase spin columns (Pierce High pH Reversed-Phase Peptide Fractionation Kit,
Thermo Fisher Scientific, Waltham, MA, USA). Each fraction was divided into two technical
replicates prior to analysis. Digested peptides were dissolved in a loading buffer (2% ace-
tonitrile, 0.1% formic acid in water) to a final concentration of 0.3 µg/µL. For each analysis,
1.5 µg of the analyte was enriched on a pre-column (0.18 mm ID × 20 mm, Symmetry
C18-AQ 5 µm, Waters, Milford, MA, USA) and separated on an analytical RP-C18 column
(0.075 mm ID × 250 mm, HSS T3, 1.8 µm, Waters). A Nanoflow chromatography system
(Eksigent nanoLC425) hyphenated to a hybrid triple quadrupole-TOF mass spectrometer
(TripleTOF 5600+) equipped with a Nanospray III ion source (Ionspray Voltage 2400 V,
Interface Heater Temperature 150 ◦C, Sheath Gas Setting 12) and controlled by Analyst TF
1.7.1 software build 1163 (all AB Sciex, Redwood City, CA, USA) was used for analysis.

For the analysis of samples, MS/MS data were acquired using 65 variable size win-
dows across the 400–1050 m/z range. PeakView Software version 2.1 build 11,041 (AB Sciex,
Redwood City, CA, USA) and SWATH quantitation microApp version 2.0 build 2003 were
used for generating spectral library and extracting SWATH peaks.

4.4. Protein Annotation and Functional Characterization

ProteinPilot Software version 5.0 build 4769 (AB Sciex, Redwood City, CA, USA) was used
for protein identification. MS/MS spectra from the combined qualitative analyses were searched
against the UniProtKB Homo sapiens reference proteome (revision 02-2017, 92,928 entries)
augmented with a set of 51 known common laboratory contaminants to identify 363 proteins
at a False Discovery Rate (FDR) of 1%. Functional characterization was also achieved through
UniProtKB Homo sapiens reference proteome and Panther classification system [48].

4.5. ELISA

The commercially available ELISA kit (Biolegend, San Diego, CA, USA, catalogue # 844101)
was used for the analysis of CSF levels of α-Syn according to the manufacturer’s protocol.

4.6. Statistical Analysis

Data visualization and statistical analysis were performed using R. Studio (version 1.1.383)
and ClustVis [49]. ANOVA in combination with Tukey Multiple comparisons test were used
to identify the differentially regulated targets and p-value < 0.05 was considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232214166/s1.
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