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Abstract: β-galactosidase is an enzyme with dual activity and important industrial application. As a
hydrolase, the enzyme eliminates lactose in milk, while as a trans-galactosidase it produces prebiotic
galactooligosaccharides (GOS) with various degrees of polymerization (DP). The aim of the present
study is the molecular characterization of β-galactosidase from a Bulgarian isolate, Lactobacillus
delbrueckii subsp. bulgaricus 43. The sequencing of the β-gal gene showed that it encodes a new
enzyme with 21 amino acid replacements compared to all other β-galactosidases of this species.
The molecular model revealed that the new β-galactosidase acts as a tetramer. The amino acids
D207, H386, N464, E465, Y510, E532, H535, W562, N593, and W980 form the catalytic center and
interact with Mg2+ ions and substrate. The β-gal gene was cloned into a vector allowing heterologous
expression of E. coli BL21(DE3) with high efficiency, as the crude enzyme reached 3015 U/mL of the
culture or 2011 U/mg of protein. The enzyme’s temperature optimum at 55 ◦C, a pH optimum of
6.5, and a positive influence of Mg2+, Mn2+, and Ca2+ on its activity were observed. From lactose,
β-Gal produced a large amount of GOS with DP3 containing β-(1→3) and β-(1→4) linkages, as the
latter bond is particularly atypical for the L. bulgaricus enzymes. DP3-GOS formation was positively
affected by high lactose concentrations. The process of lactose conversion was rapid, with a 34% yield
of DP3-GOS in 6 h, and complete degradation of 200 g/L of lactose for 12 h. On the other hand, the
enzyme was quite stable at 55 ◦C and retained about 20% of its activity after 24 h of incubation at
this temperature. These properties expand our horizons as regards the use of β-galactosidases in
industrial processes for the production of lactose-free milk and GOS-enriched foods.

Keywords: β-galactosidase; Lactobacillus bulgaricus; prebiotic

1. Introduction

Galactooligosaccharides (GOS) are among the rare carbohydrates that fully satisfy
the requirements to be prebiotic [1]. They cannot be hydrolyzed in the human upper
gastrointestinal tract [2], cause a significant reduction in the number of harmful bacteria,
enhance bifidobacterial growth in the colon [3,4], and induce a pronounced beneficial effect
on the health of the consumer [5,6]. Besides gut status improvement [7], GOS consumption
benefits calcium absorption and bone mineralization [8], relieves lactose intolerance and
prevents constipation [9], alleviates atopic dermatitis [10], regulates lipid metabolism,
prevents obesity [11,12], and diminishes the risk of colorectal cancer [13].

Prebiotic GOS include the non-digestible oligomers containing β-linked galactose
residues, excluding the disaccharides lactose and melibiose [14,15]. They vary in both chain
length and the way the monomer units are linked, typically containing terminal glucose
and 2 to 8 galactose residues. In nature, GOS are present in small amounts in cow, camel,
and human milk [16–18]; and in high amounts in the milk of kangaroo [19].

Due to the high demand for infant milk and prebiotics formulae preparations, the
commercial production of GOS increases by 6% annually [2], and the global market profit
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is expected to reach USD 10.55Bby 2025 [20]. GOS are commercially obtained by chemi-
cal methods, which are not preferable because they generate unwanted additional com-
pounds [21], or via enzymatic synthesis from lactose by β-galactosidases of fungal or
bacterial origin. The most frequently used enzymes are those of Kluyveromyces lactis and
Aspergillus oryzae, producing mainly β-(1→6)-linked GOS, and that of Bacillus circulans
for β-(1→4)-linked GOS. However, it was observed that β-galactosidases from several
probiotic species form distinct GOS structures and grow more efficiently on the oligosaccha-
rides that are produced by their own β-galactosidases, compared to commercial GOS [22].
In addition, the enzymes of lactobacilli and bifidobacteria have recently received special
attention in terms of transgalactosylation activity, since they have the propensity to catalyze
this reaction [23].

According to the CAZy database [24], β-galactosidases (EC 3.2.1.23) are structurally
diverse enzymes. Based on their amino acid sequences, hydrophobic clusters, reaction
mechanism, and the conservation of catalytic residues, they are classified into GH1, GH2,
GH35, and GH42 families. All Lactobacillus species contain β-galactosidases of the GH2
family, described in L. acidophilus, L. coryniformis, L. johnsonii, Lactiplantibacillus plantarum,
Limosilactobacillus reuteri, and Latilactobacillus sakei. They are encoded by the genes lacL and
lacM and form heterodimers of the LacLM type [25,26]. In contrast, the β-galactosidases of
L. helveticus and L. delbrueckii subsp. bulgaricus (L. bulgaricus) are homomeric, of LacZ type,
and far less investigated [15,27].

Our recent work showed that a newly isolated indigenous L. bulgaricus strain 43
can spontaneously form high amounts of GOS with DP3 and DP4 in yogurt [28]. In
addition, GOS structures contained β-(1→4) bonds, which is quite unusual for L. bulgaricus.
Therefore, the present work aimed to investigate the responsible enzyme by its gene
sequencing, heterologous expression, and biochemical characterization, and to reveal its
potential to produce GOS.

2. Results
2.1. Gene Sequencing and Molecular Structure of the New β-Galactosidase of L. bulgaricus 43

Based on the lacZ gene sequence of the referent strains L. delbrueckii subsp. bulgaricus
DSM 20080 and ATCC 11842, a primer pair targeting the gene in L. bulgaricus 43 was
designed. Thus, a DNA fragment (3027 bp) was PCR-amplified, sequenced, and deposited
in NCBI GenBank with accession number OP617280. The nucleotide sequence comparison
showed 98.32% homology with lacZ of the referent L. delbrueckii ssp. bulgaricus ATCC 11842,
and the deduced protein sequence contained 97.52% identical amino acids with those of the
β-galactosidases of the species. The lowest identity possessed the sequence regions 140–160
and 214–220, as 21 amino acid substitutions were observed (shown in red in Figure 1).
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Figure 1. Amino acid sequence comparison of the region possessing the lowest homology with other
β-galactosidases of L. bulgaricus. The presented comparison is with the sequence of a well-studied
β-galactosidase of L. bulgaricus strain L3 [28], NCBI GenBank number ACE06986.

The analysis of the protein sequence of the β-galactosidase molecule by SWISS-
MODEL [29] revealed that the enzyme is a homo-tetramer (Figure 2). Each of the four
chains contains 1008 amino acids and has a calculated molecular weight of 114.17 kDa.
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Figure 2. Three-dimensional model of β-galactosidase of L. bulgaricus strain 43 made by SWISS-
MODEL Workspace [29]. (a) “Ball and stick” presentation of the chains revealing the formation of
four active centers around the substrate; (b) surface model of the tetramer.

Falling within 4Å, 12 residues are essential for the active center formation and substrate
binding: Asp207, His386, Asn464, Glu465, Met509, Tyr510, Glu532, His535, Trp562, Phe590,
Asn593, and Trp980. The catalytic center is formed by Glu465 and Glu532 (which act as
nucleophile and acid/base catalysts), and Tyr510, which donates a proton to Glu532 to
attack the substrate. Residues Trp562, Phe590, and Trp980 most probably act as analogs of
Trp570, Phe616, and Trp593 of the β-galactosidase of Bacillus circulans ATCC 31382, i.e., they
form the aromatic pocket, which determines the linkage preference and product size. Two
histidine residues (His386, His535), Asp 207, and Tyr510 form hydrogen bonds with the
substrate as a part of the active center (Figure 3).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 16 
 

 

The analysis of the protein sequence of the β-galactosidase molecule by SWISS-
MODEL [29] revealed that the enzyme is a homo-tetramer (Figure 2). Each of the four 
chains contains 1008 amino acids and has a calculated molecular weight of 114.17 kDa. 

 
(a) (b) 

Figure 2. Three-dimensional model of β-galactosidase of L. bulgaricus strain 43 made by SWISS-
MODEL Workspace [29]. (a) “Ball and stick” presentation of the chains revealing the formation of 
four active centers around the substrate; (b) surface model of the tetramer. 

Falling within 4Å, 12 residues are essential for the active center formation and sub-
strate binding: Asp207, His386, Asn464, Glu465, Met509, Tyr510, Glu532, His535, Trp562, 
Phe590, Asn593, and Trp980. The catalytic center is formed by Glu465 and Glu532 (which 
act as nucleophile and acid/base catalysts), and Tyr510, which donates a proton to Glu532 
to attack the substrate. Residues Trp562, Phe590, and Trp980 most probably act as analogs 
of Trp570, Phe616, and Trp593 of the β-galactosidase of Bacillus circulans ATCC 31382, i.e., 
they form the aromatic pocket, which determines the linkage preference and product size. 
Two histidine residues (His386, His535), Asp 207, and Tyr510 form hydrogen bonds with 
the substrate as a part of the active center (Figure 3). 

 

(a) (b) 

Figure 3. SWISS-MODEL Workspace/GMQE prediction of interactions between amino acids in the 
active center of β-galactosidase of L. bulgaricus strain 43. (a) According to the model, glutamates 
(Glu 411, Glu 465) and His 413 contact metal cations; (b) two histidine residues (His 386, His 535), 
Asp 207, and Tyr 510 form hydrogen bonds with the substrate as a part of the active center. 

  

Figure 3. SWISS-MODEL Workspace/GMQE prediction of interactions between amino acids in the
active center of β-galactosidase of L. bulgaricus strain 43. (a) According to the model, glutamates
(Glu 411, Glu 465) and His 413 contact metal cations; (b) two histidine residues (His 386, His 535),
Asp 207, and Tyr 510 form hydrogen bonds with the substrate as a part of the active center.

2.2. Cloning, Heterologous Expression in E. coli Strain BL21(DE3), and Purification of
β-Galactosidase of L. bulgaricus 43

The β-gal gene from L. bulgaricus 43 (3024 bp) was amplified by a PCR with appro-
priate primers. The obtained fragment was cloned into pET-41b(+) in XhoI and NdeI sites
(replacing the gst gene of the vector), under T7 inducible promoter control, and fused
to a His-tag sequence. The proper clone selection was performed using Escherichia coli
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HST08 strain (STELLARTM competent cells), and the recombinant construct pET41-β-gal
(8043 bp, Figure 4) with the confirmed sequence was introduced into E. coli BL21(DE3) cells
via electroporation.
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Figure 4. Physical map of the construct pET41-β-gal based on vector pET41b(+) and PCR-amplified
fragment containing the β-galactosidase gene of L. bulgaricus strain 43.

The overexpression of the recombinant protein in E. coli was achieved by T7 promoter
induction with 1 mM of isopropyl β-d-1-thiogalactopyranoside (IPTG) after the culture
reached OD600 0.8 at 37 ◦C. About 24 h after the induction, the cells reached the highest
β-galactosidase activity of 3015 ± 28 U/mL of the bacterial culture (2011 ± 16 U/mg of
protein of the crude enzyme), by the standard assay with substrate o-nitrophenol-β-D-
galactopyranoside (ONPG), at pH 7.0 and 37 ◦C.

The SDS-PAGE analysis of the lysate showed the presence of a band of approximately
115 kDa (Figure 5), which was missing in the control E. coli BL21(DE3).
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Figure 5. Overexpression and purification of recombinant β-galactosidase of L. bulgaricus 43 in E.
coli BL21(DE3), demonstrated by SDS-PAGE in 10% separating gel after silver staining. Legend:
(1) PerfectTM Tricolor Protein Ladder; (2) crude extract of the cells of untransformed E. coli BL21(DE3)
as control; (3) crude extract from E. coli BL21(DE3) cells, bearing pET-41-β-gal and induced with 1
mM IPTG for 24 h; (4) the purified enzyme β-galactosidase.

Further purification of the enzyme was performed based on its 8x histidine tag by
affinity chromatography, using gravitation columns containing Ni-sepharose (His Gravi
TrapTM). The optimization of the elution with various imidazole concentrations from 100
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to 1000 mM showed that the most efficient is 150 mM of imidazole (Figure 5). However,
the purification of the target protein was accompanied by great losses during the elu-
tion of unwanted proteins, which is why further experiments were conducted with the
crude enzyme.

2.3. Optimal Activity of the Recombinant β-Galactosidase

The recombinant β-galactosidase showed optimal hydrolytic activity at 55 ◦C (Figure 6a).
Less than 25% loss of activity was observed in the range from 45 to 65 ◦C. At 37 ◦C, the
optimal activity was almost halved (51.7%). The enzyme possessed a relative thermosta-
bility, since about 20% of its activity was retained after 24 h at 55 ◦C, and about 15% after
60 min at 60 ◦C. Regarding pH, the recombinant enzyme showed optimal activity at pH 6.5
(Figure 6b). Less than 25% loss of activity was observed in the relatively wide range from
pH 5.5 to 7.5. The activity dropped sharply at pH 5 and pH 8, reaching only 61 and 46%,
respectively, of the optimal values.
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Figure 6. Influence of temperature (a) and pH (b) on the enzyme activity of the recombinant β-
galactosidase from L. bulgaricus 43.

2.4. Influence of the Cations on the Enzyme Activity of the Recombinant β-Galactosidase

Eight different cations, ammonium, mono- and bivalent metal ions, were investigated
for their possible influence on the hydrolytic activity of the recombinant β-galactosidase
with ONPG as substrate (Figures 7 and 8).
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Figure 8. Dose-dependent influence of Mg2+, Ca2+, and Mn2+ on the activity of the recombinant
β-galactosidase.

Ammonium ion (NH4)+, K+ and Na+ (as 10 mM salts) did not affect the enzyme,
while the same concentrations of Cu2+ and Zn2+ slightly inhibited it (Figure 7a). Mn2+,
Mg2+, and Ca2+ were selected for further study, as they act as enzyme enhancers. Under
optimal conditions, manganese caused the most potent increase in the enzyme activity
(more than 3.5 times, compared to the control), while the samples with magnesium and
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calcium showed almost twice (90 and 98%, respectively) higher activity (Figure 7b). Dose-
dependent studies with all three salts revealed that they reached similar plateaus at 15 mM.
However, this concentration proved unproductive for GOS synthesis in vitro (data not
shown); hence, 10 mM was chosen for further experiments (Figure 8).

2.5. In Vitro GOS Production by the Recombinant β-Galactosidase

A mass-spectral qualitative study of the GOS produced by the β-galactosidase of
L. bulgaricus 43 from 40 g/L of lactose revealed that the enzyme predominantly produces
GOS with DP3. Two types of DP3 molecules were detected in approximately equal amounts.
As presented in Figure 9, these structural isomers contain galactose residue connected
with lactose by either β-(1→3) or β-(1→4) linkages. The HRAMS analysis (as well as
HPLC results for the heterologously expressed enzyme) showed that GOS with DP4 were
produced in negligible amounts.
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Figure 9. Extracted ion chromatogram for galactooligosaccharides with DP3 (trisaccharides) obtained
by β-galactosidase of L. bulgaricus 43. The peak at 2.31 min corresponds to GOS with β-(1→3) bond,
while the peak at 2.44 min corresponds to GOS with β-(1→4) linkage.

To establish the potential of the recombinant β-galactosidase to produce GOS, different
concentrations of lactose were incubated with 40 U/mL of crude recombinant enzyme,
and the enzymatic conversion products were subjected to an HPLC analysis. The ability
of the recombinant β-galactosidase for GOS production in vitro is considerable and dose-
dependent concerning the substrate (Figure 10). It reached peak values of 70.91 g/L of
GOS with DP3 after 12–24 h of incubation with a 200 g/L initial lactose concentration
(Figure 10d). This value was not only considerably higher than the values at the same time
point for 160 and 120 g/L of lactose (20 and 67%, respectively), but it also remained more
stable for the next six hours. Lower concentrations of the substrate increased the speed of
the enzyme reaction; at 120 and 80 g/L lactose, the DP3 GOS peak was reached after 12 or
even only 6 h, respectively.
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Figure 10. Time profiles of products formation by the action of the recombinant β-galactosidase
with different concentrations of lactose: (a) 80 g/L; (b) 120 g/L; (c) 160 g/L; (d) 200 g/L of lactose.
Legend: red, DP3; blue, glucose; green, galactose. Opened symbols, lactose + 1 mM of MgSO4; closed
symbols, lactose + 10 mM of MgSO4, 10 mM of MnSO4, and 10 mM of CaCl2. Three independent
trials were performed.

The effects of metal cations on the transgalactosylation activity of the recombinant
β-galactose certainly differed from those observed on their hydrolytic activity assayed with
ONPG. The positive combined effect of Mn2+, Mg2+, and Ca2+ for GOS production was
pronounced at 80 g/L of lactose, where a consistent increase in the DP3 GOS production
was observed (about 10%). However, at higher lactose concentrations (120–200 g/L), this
effect disappeared. Higher concentrations of salts of Mn2+, Mg2+, and Ca2+ (15 mM)
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proved to have an inhibitory effect on the DP3 GOS production, both separately and when
combined (data not shown).

3. Discussion

The present article is devoted to the sequencing of the gene encoding a novel β-galactosidase
in L. bulgaricus strain 43, the modeling of a three-dimensional structure of the enzyme,
and its biochemical characterization. Current data on β-galactosidases of L. bulgaricus are
rather scarce, as until ten years ago some strains were thought to synthesize a truncated
enzyme [30], and only with the accumulation of data of whole genome sequencing did the
sequence of the responsible genes become clear. The β-gal gene of L. bulgaricus 43 encodes
a new enzyme with 21 amino acid substitutions compared to the previously known ones.
These substitutions are essential for the properties of the enzyme, as they are located in close
proximity to the active site at the N-terminus. The 3D model of the molecule revealed that
the enzyme of strain 43 acts as a tetramer, which is reported for the first time for the species
L. bulgaricus and is most likely due to the large differences in the amino acids in region
aa 140—aa 220. According to Weber and Schneider [31], protein dimers are stabilized by
amino acids rich in amino acids with small side chains, such as Gly, Ala, or Ser, and many
of them contain Gx-like motifs. In the sequence of the β-Gal of L. bulgaricus 43, three new
such aa residues appear—two glycines at positions 191 and 215 and one serine at position
214. Considering that in E. coli the active centers of the enzyme are formed by the chains’
interactions [32], and that “SV”, “GV”, and “SG” motifs stabilize the dimeric structures [31],
these substitutions are most likely the reason for the tetrameric structure of the enzyme in
strain L. bulgaricus 43 and its high activity. The structure of the catalytic site of β-Gal is in
agreement with the bioinformatic analysis of Bultema et al. [33], who studied the structure
of B. circulans BgaD, a similar retaining-type glycosidase of glycoside hydrolase family
2 (GH2). Compared to BgaD, the enzyme of L. bulgaricus 43 contains conserved residue
Glu 532, which is the nucleophile in the enzyme reaction; the role of acid/base catalyst
in β-Gal is played by Glu 465 (Glu 447 in B. circulans). Similarly, two histidine residues,
His386 and His535, are present in the active site. Notably, like β-Gal, BgaD of B. circulans
forms trisaccharides with β-(1→4)-linkages as a major transgalactosylation product [34].
One difference, however, is that BgaD of B. circulans is Mg2+-independent, while β-Gal of
L. bulgaricus 43 needs Mg2+ (at least 0.5 mM) for its activity, because this bivalent metal
cation acts as a cofactor in the catalytic site. The magnesium ion could be frequently
substituted by Mn2+, which our results confirmed by the 366% increased enzyme activity of
β-Gal in the presence of 10–15 mM of MnSO4. This strangely differs from other L. bulgaricus
β-galactosidases. For example, Nguyen et al. [27] cloned and overexpressed the lacZ gene
from L. bulgaricus DSM 80021 in L. plantarum, but the resulting enzyme was activated by
K+ and Na+ (more than 5 and 10 times, respectively, at 10 mM) and inhibited by Ca2+

and Mg2+ (more than 60% at 10 mM), a stark contrast with the β-Gal of strain 43. Similar
sensitivity to metals was shown by β-galactosidases from other species, for instance, one
from L. leichmannii 313, which is also activated by Na+ (five times at 10 mM) but inhibited
by Ca2+ (almost 50%) and, interestingly, Mn2+ (nearly 70%, both at 10 mM), yet remains
unaffected by K+. Considering the other parameters, the pH optimum of the last enzyme is
5.5, but with very narrow margins: more than 50% loss of activity within half a pH unit in
either direction [35]. Again, this is significantly different from our enzyme, which loses the
same activity over a thrice wider range of pH values. A temperature optimum of 55 ◦C
allows GOS production at elevated temperatures, which increases lactose solubility and
process productivity.

Since the enzymatic activity of β-galactosidase in L. bulgaricus is generally low [30],
heterologous expression of the responsible gene in different microbial hosts is a preferred
method for studying the enzyme and for its application in the synthesis of prebiotic
GOS [27]. However, the highest recombinants’ activities reported so far are slightly above
300 U/mg (Table 1), more than six times weaker than the β-galactosidase of L. bulgaricus
43. Recombinant enzymes derived from other Lactobacillus spp., such as L. helveticus and



Int. J. Mol. Sci. 2022, 23, 14308 10 of 15

Limosilactobacillus. fermentum, have raised the bar to almost 500 U/mg, but no more than
that. Many of these studies have reported significant substrate-related differences, the
activity with ONPG being from 3 to 40 times higher than that obtained with lactose. This
discrepancy should be taken into account when downstream applications of the enzyme
are considered. The same may be said about reports that recombinant enzymes with
His-tag habitually show 20-30% lower activity [27]. As far as GOS yields are concerned,
L. bulgaricus strains have the edge over other lactobacilli, though even with them, half of
the total sugar content appears to be the limit. This status quo may change, in time, when
various enzyme enhancers are studied in more detail than they hitherto have been. The
present study is a case in point. The unique sensitivity of our β-galactosidase to metal
cations opens opportunities for optimization, which should be explored in the future.

Table 1. Enzyme activity, GOS production, and influence of metal ions on specific enzyme activity
(SEA) of selected microbial β-galactosidases.

Species, Strain Type of Enzyme 1 Lactose
(g/L)

GOS
(g/L) GOS (%) 2 SEA 3

(U/mg) Metal Ions 4 Ref.

L. bulgaricus 43 Crude 200 70.91
(DP3)

34
(DP3) 2011 (O) ↑Mn2+, Mg2+, Ca2+

↓ Zn2+, Cu2+ This study

L. bulgaricus CRL450 Cell-free extract 300 n/a 41.3 2.06 (O) n/a [36]
L. bulgaricus DSM

20081
Purified,

non-His-tag 205 102 50 317 (O)
123 (L)

↑ Na+, K+

↓Mg2+, Ca2+ [27]

L. bulgaricus wch9901 Crude n/a n/a n/a 6.2 (O) n/a [35]

L. acidophilus R22 Purified
natural 205 n/a 38.5 361 (O)

28.8 (L)
↑Mg2+

↓Mn2+, Cu2+, Zn2+ [37]

Lim. fermentum K4 Purified 200-400 n/a 37 184 (O)
41 (L) ↑ Na+, K+, Mg2+ [38]

L. helveticus DSM
20075 Purified 205 n/a n/a 476 (O)

11.1 (L)
↑ K+, Na+

↓Mn2+, Mg2+, Ca2+, Zn2+ [39]

L. leichmannii 313 Purified n/a n/a n/a 31.28 (O) ↑ Na+

↓ Ca2+, Mn2+ [35]

Bifidobacterium breve
DSM 20213

Purified
(2 enzymes) 200 n/a 33-44 489 (O)

59 (L) n/a [23]

Bif. longum
Bif. pseudocatenulatum

Purified
(2 enzymes) n/a n/a n/a 2200 (O)

0.58 (O)
↑ Zn2+, Na+, Ca2+, Mn2+

↓ Al3+ [40]

B. circulans commercial 400 198 41 n/a n/a [34]
Pyrococcus woesei Purified n/a n/a n/a 5400 (O) n/a [41]
Aspergillus oryzae commercial 400 107 26.8 n/a n/a [42]

1 All recombinant and His-tagged unless otherwise noted; 2 Percentage of total sugars; 3 SEA, specific enzyme
activity (U/mg protein); substrates: O = ONPG; L = lactose; 4 Activators/inhibitors of SEA; ↑, activation;
↓, inhibition; 1U = µmol/min.

4. Materials and Methods
4.1. Bacterial Strains and Maintenance

L. delbrueckii subsp. bulgaricus strain 43 was from cow yogurt produced in the town of
Smilyan in the Rhodope Mountains, Smolyan Municipality, Bulgaria. It was identified by
16S rRNA gene sequencing (NCBI GenBank accession no MG437371).

The pure bacterial culture was maintained in MRS medium at 42 ◦C and stored frozen
at −80 ◦C, supplemented with 15% glycerol. For DNA isolation, the strain was grown in
50 mL of MRS broth in laboratory bottles (Isolab Laborgeräte GmbH, Eschau, Germany), at
anaerobic conditions, using Anaerocult® A mini (Merck KGaA, Darmstadt, Germany).

E. coli HST08 strain (STELLARTM competent cells, genotype F-, endA1, supE44, thi-1,
recA1, relA1, gyrA96, phoA, F80d lacZD M15, D(lacZYA-argF) U169, D(mrrhsdRMS-mcrBC),
DmcrA, λ-) was purchased from Clontech Laboratories, Inc., A Takara Bio Company (Moun-
tain View, CA, USA). E. coli BL21(DE3) strain was purchased from New England Biolabs
(Ipswich, MA, USA).

Both E. coli strains were cultivated in Luria-Bertani (LB) medium, at 37 ◦C, solidified
with 15% agar (HiMedia, Mumbai, India) when needed. For the transformants’ selection,
kanamycin with a concentration of 50 µg/mL was used.
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4.2. Isolation of DNA, PCR, and Sequence Analysis of β-Galactosidase Gene of L. bulgaricus 43

Total genomic DNA from L. bulgaricus strain 43 was extracted with the GeneMATRIX
Bacteria & Yeast Genomic DNA Purification Kit (EURx®, Gdansk, Poland).

PCR amplification of the fragment (containing the β-gal gene) was performed in QB-96
Satellite Gradient Thermal Cycler (LKB Vertriebs GmbH, Vienna, Austria).

PCR reactions consisted of a 150 ng DNA template, 0.4 µM of primers, 12.5 µL of
Premix Ex Taq Hot Start Version 2.0 (Clontech Laboratories, Inc., A Takara Bio Company
(Mountain View, CA, USA), and nuclease-free water (EURx®, Gdansk, Poland) to a 25 µL
final volume. The next temperature profile was as follows: initial denaturation, 3 min at
95 ◦C; 35 cycles: 10 s denaturation at 98 ◦C, 30 s annealing at 60 ◦C, and 1 min elongation at
72 ◦C; final elongation—5 min at 72 ◦C. A gradient of annealing temperatures from 54.2 ◦C
to 62.7 ◦C showed no loss of quality in the PCR product. Two pairs of primers, listed in
Table 2, were used for sequencing the complete PCR fragment (Macrogen Inc., Amsterdam,
The Netherlands).

Table 2. Primers used in this study.

Primer Sequence (5′-3′) 1 Positions in β-gal 2 Purpose

LacZ_F ATGAGCAATAAGTTAGTAAAAGAAAAAAG 1–29 Sequencing
LacZ_R TTATTTTAGTAAAAGGGGCTGAATCAC 3000–3027 Sequencing
LacZ_FF GTGAAGGTGACTTGGTTGCTGAAAA 803–828 Sequencing
LacZ_RR CCAGAAGGTAAATTCCGGCAGCCGCTTC 2285–2313 Sequencing
LacZ_Nde CAGTCCATATGATGAGCAATAAGTTAGTAAAAGAAAAAAG 1–29 Cloning
LacZ_Xho CTAGTCTCGAGTTTTAGTAAAAGGGGCTGAATCAC 3000–3024 Cloning

1 The underlined sequences are sites recognized by endonucleases. 2 NCBI GenBank acc. no OP.

DNA fragments were visualized using gel electrophoresis on agarose (AlfaAesar,
Kandel, Germany), in TAE buffer (40 mM of Tris-base, 20 mM of acetic acid, 1 mM of
EDTA), and stained with SimplySafeTM (EURx, Gdansk, Poland).

4.3. Bioinformatics Analysis

The obtained nucleotide sequences were processed by ChromasPro 2.1.10 (https:
//technelysium.com.au/wp/, accessed on 10 August 2022) and assembled with CAP3. The
deduced amino acid sequence was received by Expasy Translate Tool (Swiss Institute of
Bioinformatics). The comparison with the NCBI GenBank database was made by BLASTN,
BLASTP (NCBI), and alignment by ClustalW programs (https://www.genome.jp/tools-
bin/clustalw, accessed on 14 September 2022). A molecular map of the construct pET-41-β-
gal was drawn with the program SnapGene® (GSL Biotech LLC).

Molecular modeling of the β-galactosidase gene of L. bulgaricus 43 was performed in
SWISS-MODEL Workspace [29].

4.4. Molecular Cloning of the β-Galactosidase Gene of L. bulgaricus 43

For cloning of the β-gal fragment, PCR amplification was performed with a primer pair
containing introduced restriction sites (Table 2). Thus, obtained in sufficient amounts, the
fragment was digested with XhoI (Thermo Fisher Scientific, Waltham, MA, USA) and NdeI
(New England Biolabs, Ipswich, MA, USA), and cloned into a pET-41b(+) vector (Novagen,
Merck KGaA, Darmstadt, Germany) designed for high expression of recombinant proteins
with a tag of eight histidine residues (8xHis).

The recombinant construct pET-41-β-gal was used for the transformation of E. coli
HST08 StellarTM competent cells, according to Protocol PT5055-2 of the manufacturer.
Successful clones were confirmed by a restriction analysis and sequencing. The correct
construct was used for the transformation of E. coli BL21(DE3) via electroporation of
competent cells, which were obtained after repeated washing with ice-cold 10% glycerol.
BioRad MicroPulser (BioRad Laboratories, Hercules, CA, USA) and a pulse of 1.8 kV for
5.7 ms, using Gene Pulser® Cuvettes with a 0.1 cm electrode gap, were used for E. coli

https://technelysium.com.au/wp/
https://technelysium.com.au/wp/
https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
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transformation. SOC medium (2% tryptone, 0.5% yeast extract, 10 mM of NaCl, 2.5 mM of
KCl, 10 mM of MgSO4) with freshly added glucose (20 mM) and MgCl2 (10 mM) was used
as a recovery medium.

4.5. Preparation of the Crude β-Galactosidase

A frozen stock of 100 µL of E. coli BL21 (DE3) cells harboring the construct pET41-β-gal
was inoculated in 50 mL of LB medium, containing 100 µg/mL of kanamycin (AppliChem,
GmbH, Darmstadt, Germany) and cultivated overnight at 37 ◦C. With this culture (5%,
v/v) were inoculated 500 mL Erlenmeyer flasks containing 60 mL of the same medium,
and the cultures were cultivated at 37 ◦C on a rotary shaker (130 rpm) until OD600 reached
0.8. Then, IPTG (isopropyl β-d-1-thiogalactopyranoside (AppliChem, GmbH, Darmstadt,
Germany) with variable concentrations (0.5–1.5 mM) was added to the cultures to induce
the expression of the target gene. After 24 h of cultivation, the cells were harvested and
resuspended in potassium-phosphate buffer (50 mM of K2HPO4, 50 mM of KH2PO4, pH 7),
then disrupted by sonication using an ultrasonic homogenizer—Bandelin Sonoplus 2070
(BANDELIN electronic GmbH & Co., KG, Berlin, Germany)—set at 20 kHz, 5 sec pulses, for
10 min in an ice bath. After centrifugation for 15 min on 12,500× g and 4 ◦C, the supernatant
was decanted and stored frozen at −20 ◦C.

4.6. Purification and Visualization of β-Galactosidase of L. bulgaricus 43

The crude enzyme was purified with Ni Sepharose columns His GraviTrapTM and His
Buffer Kit (GE Healthcare, Uppsala, Sweden). The columns were equilibrated and washed,
and the crude lysate mixed, with 20 mM of imidazole in phosphate buffer with a pH 7.4,
containing 20 mM of Na3PO4 and 500 mM of NaCl. The most successful purification was
achieved with 150 mM of imidazole in the elution buffer.

The purified β-galactosidase and crude lysates were subjected to SDS-PAGE (5%
stacking and 10% separating gels, 150 V for 90 min). The proteins were visualized by
silver staining. PerfectTM Tricolor Protein Ladder (EURx, Gdansk, Poland) was used as a
molecular weight marker.

4.7. Enzyme Activity Assay

The hydrolytic activity of the β-galactosidase was measured by the ability of the crude
enzyme to hydrolyze the chromogenic substrate o-nitrophenol-β-D-galactopyranoside
(ONPG; Sigma-Aldrich, St. Louis, MO, USA). The crude enzyme was diluted in sodium-
potassium buffer (100 mM of Na2HPO4, 10 mM of KCl, 1 mM of MgSO4) and incubated
under optimal conditions (pH 6.5, 55 ◦C) for 5 min, together with 15 mM of ONPG.
The reaction was stopped with 1 M of Na2CO3, and the OD at 420 nm was measured
versus blank with buffer instead of the crude enzyme using a Helios Omega UV-VIS
spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA). The amount of ONP was
estimated with a standard curve of concentrations from 50 to 1000 µM. The specific enzyme
activity is expressed in units per mg of total protein (U/mg). One unit (1U) is defined as
the amount of enzyme that catalyzes the hydrolysis of 1 µmole of ONPG for 1 min. The
total protein content of the crude lysate was estimated by the Bradford method.

4.8. Influence of Temperature, pH, and Cations on the Activity of β-Galactosidase

The hydrolytic activity of the β-galactosidase was measured in the range from 25
to 65 ◦C, and in different buffers with the pH adjusted from 5 to 8.3. The effect of eight
different metal ions (Mn2+, Mg2+, Ca2+, Na+, K+, Zn2+, Cu2+, [NH4]+) was studied after
30 min incubation of the enzyme at 4 ◦C with 10 mM of MnSO4, MgSO4, CaCl2, NaCl,
KCl, ZnSO4, CuSO4, and (NH4)2SO4. All other conditions of the enzyme activity assay
remained unchanged.
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4.9. In Vitro GOS Production

In vitro GOS synthesis was performed in laboratory bottles of 250 mL on a GFL
1092 rotary shaker (GFL Gesellschaft für Labortechnik GmbH, Burwedel, Germany). The
process was carried out for 30 h under optimal conditions (pH 6.5, 55 ◦C). Mixtures of
25 mL of lactose solution (with variable concentration, in sodium-potassium buffer), crude
enzyme, and 10 mM of various salts were incubated at 100 rpm in a water bath. Samples
were taken at 0, 6, 12, 24, and 30 h, boiled at 95 ◦C for 5 min to terminate the enzyme
reaction, and subjected to an HPLC analysis.

4.10. Analytical Techniques

GOS fractions were analyzed by liquid chromatography/mass spectrometry (LC/MS).
TurboFlow® LC system and IonMax II® electro spray ionization module (Thermo Scientific
Inc., Waltham, MA, USA); Atlantis T3, 3.5 µm (100 × 2.1 mm) column (Waters Co., USA)
were used. The mobile phase contained A—20 mmol/L of ammonium acetate in water;
B—buffer A/acetonitrile (1/9 v/v) at a flow rate of 300 µL/min and gradient: 0% B for
180 s; 0–60% B for 150 s; 60% B for 30 s; 60–0% B for 60 s; and 0% B for 5 min. A mass
spectrometric analysis was carried out using a Q Exactive Hybrid Quadrupole-Orbitrap
Mass Spectrometer (Thermo Scientific Inc., Waltham, MA, USA), which was equipped with
a heated electrospray ionization module IonMax® (Thermo Scientific Co., Waltham, MA,
USA). Full-scan spectrum over the m/z range of 100–2000 was acquired in negative ion
mode at resolution settings of 140,000. The Q Exactive parameters were a spray voltage
of 4.0 kV, sheath gas flow rate of 32, auxiliary gas flow rate of 10 L/min, spare gas flow
rate of 3 L/min, capillary temperature of 280 ◦C, sample heater temperature of 300 ◦C, and
S-lens RF level 50. Data acquisition and processing were carried out with the Xcalibur 2.4®

software package (Thermo Scientific Inc., Waltham, MA, USA).
Quantitative estimations of GOS with DP3, glucose, and galactose were made using YL

Instrument 9300 HPLC System (YL Instrument Co., Ltd., Anyang, South Korea), RI detector
(YL 9170 RI Detector), and column HPX-87C at 85 ◦C (BioRad Laboratories, Hercules,
CA, USA), using water as the mobile phase with a flow rate of 0.6 mL/min. For the
quantification of trisaccharides, raffinose was used as a standard. All standard substances
were purchased from Merck KGaA, Darmstadt, Germany.

5. Conclusions

In this study, the β-galactosidase gene from the yogurt strain L. bulgaricus 43 was
sequenced and found to encode a novel enzyme with 21 amino acid substitutions compared
to all previously known β-galactosidases of this species. Through molecular modeling,
it was shown that the structure of the enzyme suggests a tetrameric form, as well as
a propensity for the formation of galactooligosaccharides with three monomers (DP3)
and specific β-(1→4) and β-(1→3) linkages. The successful heterologous expression of
the enzyme in E. coli strain BL21 (DE3) led to obtaining a recombinant enzyme with
enormous activity (over 3000 U/mL, ~2010 U/mg) and the in vitro synthesis of 70.9 g/L of
trisaccharides in the course of lactose conversion. Thus, the β-Gal of L. bulgaricus 43 is very
promising for application to obtain GOS in industrial conditions.
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