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Abstract: Primary and secondary immunodeficiencies cause an alteration in the immune response
which can increase the rate of infectious diseases and worsened prognoses. They can also alter the
immune response, thus, making the infection even worse. Curcumin is the most biologically active
component of the turmeric root and appears to be an antimicrobial agent. Curcumin cooperates
with various cells such as macrophages, dendritic cells, B, T, and natural killer cells to modify the
body’s defence capacity. Curcumin also inhibits inflammatory responses by suppressing different
metabolic pathways, reduces the production of inflammatory cytokines, and increases the expression
of anti-inflammatory cytokines. Curcumin may also affect oxidative stress and the non-coding
genetic material. This review analyses the relationships between immunodeficiency and the onset of
infectious diseases and discusses the effects of curcumin and its derivatives on the immune response.
In addition, we analyse some of the preclinical and clinical studies that support its possible use in
prophylaxis or in the treatment of infectious diseases. Lastly, we examine how nanotechnologies can
enhance the clinical use of curcumin.

Keywords: curcumin; primary immunodeficiency; secondary immunodeficiency; sepsis; T cells;
B cells; viral infections; bacterial infections; inflammatory immune response

1. Introduction
Immunodeficiencies and Infections

Sepsis is the penetration of microorganisms into the blood, with the stimulation of
the host’s immune reaction against this invasion [1–3]. Various experiments have led to
the definition of a scoring procedure for the precocious detection of organ failure as sepsis
provokes a rapid stimulation of both pro- and anti-inflammatory responses which are
capable of damaging different organs [4–7].

Although the commencement and progress of infection differs across patients, im-
munosuppression is reported in most infective subjects, and it seems to be notably related
with prognosis [8]. The immune system is the greatest protection against pathogens, and
with a correctly operative immune response, sepsis can be fully resolved [9]. It is therefore
evident that a primary or secondary alteration in the immune response can lead to an
increased incidence of infectious events and a worse prognosis.

The possibility of immune dysfunction should be considered in subjects with an aug-
mented occurrence of infections, problematic healing, uncommon gravity, requirement of
parenteral treatment, or unusual etiological agents. Moreover, there are different situations
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that disturb the immune response which may also indicate a causal alteration of the im-
mune system. For instance, malnutrition alters the immune effectors, but it is also one of
the characteristic symptoms of a subject affected by severe combined immunodeficiency [9].

The biological processes underlying an increased incidence of critical infections in
apparently normal subjects is essentially undetermined, but epidemiological analyses
indicate a possible relevant genetic influence [10]. It has been suggested that serious sepsis
in children is more likely to be the sign of exceptional, single-gene alterations [11].

Different classifications have been employed in the last 50 years to define the differ-
ent types of immunodeficiency, generally using the different forms of immune effector
involved in the alteration. In any case, immunodeficiencies are distinguished as primary
or secondary immunodeficiencies. Currently, the International Union of Immunological
Societies recognizes over 400 primary immunodeficiencies (PID) classified into groups in
relation to the type of cells involved and the underlying mechanism of immunological
alteration [12–17] (Figure 1).
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Secondary immunodeficiencies are transitory or permanent alterations of the immune
response, provoked by elements that are not inherent to the same immune system. This class
of agents comprises drugs, environmental factors, and a multiplicity of diverse situations.
In any case, it is essential to evaluate the possibility of a secondary immunodeficiency as its
incidence is more frequent than primary immunodeficiency [18].

Secondary immunodeficiencies are frequent due to taking medications used to treat
diseases such as inflammatory diseases, autoimmune conditions, allergic pathologies,
tumours, or graft-versus-host diseases. These medications can modify the cytokine produc-
tion and cell function and include immunosuppressive small molecules such as steroids,
cyclosporin, and methotrexate; protein kinase inhibitors and biological substances such as
anti-CD20 antibodies; as well as old and new drugs such as bortezomib, cyclophosphamide,
venetoclax, and idelalisib [19–21].

Major and massive trauma, severe scalding, and surgical interventions are also able
to induce significant alterations in the immune response and can provoke severe sepsis,
with a mortality rate of over 30 percent [22]. Lastly, surgical ablation of the thymus or the
spleen have a profound effect on the immune response due to their fundamental action
as lymphoid organs. Thymectomy in children causes T cell decrease, with more specific
involvement of CD4 T cells than CD8 T cells [23]. There is a tendency for lymphocytes
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to preferentially mature towards effector T cells and a decreased variety of the T cell
repertoire, indicating early ageing of the immune system [24], and an increased risk of
sepsis or autoimmune diseases have been described after thymectomy [25].

However, it is now known that the same infection can determine an alteration in
the immune response capable of leading to a worse evolution and prognosis of infection
(Figure 1).

Sepsis generally evolves in two phases, although both stages can happen at the same
time [26]. The early hyperinflammatory stage, also called the “cytokine storm”, is charac-
terised by the overwhelming discharge of inflammatory substances by the innate immune
system, which can damage cells and tissues [27]. Immediately after the onset of inflam-
mation, the intensity of the immune response diminishes, provoking a hypoinflammatory
condition. The immune effectors then show functional exhaustion and a reduction in
lymphoid and myeloid cells, provoking a severe impairment of the immune system [28].
These changes render subjects susceptible to secondary infections, generally provoked by
opportunistic hospital microorganisms such as viruses, fungi such as Candida albicans (8.5%
of cases), or other pathogens such as Acinetobacter baumannii (22.2%), and Pseudomonas
aeruginosa (10.3%). These secondary infections generally take hold 48 h after the primary
infection, indicating that the immune unresponsiveness has reached its maximum peak.
Other studies evaluating the occurrence of secondary infection on prognosis have demon-
strated that opportunistic pathogens further increase in a later period (>15 days) of sepsis
with respect to the initial period (<6 days) [29].

Various complex processes are implicated in the onset and progression of infection-
correlated immune alteration, comprising metabolic changes, epigenetic influences, endo-
toxin tolerance, programmed cell death, and autophagy [30–37]. A typical case is the onset
of endotoxin tolerance, expressed as a reduced delivery of inflammatory cytokines after a
rechallenge of endotoxin or other factors [38]. Other studies have proved that epigenetic con-
trol is significantly implicated in the establishment of endotoxin tolerance as demonstrated
by considerable changes in the transcription of genes coding deacetylase enzymes.

Sepsis is, thus, a situation where there is a pronounced stimulation of innate immunity
along with the inhibition of the conventional T-cell-originated immune response and with
an increase in regulatory T cells (Tregs). This, then, provokes the onset of a sepsis-correlated
immunosuppression [39–41] and leads to a disturbance of the immune response and
possible subsequent organ damage [42,43].

Lastly, an important aspect that clarifies some of the characteristics of the gene-
sis of immune system modifications in subjects affected by sepsis concerns the role of
inflammasomes in the sepsis-correlated inflammatory response. Inflammasomes are a
caspase-stimulating complex involving essentially caspase-1, caspase-5, Pycard/Asc, and
NALP1 [44]. Inflammasomes seem to play a key role in regulating the immune response
against microorganisms. For instance, inflammasome-defective animals harbour an abnor-
mal microbial population which can be passed on to normal mice [45].

In contrast, the stimulation of inflammasomes induces inflammatory cell death through
various procedures comprising necroptosis and pyroptosis, which can trigger an inflamma-
tory immune response [46–51].

2. Curcumin and Infections

Sepsis is still a key cause of illness and death, thus highlighting the need for continued
research to find new strategies and treatments [52]. Interventions regarding the primary or
secondary alterations of the immune system that determine the onset, course, and prognosis
of infection are fundamental for patients with sepsis. An enormous number of plants have
been reported to be effective in vitro against a multiplicity of infections and bacteria [53].

The aim of our review was to evaluate the possible use of turmeric and its derivatives
in the treatment of infections. Particular attention was paid to its ability to significantly
alter the immune response and trigger increased resistance to infections.
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Turmeric (Curcuma longa L.) is a perennial and rhizomatous herb belonging to the
Zingiberaceae group and is an important medicinal plant [54]. Curcumin (Curcumin
(1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione)) is a polyphenolic sub-
stance with hydrophobic features which is one of the most effective components in turmeric
extract [55]. Curcumin can operate in several different signalling pathways, and, thus, di-
etary turmeric or curcumin demonstrate gastro-protective, antioxidant, anti-inflammatory,
antitumour, and immune-modulatory actions [56,57]. Curcumin has also shown significant
antibacterial and antiviral effects [58–61], and its tolerability and non-toxicity even at high
dosages have been well demonstrated by clinical trials [62,63].

2.1. Curcumin and Its Effects on the Immune System

The immune controlling system is based on regulatory cells, such as regulatory B
cells (B regs) and regulatory T cells (Tregs), and on a series of humoral regulators with
an inhibiting or stimulating character, such as IL-10 or transforming growth factor (TGF)-
β [64,65]. Curcumin cooperates with various cells that modulate the immune response,
such as macrophages, dendritic cells, and B and T cells, as with interleukins and gene
transcription elements [66,67].

The immunomodulatory action of curcumin occurs both through Treg inhibition,
and stimulation of the effector T cells. One study showed that curcumin use on myeloid-
derived suppressor cells [68] led to an increase in CD8 + T cells and a decrease in Treg
cells, thereby boosting the immune response [69]. The effect of curcumin in stimulating
immunity has also been demonstrated in numerous in vivo clinical trials, as curcumin
administration increased Th1 cells by stimulating the Treg cell switch to Th1 cells and
significantly decreased Treg cells via Foxp3 inhibition and the increased production of
IFN-γ [70,71].

Curcumin administration to patients led to a decrease in inflammation and allergies
and enhanced the innate immunity against tumour cells, cardiovascular diseases, and
pathogens. Curcumin operates via the regulation of the gene expression of inflammatory
cytokines and, thus, can decrease the intracellular activity of MAPKs, NF-κB, JAKs/STATs,
and the Notch-1 pathway [72,73].

The action of curcumin on the immune system may also be effective in moderating
age-related immunological changes. Although elderly subjects are not immunodefective,
they do not have an optimal response to immunization, and consequently, strategies are
needed to render them immunologically receptive. Programmed cell death 1 (PD-1), an
inhibitory receptor, has a key effect in the control of autoimmune diseases, tumours, and
infective diseases. Its presence in T cells suggests their functional exhaustion. One study
demonstrated that curcumin decreased the rate of PD1 + cytotoxic T cells in elderly animals.
Curcumin could thus be employed to enhance the immunological framework of elderly
subjects, perhaps preserving them from infectious events [74].

Curcumin appears to influence other cell signalling molecules, such as apoptotic
proteins, IKKβ, endothelin-1, C reactive protein, prostaglandin E2, GST, VCAM1, phos-
phorylase kinase, and HO1, many of which are able to modify the function of the immune
system [75–80].

The above results were confirmed with a group of neoplastic patients particularly
affected by immunological alterations. As in immunosuppressive cancers, curcumin re-
duced the programmed cell death of T cells, augmented the population of memory cells,
and inactivated the effects of Treg cells, thus efficaciously overturning the influence of
immunosuppressive cancer [81]. For instance, a new nanocurcumin increased the presence
of co-stimulatory molecule CD86 on the membrane of dendritic cells and reduced the
concentration of inflammatory substances produced by effector T cells [82]. One in vitro
experiment also showed that small dosages of curcumin increased the population of CD8 +
T cells and improved their IFN-γ generation [83].

Curcumin is also able to intervene in natural killer (NK) cells. One study evidenced
that curcumin increased CD16 + and CD56dim in the membrane of NK-92 cells [84]. The
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action of curcumin in stimulating the cytotoxic ability of NK cells has also been correlated
with the stimulation of STAT4 and STAT5 pathways in NK cells and the inhibition of pERK
and PI3K generation in curcumin-treated breast cancer cells [84].

The effect of curcumin on NK cells was confirmed in a study of pancreatic tumours.
In the experiment, curcuminoids improved the capability of NK cells to produce IFN-γ and
stimulated the antitumour effect of NK cells against pancreatic cancer cell lines [85]. In
addition, curcumin, to some extent, halted the tumour-exosome-mediated block of NK cell
stimulation, which is due to the alteration of the ubiquitin–proteasome system. In fact, the
treatment of animal breast tumour cells with curcumin led to an increase in ubiquitinated
exosomal proteins with respect to untreated cells. Exosomes extracted from cancer cells
treated with curcumin also showed less inhibition of IL-2-caused NK cell stimulation. These
results confirm the importance of the effects of curcumin on NK cells [86].

2.2. Other Immune-Mediated Effects of Curcumin on Infections

Several other new mechanisms have been identified to explain curcumin’s effects on
infections. Lipopolysaccharide (LPS), the main structural component of the Gram-negative
bacteria membrane, is recognized as a central mediator of infection, as a disproportionate
LPS can provoke septic shock [87]. LPS joins TLR4 and sends signals via transcription
elements to generate an inflammatory condition. This phenomenon is due to the generation
of specific cytokines, such as IL-6, TNF-α, and IL-1β, which attract innate and adaptive
elements of inflammation to infection sites [88].

It has also been demonstrated in animal experimental models that curcumin can
protect against sepsis-caused muscle proteolysis and acute lung damage [89–92]. The
principal effect is probably an intense inhibitory action on inflammatory elements such as
activator protein-1, cyclooxygenase, and inducible nitric oxide synthase [93].

Interestingly, the immunomodulated efficacy of curcumin can be enhanced through its
administration. A transgenic animal experimental model was employed to control IL-1β
generation in LPS-caused sepsis in order to evaluate the defence action of curcumin-loaded
solid lipid nanoparticles (SLNs). Curcumin-SLNs were administered intraperitoneally
before the intraperitoneal release of LPS. Curcumin-SLNs can decrease concentrations of
IL-1β expression particularly three hours after LPS administration. Curcumin-SLNs also
significantly reduce the expression of IL-6, TNF-α, and IL-1β, and increase the expression
of the anti-inflammatory cytokine IL-10. A clear reduction in the sepsis-caused injury to
organs such as heart, kidney, and liver was reported after curcumin-SLNs administration.
The findings also demonstrated that curcumin-SLNs reduced the expression of TLR4, TLR2,
and TNF-α in lymph nodes [94].

A different mechanism explaining the effects of curcumin on the immune system may
be the action on the redox system. In fact, curcumin reduces oxidative-stress-correlated
inflammation through phosphatidylinositol 3-kinase (PI3K)/AKT- and NF-κB-correlated
pathways, thus reducing LPS-provoked sepsis and liver malfunction [95–97].

Another in vivo study, also performed in an animal experimental model, evaluated the
consequences of dietary curcumin nanoparticle (C-NP) administration on the antioxidant
condition and humoral immunity of Nile tilapia (Oreochromis niloticus) [98]. The fish
were given food supplemented with C-NPs for 60 days. The number of red blood cells,
leukocytes, haemoglobin, and haematocrit levels were significantly greater in treated fish
than in the control group. Similarly, antioxidant components such as catalase, glutathione
peroxidase, malondialdehyde, and superoxide dismutase, and humoral immunity eval-
uated as lysozyme production and total immunoglobulins were significantly greater in
C-NPs-fed fish. This suggests that the administration of 45–55 mg/kg of C-NP can be used
to enhance antioxidant factors and the immune response [98].

Lastly, curcumin also acts on non-coding genetic material. MicroRNA (miRNA) is
a class of short single-stranded non-coding RNAs consisting of 18–22 nucleotides. This
genetic material does not have the capacity of protein coding; however, it regulates gene
expression by inhibiting the transcription of its target mRNA [99].
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Several studies have confirmed that miRNAs have an essential effect in the onset and
progress of infections. For instance, miRNA-133a exacerbates the inflammatory condition
induced by sepsis through affecting sirtuin-1 [100]. On the other hand, augmented miRNA-
223 expression increased the M2 macrophage population and reduced LPS-caused sepsis
through alterations in glycolysis [101].

Curcumin might function by regulating miRNA expression in the inflammatory re-
sponse [102]. One study investigated the effects of curcumin on the immune response
of infected animals through the increase in the miRNA-183-5p- and Cathepsin B (CTSB)-
mediated phosphatidylinositol 3-kinase (PI3K)/AKT pathway [103]. Curcumin was admin-
istered for forced feeding, and i.v. administration of plasmid vectors of interference with
miRNA-183-5p or CTSB was carried out. To induce sepsis, intraperitoneal administration of
LPS was performed. Curcumin administration reduced tissue injury, decreased the number
of inflammatory elements, and reduced the frequency of CD39 + Tregs in the venous blood
of sepsis animals. Curcumin accelerated miRNA-183-5p, which negatively regulated CTSB
and the curcumin-mediated PI3K/AKT pathway through the miRNA-183-5p/CTSB axis in
order to limit inflammation and increase its immune activity [103] (Figure 2).
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3. Curcumin and Virus Infections

This section provides a few examples of the results obtained in in vitro and in vivo
experiments. Our aim is to demonstrate the anti-infective effects of curcumin against viral
and bacterial infections via immunological and non-immunological activities. This section
does not claim to be exhaustive but highlights the possible effects of curcumin in the most
frequent or important viral or bacterial infections.

3.1. Curcumin and Human Immunodeficiency Virus

The acquired immunodeficiency syndrome (AIDS) is provoked by the human immun-
odeficiency virus (HIV), which inhibits the immune system. Since the 1980s, 75 million
people have contracted this infection, with 32 million deaths. It remains one of the most
frequent causes of death in Africa, where about 4% of the inhabitants are infected [104].

There are two different forms of HIV: HIV-1, which is responsible for the diffusion of the
epidemic, and HIV-2 which is essentially confined to Africa [105,106]. The damaging action of
this retrovirus is due to its ability to impact CD4 T cells, which stimulate the adaptive immune
response [107], as different mechanisms of the virus can kill this type of cell.
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The current therapy for HIV infection is based on anti-retroviral treatment. However,
an old study evaluated the efficacy of curcumin in AIDS subjects but found no significant
effects on viral growth. CD4 cells showed a small increase in patients with a high-dosage
of curcumin with respect to the significant reduction registered in the low-dose group. In
any case, curcumin was shown to enhance the well-being of most participants [108].

Curcumin likely has anti-HIV action by operating as an inhibitor of gp120 binding,
and of protease, integrase, and topoisomerase II functions [109,110]. Curcumin loaded with
apotransferrin capsulated in NPs connect to transferring receptors, provoking cell absorp-
tion and T cell toxicity, finally blocking HIV proliferation, and repressing the production of
topoisomerase II [111].

Other studies have investigated other mechanisms of the action of curcumin. Enzyme
HIV-1 integrase integrates the HIV virus DNA to further reproduce. Specific software has
been used to run docking experiments, providing information on curcumin interactions
and showing that it joins with the HIV integrase, thus blocking the proliferation. Curcumin
also combines with the functional site that links the catalytic residues adjacent Asp and
Asp and near to Mg2 + ion causing in integrase inhibitory effect against HIV [111]. A study
evaluating two curcumin analogues, dicaffeoylmethane and rosmarinic acid, showed that
both substances blocked the integrase activity [112,113].

Curcumin presents other mechanisms of action against HIV. HIV-1 gene expression is
determined by Tat and Rev proteins, which stimulate the transcription and facilitate the
transfer of mRNA which code viral proteins [114]. Curcumin blocks Tat protein, decreasing
HIV proliferation. One study showed that curcumin (10–100 nM) blocked Tat stimulation of
HIV-1-long terminal repeats (LTR), 80% in HeLa cells. It might thus work as an important
substance in the combined treatment of HIV [115].

Curcumin is also a specific inhibitor of in vitro and in vivo p300/CREB-binding pro-
tein (CBP) histone acetyltransferase (HAT) activity, and curcumin also blocks the p300-
mediated acetylation of p53 in vivo. It specifically represses the p300/CBP histone acetyl-
transferases activity-dependent transcriptional activation from chromatin. Curcumin also
blocks the acetylation of HIV-Tat protein in vitro by p300 as well as the growth of the HIV,
as demonstrated by the decrease in syncytia generation after curcumin administration in
SupT1 cells [116].

As reported above, curcumin might operate via an effect on oxidative stress. Curcumin
and 15 structural analogues with different operative groups combined with their aromatic
rings were evaluated in terms of their antioxidant effects in vitro. The findings suggested
that both curcumin and its analogues were powerful antioxidants, capable of removing free
radicals. Compound 3e presented the greatest antiradical ability, while 3d and curcumin
showed a higher antioxidant effect. Compounds such as 2d and 3d and curcumin have been
shown to manage and reduce oxidative stress. Interestingly, compound 2e also showed the
highest in vitro HIV-1 protease repressing effects [117].

An ongoing clinical trial is currently evaluating the effect of curcumin supplementation
in patients with HIV/AIDS (NCT03141918: Supplementation of Bioactive Compounds on
the Energy Metabolism of People Living With HIV/AIDS) [118].

3.2. Curcumin and SARS-CoV 2 Infection

COVID-19 is an infection provoked by RNA betacoronavirus which is related to SARS-
CoV [119,120]. COVID-19 produces intense changes in the effector cell responsible for the
immune response [121–123].

Curcumin produces its immune-enhancing action via free radical deactivation and
through an improvement in the antioxidant system [124]. Curcumin regulates the inflam-
matory response to infection via the neutralisation of inflammatory transcription elements,
such as the nuclear factor kappa B, signal transducer and activator of transcription 3, and
induces the decreased expression of inflammatory cytokines [125,126]. In addition, for the
duration of SARS-CoV-2, curcumin blocks the angiotensin-converting enzyme 2 produc-
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tion, which is necessary for virus entry. Curcumin thus stimulates anticoagulation and
fibrinolysis and prevents critical COVID-19 [127–130].

The action of curcumin on the immune system may also be useful for effective immu-
nisation against COVID-19. After vaccine administration, the antigen present stimulates
B cells to produce IgM antibodies, the first antibody to be produced, and IgG, a more
efficient neutralizing antibody [131]. The quantity of B cells generating antibodies may be T
cell-dependent or -independent [132,133]. The action of curcumin in enhancing antibodies
generated after COVID-19 vaccination has been studied [134]. A group of patients received
a curcumin supplement after the first administration of the vaccine for a period of four
weeks after the second vaccination. The number of antibodies against SARS-CoV-2 was
evaluated four weeks after the second vaccination. The number of antibodies generated in
the patients receiving the curcumin supplement was significantly higher compared to the
control group. None of the variables examined (sex, age, and comorbidities) were shown
to influence the generation of antibodies within the two groups [134]. The potential of
curcumin was thus demonstrated for treatment during the period of vaccination.

Finally, a clinical trial has verified the efficacy of curcumin for precontact prophylaxis of
COVID-19. This ability may be due to antiviral effects, such as an effect on viral membrane
proteins, an alteration of viral envelope, inhibition of viral protease, and induction of
antiviral response by improving immune response. Curcumin is also able to prevent
severe pneumonia, probably by acting on the IL-6 trans signal, HMGB1 system, and NF-kB,
and is well tolerated in infected patients [135]. In a systematic review performed on six
randomized trials on 558 subjects, curcumin as an adjunct treatment in COVID-19 infected
subjects improved clinical prognosis and decreased hyperinflammation [136].

3.3. Curcumin and Enterovirus

Enterovirus 71 (EV71) is a single-stranded RNA virus which is part of the genus Enterovirus,
family Picornaviridae [137]. Although EV71 is usually asymptomatic or causes only mild
symptoms, such as sore throat or fever [138], it may also cause encephalitis and pulmonary
oedema. EV71 epidemics are a serious problem particularly in the Asia-Pacific region [139,140].
Furthermore, as there is no specific antiEV71 treatment, therapy is only supportive [141].

One study reported that curcumin displayed powerful antiviral action against EV71.
Employing Vero cells infected with EV71, a supplementation with curcumin consider-
ably reduced the production of viral RNA, the synthesis of viral protein, and the viral
proliferation. In line with the previous reports for other viruses, curcumin decreased the
generation of ROS caused by viral infection. However, the antioxidant ability of curcumin
may not actually have participated in its antiviral effect, as N-acetyl-L-cysteine, a powerful
antioxidant, failed to reduce viral growth. In any case, curcumin did decrease the activity of
proteasomes, which was augmented by infection and increased the number of short-lived
proteins, such as p53 and p21. The same study evaluated other possible antiviral effects
of curcumin by evaluating the production of GBF1 and PI4KB, which are essential for
the generation of the viral replication complex. The authors demonstrated that curcumin
decreased the production of both proteins and reported that curcumin had an effect on
programmed cell death at the initial phase of viral infection [142].

3.4. Effect of Curcumin on Other Viral Infections

As for the effects of curcumin on Hepatitis B infection, an experimentation positioned
curcumin in lipid vesicles and dispensed them to transgenic mice with hepatitis B virus-
related hepatocellular carcinoma [143]. This specific nutritional treatment decreased the
size of tumours. Moreover, curcumin inhibited mTOR gene expression and was suggested
as chemopreventive in subjects with chronic HBV [143].

Furthermore, curcumin reduces hepatitis C virus (HCV) gene expression through
inhibition of the Akt-SREBP-1 stimulation. Importantly, curcumin has an immune-mediated
effect on HCV, as the combined administration of curcumin and IFN alpha seems to
produce a strong inhibitory action on HCV proliferation. Curcumin appears to reduce HCV
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proliferation in vitro and might, theoretically, be effective as a new anti-HCV agent [144].
In addition, curcumin can decrease the inflammation caused by the virus, regulating
the production of inflammatory cytokines such as IL-4, 6, 8, and TNF-α and increasing
the production of anti-inflammatory substances such as soluble intercellular adhesion
molecule-1 and IL-10 [145].

Curcumin pretreatment of the virus decreased viral infectivity without lysing the virus.
Experiments on membrane fluidity showed that curcumin changed the fluidity of the HCV
envelope, impairing viral binding and fusion. Additionally, it has been discovered that
curcumin prevents cell-to-cell transmission and works well when combined with other
antiviral medications [146].

Finally, some studies were conducted to evaluate the possibility that the adminis-
tration of curcumin can modify the pharmacokinetics and efficacy of some antivirals. A
new oral medication called daclatasvir is being developed to treat persistent Hepatitis
C Virus infections. This is a substrate for the primary pharmacokinetic interaction that
involves CYP3A4 and P-glycoprotein. Wistar rats were used in pharmacokinetic studies of
daclatasvir after oral dosing in the presence or absence of curcumin. According to those
studies, curcumin pretreatment for seven days at a high dose level resulted in a much
lower plasma level of daclatasvir than did concurrent single dose administration. It can be
inferred that dose adjustment is unlikely to be necessary for intermittent use of curcumin
at a low dose, but caution should be taken for chronic and concurrent use of curcumin at a
high dose [147].

In an experimental animal model, curcumin was effective against herpes simplex 2 as
well as papilloma (HPV) and Epstein Barr viruses in vitro [148]. It appears to inhibit tran-
scription activation by the protein AP-1, causing a reduction in human T cell leukaemia virus
(HTLV-1) and HPV-caused cellular transformation [149]. An in vitro effect against Friends
leukaemia [150] and Newcastle and poliomyelitis viruses [151] has also been described.

Another study investigated curcumin’s efficacy against human adenovirus (HAdV). In
infected A549 lung adenocarcinoma cells, curcumin induced a dosage-dependent reduction
in production of the viral early 1A proteins, which are essential to complete the replicative
cycle of the virus [64,65], suggesting that curcumin acts against different forms of HAdV.
Curcumin administration also reduced the number of copies of the HAdV-5 viral genome
and shortened the recovery period from the virus [152]. Nevertheless, the most efficient
levels of curcumin were only a little smaller than the CC50 of curcumin, suggesting that
curcumin has only a very limited curative window against HAdV [153] (Table 1).

Table 1. Modification of the immune response induced by curcumin towards viral infections.

Virus Effect Type of Study Ref.

HIV Increase in CD4 + cells. Greater perception of well-being. In vivo [108]

Effects on gp120 binding, integrase, topoisomerase II.
Reduced HIV proliferation. In vitro [109–113]

Effect on Tat and Rev proteins.
Reduced HIV proliferation. In vitro [114,115]

Effect on p300CREB-CBP histone acetyltransferases. In vivo and in vitro [116]

Effect on oxidative stress and HIV-1 proteases. In vitro [117]

SARS-COV 2 Free radical deactivation. In vitro [124]

Effect on inflammatory transcription elements, reduced expression of proinflammatory cytokines. In vitro [125,126]

Enhanced antibodies production after vaccination. In vivo [134]

Effect on IL-6 trans signal, NF-kB.
Prevention of severe pneumonia. In vivo [135]

Enterovirus Reduction of proteasome activity. Effect on p53 and p21 protein. In vitro [144]

HCV Reduction of inflammatory cytokines (IL-4, IL-6, IL-8, TNF.
Increased expression of IL-10 and soluble intercellular adhesion molecule 1. In vitro [145]
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4. Curcumin and Bacterial Infection

Besides its antiviral action, curcumin also intervenes in bacterial infections. Recur-
rent respiratory tract infections (RRTIs) are frequent infections in children and the anti-
inflammatory substances and antibiotics employed to treat these infections frequently have
severe side effects and participate in the onset of drug resistance. A report evaluated the
immunologic effects of an oral administration of lactoferrin and curcumin (LC) in children
with RRTIs [154]. Dispensation of LC was correlated with a significant and positive immune
modulation and a decrease in RRTI occurrence in the children treated [155].

The effects of curcumin were also evaluated in patients with chronic bacterial pro-
statitis (CBP). CBP is an enduring infection of the prostate gland provoked by both Gram-
negative and Gram-positive bacteria. Current therapies for CBP use antibiotics that pass
through the prostate and destroy the pathogens. Nevertheless, the limited ability to pene-
trate the prostate tissue, the onset of drug resistance, and the collateral effects due to the
use of antibiotic therapy mean that alternatives are needed.

A long-term follow-up analysis assessed the effectiveness of combined administration
of Serenoarepens plus Urticadioica and curcumin plus quercetin in enhancing the efficiency
of prulifloxacin in subjects with CBP [156]. A group of CBP patients were treated with
prulifloxacin daily for 14 days, while a second group of patients were treated with a
combined treatment of Serenoarepens plus Urticadioica and curcumin plus quercetin and
antibiotics. One month after therapy, 89.6% of the subjects in the first group registered no
clinical signs correlated with CBP, while only 27% of the subjects treated with prulifloxacin
alone were free of symptoms. Furthermore, six months after therapy, no subjects in the first
group had a relapse of infection, while some subjects in the second group did. Although
curcumin seemed to increase the effectiveness of antibiotics in subjects with CBP [156], the
absolute effect of curcumin in reducing CBP clinical signs was not determined.

5. Conclusions

Although curcumin certainly acts against infectious diseases by operating with both
immunological and extra-immunological mechanisms, several obstacles prevent it from
having wide clinical use. As with other substances of natural origin, the main difficulty is
the drugability of its metabolites. Other issues are the authentication of plant substances
and difficulties in the extraction and isolation procedures [157,158].

Despite all the advantages of curcumin, there are several drawbacks to its clinical
employment such as chemical instability, bad water solubility, fast elimination, and limited
assimilation [159].

Fortunately, new drug transport systems and the use of nanoparticles should make its
therapeutic use possible. In fact, compared to conventional curcumin, curcumin linked with
nanoparticles has a better dispersion in water and improved assimilation [160]. Moreover,
the nanosized substances rest in the blood longer than traditional curcumin and improve
its bioavailability [161].

Numerous novel transport and release methods have been explored in an effort to
improve the anti-infectious efficacy of curcumin. For instance, a muco-inhalable delivery
system (MIDS) loaded with silymarin can be used to overcome COVID-19 infection [162].

Moreover, according to a study, highly targeted and effective drug accumulation in
the brain is made possible by nanomedicines created by functionalizing RVG, a neurotropic
polypeptide produced from the rabies virus, and loading reduction-sensitive nanomicelles
(polymer and doxorubicin) [163]. Curiously, curcumin inhibits the main efflux proteins
in doxorubicin-resistant glioma cells despite acting as the hydrophobic core of the poly-
mer. The RVG-modified micelles exhibit improved cell entrance and anticancer activity,
according to studies on doxorubicin-resistant rat glioma cells. Research conducted in mice
in vivo further demonstrated that RVG-modified nanomicelles greatly increased brain
accumulation and tumour inhibition rate, resulting in a higher survival rate with less
systemic damage. After the RVG-modified nanomicelles treatment, excellent suppression
of recurrence and lung metastatic nodules was also identified.
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A different technique involves the use of proniosomes which are the provesicular
form of niosomes and can be made as either a liquid crystalline gel or a free-flowing
powder by coating a hydrophilic carrier with a non-ionic surfactant. Using Design-Expert
software, curcumin-loaded proniosomes were created using the slurry approach to show
how different independent variables affect entrapment effectiveness and the percentage
of medication released after 12 h (Q12h). After reconstitution, the improved formula (F5)
showed good flowability and took the form of spherical nanovesicles [164]. Compared to
the equivalent niosomes, F5 showed greater stability and a considerable increase in Q12h.
F5 had much stronger antiviral efficacy and safety than curcumin. Acyclovir’s effectiveness
dose was lowered by F5 while maintaining its safety, which resulted in a 100% decrease in
viral plaques.

An interesting aspect is the possibility of using viral derivatives for the delivery of
drugs. Virosomes are reconstituted viral envelopes consisting of viral glycoproteins and
membrane lipids resembling the original virus but lacking any genetic material, mak-
ing their internal compartment empty. The efficient drug delivery via virosomes can
be ascribed to their nature of mimicking the natural way of infection by any virus, en-
abling them to specifically bind with target cell surface receptors for their entry inside
the cell. Influenza virosomes were prepared by solubilisation of the viral membrane with
1,2-distearoyl-sn-glycerol-3-phosphocholine. During membrane reconstitution, the hy-
drophilic nanocurcumin was added to the solvent system, followed by overnight dialysis
to obtain nanocurcumin (NC)-virosomes. The same was characterised using a transmission
electron microscope and scanning electron microscope; a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay was used to evaluate its in vitro cytotoxicity
using MDA-MB231 and mesenchymal stem cells [165]. The results showed NC-virosomes
have spherical morphology with size ranging between 60 and 90 nm. It showed an
82.6% drug encapsulation efficiency. The viability of MDA-MB231 cells was significantly
inhibited by NC-virosome in a concentration-dependent manner at a specific time. The
IC50 for nanocurcumin and NC-virosome was 79.49 and 54.23 µg/mL, respectively. The
site-specific drug-targeting, high efficacy, and non-toxicity of NC-virosomes proves their
future potential as drug delivery vehicles.

Similarly, an oil in water nanoemulsion coated with gH625—a membranotropic pep-
tide derived from the glycoprotein H of Herpes simplex virus 1—was the basis for the
nanocarrier that Fotticchia et al. proposed. Curcumin molecules are certainly directly
incorporated into the cytosol rather than lysosomes when placed into nanocapsules. Finally,
by examining the anti-inflammatory capabilities of the suggested nanocarrier, the authors
demonstrated encouraging preliminary in vivo results [166].

New nanotechnologies can also be exploited. In fact, although in several tests curcumin
has been combined with metal nanoparticles, particularly with gold particles (Au NPs) due
to their modest toxicity, gold quantum clusters (Au QCs) composed of fewer atoms seem to
have a better effect due to their specific physical characteristics. For example, Chen et al.
generated lysozyme-protected Au QCs which displayed a greater antimicrobial effect than
traditional gold nanoparticles [167].

Note that although nanocurcumin has a beneficial effect in the treatment of infective
diseases such as HIV, the correct dose is still to be ascertained, and clinical trials should
verify the results of numerous preclinical studies.

Furthermore, some investigators have described undesirable side effects correlated
with this substance. Lao et al. performed a dose-escalation analysis to establish the
maximum tolerable dosage and safety of a single oral administration of curcumin in
healthy patients [168]. Only a few patients were subjected to insignificant toxicity that
did not seem to be dose-correlated. The more frequent symptoms were rashes, diarrhoea,
yellow stools, and headaches. In another study, curcumin administered for four months at
dosages oscillating between 0.45 and 3.6 g/day caused nausea and diarrhoea and increased
the serum lactate dehydrogenase and alkaline phosphatase levels [155].
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In the future, other aspects of the correlations between curcumin and infections will
need to be explored. Curcumin could also find use in the prevention of the toxic effects of
antibiotics [169].

However, the analysis of the immunological effects exerted by curcumin remains the
cornerstone of its use in infectious diseases. The study of its action on unconventional
immune accessory cells [170] will hopefully lead to new inputs for the use of curcumin in
patients with sepsis and disorders of the immunological effectors.
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