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Abstract: This article shows the success of using the chemical reduction method, the polyol ther-
molytic process, the sonochemistry method, and the hybrid sonochemistry/polyol process method
to design iron-based magnetically active composite nanomaterials in a hyperbranched polyester
polyol matrix. Four samples were obtained and characterized by transmission and scanning electron
microscopy, infrared spectroscopy and thermogravimetry. In all cases, the hyperbranched polymer
is an excellent stabilizer of the iron and iron oxides nanophase. In addition, during the thermolytic
process and hybrid method, the branched polyol exhibits the properties of a good reducing agent.
The use of various approaches to the synthesis of iron nanoparticles in a branched polyester polyol
matrix makes it possible to control the composition, geometry, dispersity, and size of the iron-based
nanophase and to create new promising materials with colloidal stability, low hemolytic activity, and
good magnetic properties. The NMR relaxation method proved the possibility of using the obtained
composites as tomographic probes.

Keywords: hyperbranched polyesters; zero-valent nanoparticles; iron oxide nanoparticles; synthetic
approach

1. Introduction

The design, the study of the properties, and the practical application of metal–polymer
composites are some of the topical areas of advanced materials science [1–5]. This is due to
the variety of their potential applications, such as for catalysis [6,7], water purification [8],
energy storage, and conversion elements [9–11]; the list of applications is endless. Among
the application areas of metal-containing nanocomposites, biomedicine can be singled out
as the most important [12–14]. Combining the controllable properties and architecture of
synthetic polymers with the functional properties (e.g., magnetic activity, luminescence, and
bioactivity) of metal nanoparticles or their binary compounds makes it possible to produce
unique smart materials for nanotherapeutics, diagnostics, and theranostics. Composite
magnetoactive smart nanomaterials based on iron and its oxides are a significant part of
these studies.

There are many applications of iron/iron oxide in biomedicine, but three main ones
can be distinguished. The first comprises the sensitive sensors and bioimaging agents
for the early detection of diseases [15]. Major developments are underway to advance
and discover imaging agents for MRI techniques [16–18]. For direct optical imaging, the
conjugation of luminescent magnetoactive nanoparticles with target disease markers is
used [19,20]. It is also possible to combine the imaging and therapeutic components, such
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as in the use of nanoparticles as radioactive labels, including, for example, Fe3O4 oxide
nanoparticles containing 59Fe [21,22].

Secondly, there is the creation of targeted drug delivery systems based on them [23,24].
The advantage of drug delivery systems based on magnetically susceptible materials is
the controlled targeting of nanocontainers for the formation of conjugates with tumor-
specific antibodies, which contributes to the selective accumulation of nanoparticles and the
suppression of the disease focus [25–28]. A number of studies have shown that the presence
of an oxide shell makes it easy to modify the surface of nanoparticles, with, for example, the
use of Herceptin, which is an antibody for the HER2/neu protein, to give them additional
vector properties for certain tissues [29].

Thirdly, there are nanoparticles used as theranostic agents [30], and there are physical
therapeutic systems, such as those with nanoparticles for magnetic hyperthermia [31].
By themselves, biophilic metal nanoparticles have their own background therapeutic
activity and adjustable specific activity against opportunistic infections and viruses that are
no less dangerous than those of oncology [32,33]. The ability to functionalize the surface of
particles and simultaneously control their behavior using an external magnetic field makes
them an indispensable material for theranostics—a technology for combining therapeutic
effects and diagnostics in one agent [34]. In [35], the authors demonstrate the possibility of
using Fe3O4@Au nanoparticles as an MRI contrast agent and antibody carrier for targeted
delivery to a prostate tumor.

Among the three areas identified, the most actively developing research is in the
creation of iron nanoparticle-based chemo-phototherapy systems for cancer treatment [36].
Malignant tumors of the endocrine system develop in the endocrine glands; so, cancer
cells quickly enter the blood and lymph system. Tumors of the thyroid gland, ovaries, and
adrenal glands are the most common and aggressive forms of the endocrine system cancers.
All of them lead to hormonal imbalance and severe metabolic disorders. Currently, as part of
the complex therapy for cancer of the endocrine system, the possibilities of the method of
local hyperthermia of tumors using magnetic fields are shown [37–40]. The structure and
composition of the composite particles based on nano-Fe3O4 are the basis for the successful
application of this method.

The nature of the nanoparticle stabilizer is a key factor in controlling the properties of
these systems and their subsequent biomedical applications. Silicate nanoparticles [41], ze-
olites [42], various sugars [43,44], graphene oxide [45–49], and surfactants [50,51] are often
used as matrices for the stabilization and preparation of metal nanoparticles. A nanoparti-
cle stabilizer used for the synthesis of magnetic nanocomposites based on iron oxides for
biomedical applications should have three main characteristics: firstly, to reduce interparti-
cle interactions, it is necessary to use magnetically inactive polymer matrices; secondly, the
polymer must be biocompatible, biosimilar, and biodegradable; and thirdly, its composition
should be predictable and constant. [52,53].

The use of synthetic branched polymers [54,55] for the synthesis of metal or metal
oxide nanocomposites makes it possible to combine the properties of a metal nanophase
with the individual reological and mechanical properties of polymers [49,56,57]. Branched
polymers have a well-established chemistry for their synthesis and offer many ways to
customize their functionality. The core-shell architecture ensures their operation as macro-
molecular “nanoreactors” and nanoporous stabilizers in the synthesis of metal-containing
nanoparticles [58–60]. The multimodal capabilities of branched polymers, combined with
their easy and controlled synthetic engineering, have resulted in properties that are ideal
for their use as stabilizers and supramolecular carriers of metal nanoparticles, allowing
them to control their morphology and ultimately control the properties of materials.

At the same time, most of the works are devoted to the use of dendrimers, namely
polyamidomine (PAMAM) or propyleneimine for the synthesis of the magnetic NPs of
iron compounds [61–69]. Among a small number of examples of the use of hyperbranched
polymers to stabilize Fe3O4 nanoparticles are branched polyamines HAPAM [70], HB-
PAMAM [71], PAMAM-b-PEG-FA [72], and PEI [73]. However, the presence of the NH
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fragment in the molecule leads to the high cytotoxicity of PAMAM and the hyperbranched
polyamines [45]. Much less commonly used are the hyperbranched polyglycerols [74,75]
and polyesters [76]. At the same time, their stabilizing ability and accessibility for terminal
modification are not inferior to those of branched polyamines, and their toxicity is much
lower [77]. We want to draw attention to the fact that in almost all the studies, Fe3O4 nanopar-
ticles are a structural element of a polymer-composite nanomaterial and are used primarily
as a magnetoactive component in a general application.

A recent good review by Lee et al. [78] detailed the size/geometry–property relation-
ship of Fe3O4 nanoparticles; the size/geometry–application relationship; and the role of
nanostructures in targeted applications. Data are presented on the Fe-nanophase obtained
by various methods (thermal decomposition/solvothermal/hydrothermal/sonochemistry,
etc.) and under conditions of stabilization by compounds different in nature and chemical
composition. Our early papers present the results of a scientific group studying the influ-
ence of the architecture of a stabilizer polymer; the process of the preorganization of metal
ions on a polymer matrix; and the morphology, magnetic activity, and biological properties
of hyperbranched polyester polyols doped with cobalt nanoparticles/cobalt oxides [79–81].
A number of similar studies, but for iron nanoparticles in a PCA-PEG HBP matrix, were
carried out by Niknejad et al. [82] and Khann et al. [83].

An analysis of the works on this indicator shows that the characteristics of the
nanophase morphology represent the most complete way to obtain the nanoparticles of
magnetite and a natural stabilizer. At the same time, it is no less important to understand the
processes of the formation of the Fe3O4 nanophase within the framework of one system, the
precursor of the iron nanoparticles and the stabilizer, depending on the synthetic approach
used. This will make it possible to optimize the synthetic process for obtaining magnetically
active polymer-stabilized Fe3O4 nanoparticles, taking into account their individual target
properties and the functional characteristics of the nanomaterial.

That is why the present work was aimed at revealing the relationship between the
synthesis approach and the chemical composition, morphology, and magnetic activity of
the iron oxides nanophase in a hyperbranched polymer matrix.

2. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3. Discussion

Polyester polyol of the second generation, as the first representative of the homologous
series, was chosen as the base polymer for this study [84]. In addition, the second generation
polyol is the closest in structure to dendrimers, which is useful when discussing the results.
As the Boltorn H series are polyesters in nature, this makes them biodegradable and
biosimilar materials (Figure S1), as evidenced by their LD50~2000 mg/kg [85].

This is what allows them and their derivatives to be positioned for biomedical appli-
cations. The methods of chemical reduction (ChemRed), the polyol thermolytic process
(TermRed), and the sonochemistry method (US) were selected as the most accessible and
widespread for the synthesis of polymer-stabilized iron-based nanocomposites. The meth-
ods of chemical reduction, the thermolysis method, and the sonochemistry method were
chosen as the most accessible and widely used methods for the synthesis of polymeric
stabilized iron nanoparticles. Additionally, for the synthesis of a composite nanomaterial,
a hybrid synthesis method was used (US/TermRed), which combines the simultaneous
ultrasonic and thermal effects on the system for the formation of nanocomposites.

3.1. Synthesis of Iron-Based Composite Nanomaterials

The method of reduction in solution without the use of heating is convenient in techni-
cal and laboratory performance, as well as for the quantitative evaluation of products. The
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data [79] showed that the maximum sorption of metal ions by a branched polyester polyol
is determined by the concentration of the terminal OH groups of the polymer. Therefore,
a ratio of νOH:νFe2+ = 1:1 was chosen for the synthesis. In a previous work, [79] showed
that the maximum sorption of metal ions by a branched polyester polyol is determined by
the concentration of the terminal OH groups of the polymer. Therefore, a ratio of 1:1 was
chosen for the synthesis.

By the ChemRed method, when the reducing agent is added color transitions of the
solution are observed: the formation of a black, fine precipitate around a drop of hydrazine
hydrate, which then turns into a green-blue suspension, changing color to lemon, and then
to dark yellow. The end of the reaction was determined by the establishment of a stable,
light cream color of the reaction mixture (Figure S2A). The total time for the synthesis of the
nanocomposites by chemical reduction in a solution of ChemRed-NP powder was 30 min.

The color transitions observed during the synthesis indicate the formation of the
following compounds in the system:

Fe2+/BH20 + N2H4 × H2O = Fe0/BH20 (black) + N2 + 2H2 + H2O (1)

Fe0 + 2H2O + O2 = 2Fe(OH)2/BH20 (green) (2)

Fe(OH)2/BH20 = FeO/BH20 + H2O (3)

4Fe(OH)2/BH20 + O2+ (2n − 4)H2O = 2Fe2O3 × H2O/BH20 (4)

The synthesis of TermRed-NP nanocomposites was carried out by reducing the pre-
cursor compound in a hyperbranched polyester polyol medium. To reduce the viscosity of
the melt and increase the rate of the diffusion processes, DMSO was added as an additional
solvent. The reduction process of Fe(II) HBP was carried out by heating the reaction system
with a step of 5 ◦C. The heating step was 9 h, and the total synthesis time to stabilize the
reaction mixture was 12 h. It can be assumed that, at the first stage of the reaction, the Fe(II)
ions are preorganized in the polyol matrix with the formation of localized coordination sites.
Ion binding can be carried out by the oxygen atoms of the peripheral ester and deproto-
nated hydroxyl groups of the polymer. With a further increase in temperature, a reduction
stage occurs with the formation of polyol-stabilized nanoparticles. The nanocomposites
obtained by the method of thermal reduction, TermRed-NP, in a solution of FeSO4 as a
precursor, could not be isolated in the solid phase. The colors of the obtained material,
TermRed-NP, are shown in the ESI (Figure S2B).

To avoid the use of toxic pentacarbonyl, a hybrid synthesis method based on iron
sulfate 2 was proposed. Its essence lies in the most complete distribution of iron ions due to
ultrasonic treatment, followed by reduction to nanoparticles by the polyol method. As the
stage of the preorganization of the nanocomposites occurs under the action of ultrasound,
the synthetic mixture was heated in one stage to 189 ◦C. The colors of the obtained material,
US/TermRed-NP, are shown in the ESI (Figure S2C).

The ultrasonic method of obtaining a composite material (US-NP) does not apply to
recovery. Ultrasonic treatment of the solution destroys the least stable component of the
reaction mixture, in our case iron pentacarbonyl. After that, individual Fe0 atoms and
clusters are stabilized by HBP in the form of nanoparticles. However, due to the small size
and faster growth and stabilization processes, as well as the use of water as a solvent, the
obtained nanocomposites do not have a uniform composition, which will be shown below.
The colors of the obtained material, US-NP, are shown in the ESI (Figure S2D).

3.2. Characterization of Iron-Based Composite Nanomaterials by Microscopy

Using the TEM method, it was proved that the obtained samples of polymer composite
materials contain a metal nanophase. Figure 1 shows the TEM images of the obtained particles
in situ. For the TermRed-NP sample, it was not possible to obtain good TEM images due
to the boiling of the sample during the measurement. For the TermRed-NP sample, it
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was not possible to obtain good TEM images due to the boiling of the sample during the
measurement.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 19 
 

 

3.2. Characterization of Iron-Based Composite Nanomaterials by Microscopy 
Using the TEM method, it was proved that the obtained samples of polymer compo-

site materials contain a metal nanophase. Figure 1 shows the TEM images of the obtained 
particles in situ. For the TermRed-NP sample, it was not possible to obtain good TEM 
images due to the boiling of the sample during the measurement. For the TermRed-NP 
sample, it was not possible to obtain good TEM images due to the boiling of the sample 
during the measurement. 

 
Figure 1. TEM image of particles ChemRed-NP (A), US/TermRed-NP (B), US-NP (C) with inserts 
of histogram of particle size distribution. 

As was written in the synthesis section, the nanocomposites obtained by thermal re-
duction in the FeSO4 solution as a precursor could not be isolated in the solid phase. In 
addition, due to the synthesis in a high-boiling solvent, the sample could not be charac-
terized by microscopic examination methods, since heating by an electron beam in a high 
microscope vacuum leads to the evaporation of the solvent together with the nanocom-
posites and the destruction of the sample holder (Lacey carbon). 

Regardless of the production method, particles of a composite material of a spheroi-
dal shape were formed. The average diameter of a metal-containing nanophase in the re-
action medium was ~30 nm, and in the polymer fraction, it was −170 nm. The US/Term-
Red-NP sample (Figure 1B) had the narrowest particle size distribution. Regardless of the 
method of preparation, the particles of a composite material of a spheroidal shape were 
formed. The average diameter of the metal nanophase in the reaction medium was ~30 
nm, and in the polymer fraction, it was −170 nm. The US/TermRed-NP sample (Figure 1B) 
had the narrowest particle size distribution. 

Scanning electron microscopy data were obtained for all the samples after purifica-
tion (Figure 2). 

Figure 1. TEM image of particles ChemRed-NP (A), US/TermRed-NP (B), US-NP (C) with inserts of
histogram of particle size distribution.

As was written in the synthesis section, the nanocomposites obtained by thermal reduc-
tion in the FeSO4 solution as a precursor could not be isolated in the solid phase. In addition,
due to the synthesis in a high-boiling solvent, the sample could not be characterized by
microscopic examination methods, since heating by an electron beam in a high microscope
vacuum leads to the evaporation of the solvent together with the nanocomposites and the
destruction of the sample holder (Lacey carbon).

Regardless of the production method, particles of a composite material of a spheroidal
shape were formed. The average diameter of a metal-containing nanophase in the reaction
medium was ~30 nm, and in the polymer fraction, it was −170 nm. The US/TermRed-NP
sample (Figure 1B) had the narrowest particle size distribution. Regardless of the method
of preparation, the particles of a composite material of a spheroidal shape were formed.
The average diameter of the metal nanophase in the reaction medium was ~30 nm, and in
the polymer fraction, it was −170 nm. The US/TermRed-NP sample (Figure 1B) had the
narrowest particle size distribution.

Scanning electron microscopy data were obtained for all the samples after purification
(Figure 2).

The ChemRed-NP sample is represented by spherical aggregated particles with a di-
ameter of 30 ± 5 nm, which correlates with the in situ TEM data. The TermRed-NP sample
is similar in morphology but contains two fractions of particles with a diameter of up to
50 nm and 85 ± 10 nm.

The US/TermRed-NP and US-NP samples self-assemble into dendritic structures on
the substrate surface. The sizes of the individual particles forming a fractal are identical
to those in the reaction mixture and are 25/55 nm and 25 nm for US/TermRed-NP and
US-NP, respectively. Confirmation of the statistical significance of the structures presented
in Figure 2C,D are presented in the ESI section (Figures S3 and S4).
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3.3. Stabilization and Composition of Iron-Based Nanomaterials

Establishing the nature of the nanocomposite stabilization centers in the structure of a
branched polymer is one of the most important characteristics of a nanomaterial. The most
convenient method for solving this problem is the IR-Fourier spectroscopy method [79].
Figure 3 shows the IR spectra of a branched polyester polyol BH20 and the iron-based
composite nanomaterials based on it.
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The parameters of the IR spectrum of polyester polyol at room temperature and after
heating were described in detail in the work of [86]. In the IR spectrum of the ChemRed-NP
sample (Figure 3), strong changes were observed: the bands of the stretching and deforma-
tion vibrations of the bound and free OH groups were not pronounced, or were significantly
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decreased, in the region of 3560 cm–1 (νOH free), 3450, 3350, 3250 cm−1 (νOH H-bonded), and
1304 cm−1 (δOH H-bonded); there were also stretching vibrations of the C=O ester groups at
1728 cm−1 (νC=O free) and 1688 cm−1 (νC=O H-bonded) and stretching vibrations of C-O and
O-C ester groups at 1232 cm−1 (νester C-O) and 1166 cm−1 (νester O-C). It can be assumed
that the stabilization of the particles of the metallic phase occurs due to the terminal OH
groups and ester fragments -O-C(O)-. The appearance of a new band in the region of
~1630 cm−1 (Figure S5B) is due to the presence of water in the composition of the com-
posite material, which can participate in the hydration of the C=O ester groups of [86].
The result of the partial hydration of the matrix polyester polyol is the formation of carboxyl
groups. In the spectrum of the nanomaterial, there is a shift of these bands to the region of
1605 cm−1 (νCOOH H-bonded) and 1575 cm−1 (νCOO-as), which indicates their participation
in the stabilization of the metal phase.

In the IR spectrum of the TermRed-NP sample (Figure 3), the intensity of the bands of
the stretching vibrations of the free and bound OH groups in the region of 3200–3600 cm−1

increased. The intensity of the band of free C=O groups at 1728 cm−1 and a shift H-linked
C=O groups up to 1645 cm−1 was observed. These data indicate the participation of the
peripheral OH groups and carbonyl groups of the ether fragments of the polymer in the
stabilization of the iron nanophase.

For the US-NP sample, there was a significant decrease in the intensity of the bands
of the stretching vibrations of the OH groups and the disappearance of the band of the
stretching vibrations of the H-bonded C=O group of ester fragments (Figure S5D). It can be
assumed that the centers of stabilization of the iron nanophase in the polymer are similar
to those of the TermRed-NP sample.

In the case of US/ThermRed-NP, there is a decrease in the intensity of the bands of the
stretching vibrations of the OH-groups and a change and shift of the bands of the vibrations
of the characteristic groups of the ester fragment in the region of 1728–1255 cm−1, including
the hydration process. The data indicate the identity of the nanophase stabilization centers
in the ChemRed-NP and US/TermRed-NP samples.

The doping of the hyperbranched polyester polyol matrix with iron nanocomposites
should lead to the effect of the doping of the composite material. The data of the TG
analysis of the powdered samples of the nanocomposites (Figure 4) indicate that only the
US-NP sample has the effect of doping with a metal phase. For the ChemRed-NP and
US/TermRed-NP samples, the effects of mass change up to 5% in the range of 75–120 ◦C
are due to the loss of the bound H2O (confirmed by IR data). An increase in temperature
in the range of 140–190 ◦C leads to a significant weight loss, which is associated with the
destruction of the polymer matrix.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 4. TG analysis of hyperbranched polyester BH20 and samples of ChemRed-NP, US/Term-
Red-NP, and US-NP. 

XRD analysis was used to evaluate the composition of the iron nanophase in the syn-
thesized samples of the composite material. The X-ray diffraction of polyol BH20 had one 
peak at 2θ = 17.6 (Figures S6 and S7). The authors showed that the polymer stabilizer has 
a close packing of chains; the distance between the chains is 0.509 nm. The number and 
thermal stability of the -OH...-OH hydrogen bonds are higher than those of the -OH...O-
C < H-bonds. The TermRed-NP sample was not isolated as a powder since it has a high 
colloidal stability. This state may be due to the high content of the polymer phase. There-
fore, XRD analysis was performed only for the three samples of ChemRed-NP, US/Term-
Red-NP, and US-NP. As can be seen from the XRD spectrum (Figure 5A), the metal 
nanophase in ChemRed-NP contains almost all the types of iron oxides.  

 
Figure 5. XRD spectra of (A) ChemRed-NP; (B) US/TermRed-NP; (C) US-NP. 

In the case of US-NP (Figure 5C), the diffraction pattern contains the α-Fe0 reflection 
at angles of 2θ = 45 and 82, as well as signals from the oxide phase. It can be assumed that 
the metal phase nanocomposites have a core (Fe0)–shell (iron oxides) structure. Upon 
passing to the nanomaterial obtained by the US/TermRed-NP hybrid method (Figures 5B 
and S8), a significant decrease in crystallinity is observed. On the diffraction pattern, only 
the broadened signal of magnetite can be distinguished at angles of 2θ = 62. 

Our conclusions on the nature of the metallic phase are confirmed by Mössbauer 
spectroscopy data (Figure 6). 

 

Figure 4. TG analysis of hyperbranched polyester BH20 and samples of ChemRed-NP, US/TermRed-
NP, and US-NP.
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one peak at 2θ = 17.6 (Figures S6 and S7). The authors showed that the polymer stabilizer
has a close packing of chains; the distance between the chains is 0.509 nm. The number and
thermal stability of the -OH...-OH hydrogen bonds are higher than those of the -OH...O-C
< H-bonds. The TermRed-NP sample was not isolated as a powder since it has a high
colloidal stability. This state may be due to the high content of the polymer phase. Therefore,
XRD analysis was performed only for the three samples of ChemRed-NP, US/TermRed-NP,
and US-NP. As can be seen from the XRD spectrum (Figure 5A), the metal nanophase in
ChemRed-NP contains almost all the types of iron oxides.
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In the case of US-NP (Figure 5C), the diffraction pattern contains the α-Fe0 reflection
at angles of 2θ = 45 and 82, as well as signals from the oxide phase. It can be assumed
that the metal phase nanocomposites have a core (Fe0)–shell (iron oxides) structure. Upon
passing to the nanomaterial obtained by the US/TermRed-NP hybrid method (Figure 5B
and Figure S8), a significant decrease in crystallinity is observed. On the diffraction pattern,
only the broadened signal of magnetite can be distinguished at angles of 2θ = 62.

Our conclusions on the nature of the metallic phase are confirmed by Mössbauer
spectroscopy data (Figure 6).
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The spectra obtained at room temperature are presented in the ESI section (Figures S9–S11).
As can be seen in Figure 6C, the core-shell metal phase is present only in the US-NP sample,
which confirms the XRD data. The shape of the spectrum indicates small particle sizes. The
spectra of the ChemRed-NP and US/TermRed-NP nanocomposites contain only the signals
of the oxidized forms.

3.4. Magnetic Properties of Iron-Based Composite Nanomaterials in Solid State and Solution

MRI is currently the most convenient, common, and complete diagnostic method. As
contrast agents are primarily supplied through the blood, they must have two key characteris-
tics: they must be magnetically susceptible and non-toxic, primarily to the blood. First of
all, we checked the magnetic susceptibility of the obtained materials; Figure 7 shows the de-
pendencies of the magnetization of the samples on the magnitude of the external magnetic
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field (A, B, and C) and the dependencies of the magnetic susceptibility on temperature at
an external magnetic field of 20 Oe (D, E, F) in the obtained materials.
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As can be seen in Figure 7, the ChemRed-NP, US/TermRed-NP, and US-NP samples at
a temperature of 7 K have a coercive force of 100, 30, and 200 Oe, a remanent magnetization
of 0.03, 0.05, and 0.0038 emu × g−1, and saturation magnetization hysteresis loops of 2.58,
5.77, and 0.107 emu × g−1, respectively.

The temperature dependence of the susceptibility in the FC mode of the samples
increases with the decreasing temperature in accordance with the Curie–Weiss law, with
critical temperatures of −13, −3, and −6 K, which indicates a ferrimagnetic phase.

The translation and preservation of the material properties from the solid phase to the
solution is one of the most difficult tasks of the science of materials. If we want to use the
resulting magnetic nanocomposites as an MRI contrast agent, then they must retain their
magnetic characteristics in solution. To do this, all the obtained nanocomposites were re-
peatedly transferred to the solution; water-retaining DMSO was used as a solvent. Figure 8
shows the curves of magnetic relaxation in a solution of the obtained nanocomposites.
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The data obtained confirm that ChemRed-NP and US-NP retain their magnetic prop-
erties after solidification and are classified as ferrimagnets (Figure 8), which would allow
them to be used as contrast agents for magnetic tomography.
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3.5. Aggregation Properties of Iron-Based Composite Nanomaterials

The further use of iron-based nanocomposites in biomedicine requires information on
the morphology of the particles of the dispersed phase in solution. The NTA method was
used to evaluate the behavior of the synthesized nanocomposites in an aqueous solution.
(Figure 9).
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Figure 9. NTA analysis of nanocomposites dispersion: (A) ChemRed-NP (RMSE = 0.9995; χ2 =
7.6 × 10−4); (B) TermRed-NP (RMSE = 0.9998; χ2 = 1.5 × 10−4); (C) US/TermRed-NP (RMSE
= 0.9999; χ2 = 3.3 × 10−5); (D) US-NP (RMSE = 0.9993; χ2 = 6.5 × 10−4) in aqueous solutions
(cNP = 0.1 mg·mL−1).

The NTA method showed that in a BH20 solution with a concentration of 0.1 mg·mL−1

there were two types of closely related associates, with a hydrodynamic diameter of 150± 8 nm.
As can be seen in Figure 9, when redispersed all the colloidal solutions contain a fraction of
the free polymer aggregates, which are formed during the desorption of the weakly bound
polymer molecules from the surface of the nanocomposite. The concentration (in particles×
mL−1) of free BH20 aggregates increases in the series ChemRed-NP (1.8 × 106) < TermRed-
NP (3.2 × 106)~US/TermRed-NP (3.0 × 106) < US-NP (4.4 × 106) (Figures S12–S15). The
average hydrodynamic diameter of the ChemRed-NP particle aggregates is slightly smaller
compared to the particle aggregates obtained by the other methods. Detailing the NTA data
showed that the aqueous dispersions of all the synthesized composites contain two types
of metal–polymer aggregates, with the hydrodynamic diameters Dh(mode) of 27 and 40, 77
and 118, 50 and 80, and 35 and 52 nm for the ChemRed-NP, TermRed-NP, US/TermRed-NP,
and US-NP samples, respectively (Figure 9).

Thus, the distribution of the nanocomposites in the solid phase obtained by TEM and
SEM correlates with the distribution of the nanocomposites in solution (Table 1).
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Table 1. Dependence of the size (Dh) of a particle of iron-based composite nanomaterials obtained by
various methods, according to NTA, SEM data, and their concentration in a solution.

Sample Dh(mean) by NTA;
(nm)

Dh(mode) by NTA;
(nm) D by SEM; (nm) Total Particle Concentration in

Solution; (Particles ×mL−1)

ChemRed-NP 133 ± 7 27, 40 25 6.24 × 108

TermRed-NP 172 ± 2 77, 118 50, 85 4.92 × 108

US-NP 169 ± 6 50, 80 30, 55 1.25 × 109

US/TermRed-NP 168 ± 4 35, 52 25 6.03 × 108

The data obtained are useful for the development of the nanocomposite solubilization
techniques.

3.6. Hemolytic Activity Assay

The main route of administration of contrast agents is intravenous. Because of this, the
blood is exposed to the strongest toxicological effects. In order to confirm the applicability
of the obtained composite materials for biomedical use, their hepatotoxicity was evaluated
(Figure 10).
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Figure 10. Hemolysis of the ChemRed-NP, TermRed-NP, US/TermRed-NP, and US-NP.

It was found that in the concentration range of 0.001–1 mg·mL−1, the composite
ChemRed-NP, TermRed-NP, and US-NP nanocomposites had low hemolytic activity. The
minimum average value of hemolytic activity of 2.2± 1.9% was observed for the TermRed-NP
sample, with a particle size in the iron nanophase of 50 nm. The ability to cause hemolysis
slightly increases with a rise in the diameter of the nanocomposites to 25 nm, and it was
6.6 ± 1.8% and 5.5 ± 2.2% for the samples of ChemRed-NP and US-NP, respectively. The
US/TermRed-NP is not hemotoxic in the concentration range of 0.001–0.2 mg·mL−1. A rise
in concentration leads to an increase in hemotoxicity of up to 45%.

4. Materials and Methods
4.1. Materials

As precursors for the synthesis of the nanoparticles of the iron compounds, we used
FeSO4·7H2O (Alfa Aesar GmbH. Kandel, Germany), Fe(CO)5 (mass fraction of the main
substance 99.99%, Sigma Aldrich, Darmstadt, Germany), and Boltorn hyperbranched
polyester polyols H series (Perstorp Specialty Chemicals AB, Perstorp, Sweden): H20 (CAS
no: 326794-48-3, lot. 369087, 16 hydroxyl groups, Mr (theor) = 1749 g·mol−1, hydroxyl
number 490–520 mg KOH × g−1) (Figure S1). As solvents for the synthesis and isolation of
iron-containing nanocomposites, organic solvents were used: ethanol, DMSO, methanol,
diethyl ether, and acetone, purified according to the standard procedures.
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4.2. Synthesis Methods
4.2.1. Chemical Reduction (ChemRed-NP)

Boltorn H20 (νOH = 6.13 × 10−3 mol) was dissolved by stirring in 6 mL of an aqueous
ethanol solution at room temperature. Then, a solution of 1.73 g (νFe2+ = 6.22 × 10−3 mol)
FeSO4·7H2O was added dropwise in 6 mL of a water–ethanol solution; the salt–polymer mix-
ture was stirred for 20 min. Then, 1 mL of N2H4·H2O was added until a stable light brown
color appeared, and the reaction mixture was centrifuged (v = 14,000 rpm, t = 10 min). The
resulting powder composition containing iron nanocomposites was freed from the solvents
by reprecipitation in diethyl ether. The supernatant, also containing polymer-stabilized
nanocomposites of iron compounds in solution, was an independent sample and was used
for the study (Figure S2A).

4.2.2. Polyol Thermolytic Process (TermRed-NP)

The Boltorn H20/FeSO4·7H2O ratio was νOH = 6.13 × 10−3 mol/νFe2+ = 6.05 × 10−3

mol. The samples were dissolved in 25 mL of preliminarily purified DMSO; then, the reaction
mixture was boiled at 189 ◦C for 12 h. To the cooled mixture was added a 25 mL solution
of H2O/0.1 M HCl (1:1) to prevent hydrolysis. The resulting brown-yellow slurry was
centrifuged (Figure S2B). After the precipitate was redispersed in ethanol (98%) and cen-
trifuged, the procedure was repeated three times. Despite the procedures performed, it
was not possible to remove the DMSO from the obtained material.

4.2.3. Hybrid Ultrasonic/Thermolytic (US/TermRed-NP)

The Boltorn H20/FeSO4·7H2O ratio was νOH = 6.13 × 10−3 mol/νFe2+ = 6.05 × 10−3

mol; it was dissolved in preliminarily purified DMSO, and 6.05 × 10−3 mol Fe(CO)5 was
added into the solution by stirring. The resulting mixture was sonicated for two hours in
pulse mode 2/2 with stirring. After ultrasonic treatment, the mixture was boiled for 4 h
at 189 ◦C and was added to a 25 mL solution of H2O/0.1 M HCl (1:1). The light yellow
suspension was formed (Figure S2C) and then centrifuged. The precipitate was redispersed
in ethanol (98%) and centrifuged; the procedure was repeated three times.

4.3. Ultrasonic (US-NP)

A weighed portion of BH20 (νOH = 6.13 × 10−3 mol) was dissolved in a 50% ethanol/
water solution by stirring and subjected to ultrasonic treatment in an argon atmosphere, on
an ultrasonic bath. Then, Fe(CO)5 (νFe0 = 6.05× 10−3 mol) was added dropwise to the system
and sonicated until a stable color was established. After adding the FeCO5 solution, 95.5 kJ
of energy was transferred for 6 h, in a 2/2 pulse mode, by a probe ultrasonic homogenizer,
by Sonics VCX-750. The resulting mixture was centrifuged, and a yellow precipitate
was obtained (Figure S2D). Then, the precipitate was redispersed in ethanol (98%) and
centrifuged. This procedure was repeated 3 times.

4.4. Characterization Methods

The scanning electron microscopy (SEM) images were acquired with the field-emission
high-resolution scanning electron microscope Merlin from Carl Zeiss (Jena, Germany) at
an accelerating voltage of incident electrons of 5 kV and a current probe of 300 pA. The
transmission electron microscope (TEM) imaging was carried out in the transmission
electron microscope Hitachi HT7700 (Tokyo, Japan) Excellence at an accelerating voltage of
100 kV in the TEM mode.

The powder X-ray diffraction (XRD) was acquired with the Bruker D8 Advance (Bruker
Corp., Billerica, MA, USA) with Cu Kα irradiation (λ = 1.5418 Å) in the Bragg–Brentano
geometry; the rate was 0.18◦/min; the range of the 2θ angle was from 7◦ to 100◦; the step
was 0.015◦.

Simultaneous TG analyses were performed using a thermal analyzer STA 449 C Jupiter
(Netzsch, Germany) with the temperature rate of 10 K × min−1 in an argon atmosphere
with the total flow rate of 20 mL·min−1. The analysis was performed in a temperature range
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of 30–900 ◦C in a Pd/Rh crucible with a volume of 40 µL with a lid with 1 hole with a
diameter of 0.5 mm at constant heating rates (10 K ×min−1 and 4 K ×min−1).

The Mössbauer effect measurements were carried out at room temperature, using a
conventional constant-acceleration spectrometer, produced by WissEl (Germany). A com-
mercial Mössbauer source of 57Co in a rhodium matrix (Ritverc isotope products, Saint
Petersburg, Russia), with an activity of about 40 mCi, was used as the γ -radiation source.
Low-temperature measurements were carried out with a continuous flow cryostat (model
CFICEV from ICE Oxford, Oxford, UK), equipped with Cryo-Con temperature controller
(Model 32B); the sample temperature was kept with an accuracy of ±0.1 K. The absorber
was prepared by uniformly packing the sample under study into a holder closed by thin
aluminum foil. The experimental spectra were least-squares fitted with the assumption
that the line shapes were Lorentzian to yield the hyperfine parameters, namely the isomer
shift (IS), quadrupole splitting (QS), and hyperfine field (HHF). A metallic-iron foil at RT
was used for the velocity calibration of the Mössbauer spectrometer. The isomer shifts were
referred to α-Fe at RT.

The colloidal properties were studied by the Nanoparticle Tracking Analysis (NTA)
method on a NanoSight LM − 10 instrument (Malvern Panalytical, Malvern, England). The
CMOS camera C11440-50B with an image capture sensor FL-280 from Hamamatsu Photon-
ics (Hamamatsu, Japan) was used as a detector. The measurements were carried out in a
special cuvette for aqueous solutions, equipped with a laser with a wavelength of 405 nm
(CD version S/N 2990491); the O-ring was made of Kalrez material. The temperature in the
chamber was determined using a contact thermometer OMEGA HH804 (Engineering Inc.,
Norwalk, CT, USA) for all measurements. For the spectra fitting, the OriginPro program
package was use; the Gauss function was used throughout.

The magnetic properties of the iron nanocomposites were measured using a PPMS-9
(Quantum Design, San Diego, CA, USA) equipped with a sample vibration magnetometer
(VSM). Zero-field-cooling (ZFC) and field-cooling (FC) measurements were performed in
a 20 Oe magnetic field at the temperature range of 7–300 K. The field dependences of the
magnetization were measured at 7 K in the magnetic field range from −1 T to 1 T.

The proton spin-spin (transverse) relaxation times T2 were measured using the pulsed
NMRrelaxometer Minispec MQ20 from Bruker (Bruker Corp., Billerica, MA, USA), with
the operational frequency of 19.65 MHz, by applying the standard Carr–Purcell pulse
sequence modified by Meiboom and Gill with a measuring accuracy error smaller than 3%.
The experimentally measured relaxation times, (T2)obs, were inverted into the relaxation
rates, (1/T2)obs. The relaxation rate is the sum of the two main contributions: the relax-
ation of protons in the bulk solvent (1/T2)d (diamagnetic component) and the relaxation
of the protons located in the first coordination sphere of the paramagnetic ion (1/T2)p
(paramagnetic component): (1/T2)obs = (1/T2)d + (1/T2) [87].

4.5. Hemolysis Assay

The hemolysis assay was performed according to the method in [88]. Blood from
healthy donors was obtained from the blood donor center in Kazan and was anticoagulated
with 3% sodium citrate. The erythrocytes were separated from the plasma and leukocytes
by centrifugation (5000× g, 5 min) at 4 ◦C and washed three times with phosphate-buffered
saline (PBS). They were used immediately after isolation. To study the effects of the
nanocomposites on hemolysis, the red blood cells (RBC) were suspended in polymer
solutions in PBS at a hematocrit of 1% and incubated for 0.5 h at a temperature of 20 ◦C.
The incubated suspensions were centrifuged at 1000× g for 5 min. For reference, the RBC
were treated with double-distilled water, which effects 100% hemolysis. The hemolysis
(%) was determined from the released hemoglobin in the supernatants and measured
spectrophotometrically by absorbance at 540 nm [89]:

Hemolysis [%] =
A−A−
A+ + A−

× 100%
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where A is the optical density of the RBC incubated with nanocomposites, A− is the
optical density of the sample in PBS, and A+ is the optical density of the RBC in water
(100% hemolysis). The nanocomposites themselves contributed no more than 0.1% of the
absorbance at 540 nm. The results are expressed as mean ± standard deviation, n = 5.

5. Conclusions

The paper considers four approaches (the chemical reduction method—ChemRed,
the polyol thermolytic process—TermRed, the sonochemistry method—US, and the hy-
brid sonochemistry/polyol process method—US/TermRed) to the formation of an iron
nanophase in a matrix of hyperbranched polyester polyols. The dendrit-like branched
polyester polyol exhibits the properties of a reliable stabilizer of iron nanocomposites,
and in the polyol process and the hybrid method, it also acts as a reducing agent. The
stabilization of the iron nanophase occurs due to the interaction with the ester -O-C(O)-
of the inner hydrophobic core and the OH groups of the hydrophilic shell of the polyol in
the ChemRed and hybrid US/TermRed methods. The application of the TermRed and US
methods gives stabilization not on the whole ester fragment, but only through its carbonyl
C=O group at the periphery of the macromolecule. This leads to the thermal doping of the
nanomaterial obtained by sonochemistry. The size and composition of the iron nanophase
in the polyester polyol matrix can be controlled by choosing the synthesis method. Iron
oxide particles with a diameter of 25 nm can be obtained in the ChemRed and US/TermRed
methods. Carrying out high-temperature synthesis by the TermRed and US/TermRed
methods leads to an increase in the diameter of the iron-based nanophase up to 50 nm.
The use of sonification makes it possible to achieve the composition of the nanophase core
(Fe0)–shell (iron oxides) with better dispersion characteristics and leads to the formation of
dendritic composite architectures on the surface.

The authors suggest that the magnetic properties of the synthesized metal–polymer
composites are determined primarily by the nature and mass fraction of the iron nanophase.
So, in TermRed-NP the proportion of polymer was high, which did not allow them to be
isolated from the colloid solution. The XRD profile for US/TermRed-NP may be indicative
of an amorphous sample containing minor amounts of low-sized iron clusters. Therefore, the
magnetic activity of this sample in the powder and the colloidal solution is low. According
to the XRD data, the ChemRed-NP and US-NP samples have a sufficiently crystallized
iron nanophase. This can lead to an increase in the residual magnetization by an order
of magnitude. In addition, US-NPs containing Fe0 in the metal nanophase (in the core)
have a higher magnetic activity than ChemRed-NPs, in which the metal nanophase is
only magnetite.

All the synthesized composite particles are able to form colloidally stable systems, are
ferrimagnets, and retain their magnetic properties after repeated dissolution. The most
technologically and practically significant methods, in our opinion, are the methods of the
chemical and sonochemical synthesis of composite magnetically active materials containing
iron nanoparticles and hyperbranched polyester polyols. The synthesis of magnetoactive
materials using the polyol process (TermRed and US/TermRed) has significant prospects.
It has been shown for the first time that hyperbranched polyester polyols can act both as a
reducing agent and as a stabilizer in the one-pot synthesis of nanomaterials. Experimental
work in this project will continue.

The conducted experiments on hematotoxicity and relaxation NMR show the funda-
mental possibility of using a magnetically active composite material obtained by ultrasonic
synthesis as the basis of contrast agents for tomography.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232314764/s1.
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