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Abstract: Because of the widespread acetaminophen usage and the danger of harmful overdosing
effects, developing appropriate procedures for its quantitative and qualitative assay has always
been an intriguing and fascinating problem. A quick, inexpensive, and environmentally friendly
approach based on direct voltage anodic graphite rod exfoliation in the presence of inorganic salt
aqueous solution ((NH4)2SO4–0.3 M) has been established for the preparation of nitrogen-doped
graphene (exf-NGr). The XRD analysis shows that the working material appears as a mixture of few
(76.43%) and multi-layers (23.57%) of N-doped graphenes. From XPS, the C/O ratio was calculated
to be 0.39, indicating a significant number of structural defects and the existence of multiple oxygen-
containing groups at the surface of graphene sheets caused by heteroatom doping. Furthermore,
the electrochemical performances of glassy carbon electrodes (GCEs) modified with exf-NGr for
acetaminophen (AMP) detection and quantification have been assessed. The exf-NGr/GCE-modified
electrode shows excellent reproducibility, stability, and anti-interfering characteristics with improved
electrocatalytic activity over a wide detection range (0.1–100 µM), with a low limit for AMP detection
(LOD = 3.03 nM). In addition, the developed sensor has been successfully applied in real sample analysis
for the AMP quantification from different commercially available pharmaceutical formulations.

Keywords: graphite electrochemical exfoliation; nitrogen-doped graphenes; modified electrodes;
acetaminophen electrochemical detection

1. Introduction

The need for effective over-the-counter medicine is rising daily. Acetaminophen (N-
acetyl-p-aminophenol, AMP), also known as paracetamol, an acylated aromatic amide,
the major metabolite of phenacetin and acetanilide, is among the most extensively used
medications worldwide, being recommended by the World Health Organization (WHO) as
first-line therapy in different pain conditions [1]. Both a painkiller and a fever reducer, since
its approval in 1951, acetaminophen has been available in a variety of forms, including:
suppositories, injections, normal pills, chewable tablets, capsules, suspension or solution,
effervescent tablets, and syrups. AMP is often employed in conjunction with opioids to
alleviate severe to moderate discomfort associated with backache, toothache, sore throat,
arthritis, headache, muscular pains, colds, flu, and fever [2]. At typical therapeutic con-
centrations, acetaminophen undergoes rapid conjugation with glutathione and is mainly
metabolized in the liver via first-order kinetics, producing both cysteine and mercapturic
acid conjugates [3]. However, AMP overdoes (consumption of a single dose greater than
7 g in an adult and 150 mg/kg in a child [4] can result in the build-up of toxic metabolites,
which can cause severe and occasionally deadly hepatotoxicity and nephrotoxicity [5]. Fur-
thermore, a variety of other medications have been reported to interact with acetaminophen,
increasing its toxicity [6–8]. As a consequence, AMP has been reported as one of the most
common sources of drug poisoning from either accidental or intentional overdose and is the
most prevalent drug-related cause of acute liver failure [9]. Additionally, it is responsible
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for numerous deaths and emergency department visits worldwide [10]. Thus, in order to
reduce any possible hepatotoxicity risk, healthcare practitioners are mandated to avoid pre-
scribing and distributing medications containing more than 325 mg AMP/dose [11]. Under
these circumstances, caution is necessary, and the most important factor in acetaminophen
toxicity is prevention. Therefore, the development of effective, sensitive, and straight-
forward analytical techniques for its detection is crucial for the medical management of
biological fluids (plasma, blood, and urine) as well as quality control of pharmaceutical
formulations. According to a literature review, in its pure form or in combination with
other medications, AMP was determined by different analytical tools, including: titrime-
try [12,13], spectrofluorimetry [14,15], spectrophotometry [16,17], gas chromatography-
mass spectrometry (GC-MS) [18], high-performance liquid chromatography (HPLC) [19],
high-performance thin layer chromatography [20], HPLC–MS/MS [21], micellar electroki-
netic capillary (MEC) [22], and flow injection chemiluminescence [23]. However, these
procedures are often expensive, sophisticated, and time consuming, and they require highly
qualified specialists to operate, severely restricting their wider utility. Electrochemical ap-
proaches, on the other hand, have several benefits, such as affordability, simplicity, rapidity,
and user friendliness, being preferred to classical analysis methods. Over the past decades,
a variety of materials have been employed as electrode modifiers in order to enhance AMP
detection: bismuth oxide nanoparticles [24], molecularly imprinted polymeric micelles [25],
electropolymerized-molecularly imprinted polypyrrole [26], poly(Patton and Reeder’s
reagent) [27], carbon nanotubes [28]; poly (L-Leucine)-layered carbon nanotube [29], multi-
walled carbon nanotube and β-cyclodextrin [30], nafion/TiO2-graphene [31], and graphene
oxide-Y2O3 nanocomposite [32].

Among all, carbon materials with heteroatom doping have generated a great deal of
attention in the creation of electrochemical sensors because of their extraordinary electro-
catalytic activity [33]. Numerous efforts have been made to add heteroatoms to graphene
sheets as an efficient way to modify their structure and characteristics [34]. Particularly
nitrogen doping has become a popular issue as a feasible way to enhance the graphene
properties since an active redox center might form when nitrogen atoms are present, caus-
ing pseudocapacitance to improve the specific capacitance of the materials [35]. Up to date,
a variety of chemical routes have been developed and employed for N-doped graphene
preparation, including chemical vapor deposition (CVD) [36], thermal annealing [37], py-
rolysis [38], arc-discharge method [39], plasma treatment [40], hydrothermal method [41],
solvothermal method [42], microwave-assisted technique [43], wet chemical reaction [44],
and flame treatment [45]. However, the large-scale, economic, and easy preparation of
N-doped graphene material is still a challenge.

In this study, a one-step, eco-friendly electrochemical strategy for the synthesis of
nitrogen-doped graphene has been devised, and the applicability of the as-prepared mate-
rial in the acetaminophen electrochemical assay is presented. Compared to other reported
results on the same topic, the current study has the advantage of the easy, rapid, and
low-cost preparation method of electrode material since in situ homogeneous heteroatom
doping is achieved via directly adding nitrogen-containing compounds as electrolyte
solution during the electrochemical exfoliation of graphite rods.

2. Results and Discussion
2.1. Morpho-Structural Material Characterization

The N-doped graphene morphology was revealed by TEM/SEM micrographs (Figure 1a,b).
The flakes generally have large sizes (in the range of micrometers) and a silk-like appear-
ance with few wrinkles. The EDX mapping (Figure 1c) disclosed a uniform distribution of C,
O, and N elements on the graphene flake surface, validating the homogeneous heteroatom
doping. The dark lines visible in the TEM images account for the graphene sheets overlap-
ping and defects present in the carbon-based hexagonal structure. Due to the heteroatom
doping, the lone electrons pair of N atoms can detach the sp2-hybridized C atoms from
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their conjugated systems, and the activation of π electrons leads to charge distribution and
a certain surface defect degree [46], explaining the wrinkled surface.
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Figure 1. TEM/SEM micrographs corresponding to exf-NGr material (a,b); EDX mapping of C, O,
and N atoms (c).

XRD analysis provides valuable information regarding the exf-NGr sample composi-
tion and crystallinity (see Figure 2a). The material appears as a mixture of few-layer (FLG)
and multi-layer graphene (MLG) and the most intense features from the XRD pattern, lo-
cated at 21.76 and 26.45 degrees, correspond to (002) crystalline framework of FLG (76.43%)
and MLG (23.57%), respectively.
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Figure 2. The XRD diffraction pattern (a) and Raman spectrum (b) of exf-NGr material.

The XRD experimental data enabled the estimation of the number of layers (n), the
interlayer spacing (d), and the mean crystallite size (D). Using the Debye–Scherer equa-
tion [47], the D value for each peak was computed from the corresponding full width at
half maximum (FWHM). Further, the Bragg equation [48] was employed to determine the
d value, while the average number of layers, n, was calculated using the n = D/d relation
(see Table 1).
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Table 1. The XRD parameters of exf-NGr material.

2θ D d n %

FLG 21.76 13.28 4.08 3.25 76.43
MLG 26.45 93.06 3.37 27.61 23.57

As visible, the interlayer distance (3.37 Å) of MLG is slightly higher than that cor-
responding to pure graphite (3.34 Å), while for FLG, this value is even larger (4.08 Å)
since the electrochemical oxidation process of graphite in the presence of ammonium
sulphate increases the interplanar spacing generating the separation of graphene layers,
concomitant with in situ heteroatom doping. This leads to the attachment of functional
groups and defect formation. As a result, the final product is a blend of 3 and 27 layers of
N-doped graphenes, with a predominant proportion of a few layers. In addition, there is a
considerable difference between the crystallite sizes of FLG and MLG, from 13.28 nm to
93.06 nm.

Raman spectroscopy was further used to establish the samples’ composition and
crystallinity. As depicted in Figure 2b, the two spectral features located at 1352 cm−1 (D)
and 1588 cm−1 (G) are correlated to sp3 carbon domains and sp2 bonds in the graphitic
network, respectively [49]. The position of these bands is in agreement with other results
from the literature [50]. It is well known that the D band represents clear evidence for the
presence of structural defects, and the intensity ratio of D and G bands is a quantitative
measure of the disorder degree [51]. In our case, ID/IG equals 0.88, confirming the existence
of some structural instability that disrupts the translational symmetry of the hexagonal
graphene structure as a result of carbon hybridization by heteroatom–carbon bond for-
mation [52]. Furthermore, according to the empirical equation developed by Knight and
White [53], there is a strong correlation between ID/IG ratio and the in-plane crystallite
size (La): ID/IG = C(λ)/La, where C(λ) is a wavelength-dependent factor. For the exf-NGr
sample, the La value was determined to be 18.86 nm.

XPS analysis was employed as a valuable tool to analyse the surface composition
and chemical state of the N-doped graphenes. High-resolution XPS measurements cor-
responding to C, O, and N states are shown in Figure 3. Six components were found
by C 1s peak deconvolution (see Figure 3a and Table S1 from Electronic Supplementary
Materials). The major contributions centred at 284.21 eV and 285.23 eV correspond to sp2

and sp3 hybridized carbon atoms, respectively, whereas the other smaller intensity peaks
in the range of 286–290 eV are generated by C-O, O-C=O, C-N, C=O bonding. In the high
binding energy of the spectrum, a minor contribution assigned to the π→ π* shake-up
satellite band of graphitic carbons could be observed [54]. The sp2 carbon hybridization is
representative of the graphene-conjugated honeycomb lattice, while the presence of sp3

hybridized carbons indicates the replacement of N atoms, defects in graphene, or simply
the edges of the graphene nanosheets [50]. The presence of structural defects is further
confirmed by the deconvolution of O 1s states (Figure 3b and Table S1 from Electronic
Supplementary Materials) in the form of three different contributions assigned to carbon–
oxygen-bonded groups (C-O, C=O/O-C=O) and adsorbed water molecules. The C/O ratio
was determined to be 0.39, suggesting a high number of structural defects and, thus, the
presence of numerous oxygen-containing functionalities at the surface of graphene sheets
induced by heteroatom doping.
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Figure 3. Deconvoluted high–resolution XPS spectra of C1s (a), O 1s (b), and N 1s (c) states corre-
sponding to exf-NGr.

The existence of different carbon-nitrogen bonding types in the graphene lattice is con-
firmed by high-resolution N1s peak deconvolution (Figure 3c and Table S1 from Electronic
Supplementary Materials). Similar to other reports on N-doped graphenes [34,55], the
three distinct components centred at binding energies: 398.12 eV, 399.76 eV, and 401.57 eV
are associated with pyridinic, pyrrolic, and graphitic nitrogen contribution. The main
contribution accounting for 52.13% of the total nitrogen corresponds to pyrrolic, a state that,
of the aforementioned three N kinds, is responsible for enhancing the electrical properties
of doped graphene sheets by providing delocalized electrons [56]. The C/N ratio was
found to be 17.36, confirming a small doping degree.

2.2. Electrochemical Analysis
2.2.1. Modified Electrode Surface Area Determination

In order to evaluate the active areas of bare and modified GCE, their voltammetric be-
havior was tested using a standard 1 mM K4[Fe(CN)6] redox probe in 0.2 M KCl supporting
electrolyte at different scan rates from 2 to 100 mV/s. The registered cyclic voltammograms
show a reversible process on the modified electrode surface (see Figure S1a from Electronic
Supplementary Materials), and the anodic maximum plotted against the square root of
scan rate follows a linear regression equation defined as: Ip = 2.34·10−7 + 3.5·10−5 × υ1/2

(R2 = 0.998)—Figure S1b from Electronic Supplementary Materials. Further, the electrode
area was estimated using the Randles–Ševcik equation [57], obtaining several modified
electrodes values between 0.047 and 0.052 cm2, proving the immobilization of N-doped
graphenes at the surface of a glassy carbon electrode and the excellent reproducibility of the
electrode modification process. In all cases, the determined active area was considerably
higher than that corresponding to the bare electrode (0.028 cm2), indicating a larger current
response, which may lead to an increased sensitivity and a lower detection limit.

Using electrochemical impedance spectroscopy, the electrodes capacity for electron
transfer was examined. The EIS spectra for bare and graphene-modified electrode are
presented in Figure 4, along with the equivalent electrical circuit employed to fit the
experimental results (inset).
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Figure 4. Nyquist plot of the bare GCE (blue curve) and exf-NGr/GCE (red curve). Inset: The
electrical equivalent circuit employed to fit the experimental results.

The circuit contains the solution resistance (Rs), the charge-transfer resistance (Rct),
which characterizes the easiness of electron transfer at the electrode/solution interface,
the Warburg impedance (W), which characterizes the diffusion of the ions, and, finally,
a constant phase element (CPE), which replaces the double-layer capacitance, due to the
high porosity of the interface. As expected, there are marked differences between the two
spectra. For GCE, the Rct value is very high (36.5 kΩ) in contrast with that corresponding
to the exf-NGr/GCE-modified electrode (196 Ω). This indicates that the exf-NGr sample
not only increases the active area of the modified electrode but also accelerates the transfer
of electrons.

Based on the Rct value, the apparent heterogeneous electron transfer rate constant
(Kapp) for each electrode was calculated using the equation: Kapp = RT/n2F2ARctC [58],
where n is the number of electrons transferred during the redox reaction; F is the Faraday
constant (96,485 C/mol); R is the ideal gas constant (8.314 J/mol·K); T is the temperature
(298 K); A is the active area of the electrode (cm2); Rct is the charge-transfer resistance
(Ω); and C is the analyte concentration (mol/cm3). For bare GCE, Kapp was determined
to be 2.58 × 10−4 cm/s, while after exf-NGr immobilization, it increased almost 2 orders
of magnitudes (2.59 × 10−2 cm/s). The result further proved that exf-NGr material is an
excellent candidate for developing electrochemical sensors.

2.2.2. Acetaminophen Electrochemical Behavior at the Surface of exf-NGr/GCE

CV is a powerful method that depicts the material’s behavior in catalyzing the
molecule’s redox reaction. Figure 5 shows the pH influence across a range of 3.6 up
to 8 for AMP (100 µM) electrochemical behavior on the exf-NGr/GCE-modified electrode.
Well-defined anodic and cathodic waves were recorded at each pH value, denoting a quasi-
reversible electrochemical mechanism (Figure 5a). The results indicate that the anodic
peak intensity increases up to a maximum registered at pH 4.4 and then falls off when
the pH of the solution continues to rise (green curve from Figure 5b). Furthermore, the
protonation process was also evident since the peak potential changed toward negative
potentials as the pH increased. The slope of the anodic peak potential vs. pH plot was
found to be −52 mV/pH (blue curve from Figure 5b), close to the Nernstian theoretical
value of 59 mV/pH [59], indicating that proton transfer was present during the AMP
electrochemical redox process. Furthermore, one can conclude that an equal number of
electrons and protons are involved in the reaction [60], and a possible mechanism defined
by a quasi-reversible reaction was proposed (see Scheme 1) in accordance with previously
reported studies of Alam et al. [61], Hanabaratti et al. [62], and Mahmoud et al. [63].



Int. J. Mol. Sci. 2022, 23, 14866 7 of 19Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 5. (a) Voltammetric response of exf‒NGr/GCE surface in buffer solutions containing 100 µM 

AMP at different pH values (3.6, 4.4, 5.0, 6.0, 7.0, and 8.0); scan rate: 10 mV/s; (b) variation of the 

peak current with pH value (green curve) and linear dependence of peak potential vs. pH value 

(blue curve). 

 

Scheme 1. Suggested AMP electrochemical mechanism at the surface of the exf‒NGr/GCE‒

modified electrode. 

In order to determine if the AMP electrochemical oxidation at the surface of the 

exf-NGr/GCE-modified electrode is a diffusion or adsorption-controlled process, differ-

ent scan rates were employed. Thus, 100 µM AMP in pH 4.4 acetate was used as the test 

substance, and cyclic voltammograms were acquired, varying the scan rate between 2 

and 100 mVs−1 (see Figure 6a). The increase in scan rates resulted in a positive shift in the 

oxidation peak potential and a negative shift in the reduction peak potential. Further-

more, for both oxidation and reduction peak currents, a linear dependence with the scan 

rate could be observed, as shown in Figure 6b. 

 

Figure 6. CVs recorded in 100 µM AMP (pH 4.4) at various scan rates, from 2 to 100 mV/s (a); var-

iation of the anodic and cathodic peak currents with the scan rate (b). 

The scan rate-dependent behavior follows a linear regression equation defined as: Ipa 

= 3.70 × 10−6 + 3.07 × 10−4∙v (R2 = 0.991) and Ipc = −8.02 × 10−7 − 1.28 × 10−4∙v (R2 = 0.992) for the 

anodic and cathodic peak, respectively, confirming that AMP electrochemical reaction at 

the surface of exf-NGr/GCE-modified electrode is a surface-controlled process [64]. The 

quasi-reversible character of the AMP reaction, in which the rate of electron transfer be-

comes comparable to the mass transport rate, may be used to explain the positive shifting 

of the oxidation peak potentials and the negative shifting of the reduction peak potentials 

as the scan rate increases [65]. 

0.2 0.4 0.6 0.8 1.0

-6.0x10
-6

-3.0x10
-6

0.0

3.0x10
-6

6.0x10
-6

9.0x10
-6

1.2x10
-5

1.5x10
-5

7 6
8

5

4.4

 

 

I(
A

)

E(V) vs Ag/AgCl

3.6

a
3 4 5 6 7 8

6.0x10
-6

7.0x10
-6

8.0x10
-6

9.0x10
-6

1.0x10
-5

1.1x10
-5

1.2x10
-5

1.3x10
-5

R
2
 = 0.995

b
pH 4.4

 

 

 Ipa

 Epa

pH

Ip
a
 (

A
)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

E
p

a
 (

V
)

0.00 0.02 0.04 0.06 0.08 0.10
-2.7x10

-5

-1.8x10
-5

-9.0x10
-6

0.0

9.0x10
-6

1.8x10
-5

2.7x10
-5

3.6x10
-5

bR
2
 = 0.992

y = -8.02 x 10
-7

 - 1.28 x 10
-4

 x v

R
2
 = 0.991

y = 3.70 x 10
-6

  + 3.07 x 10
-4

 x v

 

 

 Ipa

 Ipc

Ip
 (

A
)

v (V/s)

0.2 0.4 0.6 0.8 1.0

-1.8x10
-5

-9.0x10
-6

0.0

9.0x10
-6

1.8x10
-5

2.7x10
-5

3.6x10
-5

4.5x10
-5

a

100 mV/s

 

 

I(
A

)

E(V) vs Ag/AgCl

2mV/s

Figure 5. (a) Voltammetric response of exf-NGr/GCE surface in buffer solutions containing 100 µM
AMP at different pH values (3.6, 4.4, 5.0, 6.0, 7.0, and 8.0); scan rate: 10 mV/s; (b) variation of the
peak current with pH value (green curve) and linear dependence of peak potential vs. pH value
(blue curve).
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Scheme 1. Suggested AMP electrochemical mechanism at the surface of the exf-NGr/GCE-
modified electrode.

In order to determine if the AMP electrochemical oxidation at the surface of the exf-
NGr/GCE-modified electrode is a diffusion or adsorption-controlled process, different
scan rates were employed. Thus, 100 µM AMP in pH 4.4 acetate was used as the test
substance, and cyclic voltammograms were acquired, varying the scan rate between 2 and
100 mVs−1 (see Figure 6a). The increase in scan rates resulted in a positive shift in the
oxidation peak potential and a negative shift in the reduction peak potential. Furthermore,
for both oxidation and reduction peak currents, a linear dependence with the scan rate
could be observed, as shown in Figure 6b.
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Figure 6. CVs recorded in 100 µM AMP (pH 4.4) at various scan rates, from 2 to 100 mV/s (a);
variation of the anodic and cathodic peak currents with the scan rate (b).

The scan rate-dependent behavior follows a linear regression equation defined as:
Ipa = 3.70 × 10−6 + 3.07 × 10−4·v (R2 = 0.991) and Ipc = −8.02 × 10−7 − 1.28 × 10−4·v
(R2 = 0.992) for the anodic and cathodic peak, respectively, confirming that AMP electro-
chemical reaction at the surface of exf-NGr/GCE-modified electrode is a surface-controlled
process [64]. The quasi-reversible character of the AMP reaction, in which the rate of elec-
tron transfer becomes comparable to the mass transport rate, may be used to explain the
positive shifting of the oxidation peak potentials and the negative shifting of the reduction
peak potentials as the scan rate increases [65].
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2.2.3. Calibration Curve and Limit of Detection

The electrochemical performances of exf-NGr/GCE-modified electrode toward AMP
(100 µM) were compared to those of bare GCE electrode (see Figure 7a), indicating a
considerable enhancement of the graphene-modified surface sensing abilities (five times
higher). The unmodified electrode shows a broad oxidation maximum centered at +688 mV
and a small reduction at +533 mV, while the modified electrode exhibits well-defined
oxidation and reduction peaks at 519 and 460 mV, respectively. Thus, the peak-to-peak
separation decreased from 155 mV for GCE to 59 mV in the case of exf-NGr/GCE. In
addition, the sensing performances of exf-NGr/GCE were investigated over a wide AMP
concentration range, 0.1–100 µM (see Figure 7b), and determining that the anodic peak
current increases proportionally with AMP concentration (Figure 7c) obeying a linear
regression equation defined as: Ipa = 1.43·10−7 + 0.10 × CAMP (R2 = 0.997). The limit of
quantification (LOQ—defined as the smallest analyte amount at which measurements
could be performed with reasonable accuracy and precision) was determined to be 0.1 µM
while the limit of detection (LOD—defined as the minimum analyte amount that can be
consistently detected but not precisely measured) [66].
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Figure 7. (a) Cyclic voltammograms of bare GCE and exf-NGr/GCE-modified electrodes recorded
in acetate buffer (4.4) in the presence of 100 µM AMP, scan rate 10 mV/s (b) CVs recorded with
exf-NGr/GCE-modified electrode in acetate buffer solution containing different AMP concentration
(0.1–100 µM), scan rate 10 mV/s; (c) corresponding calibration curve (peak intensity vs. AMP
concentration) for exf-NGr/GCE-modified electrode.

Better results were obtained by employing the amperometric technique, since the
technique is known to be more sensitive than classical CV. The recorded amperograms can
be seen in Figure 8a, while the corresponding calibration plots are presented in Figure 8b,
for both electrodes. The linear range for AMP obtained with exf-NGr/GCE was very
wide, from 0.009 to 28.8 µM, and the detection limit was very low, 3.03 nM. The sensitivity
was 0.12 A/M, being three times higher than that of bare GC (0.05 A/M), proving the
advantages of using N-doped graphene for the AMP electrochemical detection.
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Figure 8. (a) Amperometric curves recorded with exf-NGr/GCE (red; +0.52 V applied potential) and
GCE (black; +0.7 V applied potential) in pH 4.4 supporting electrolyte, after the addition of AMP
from 10−4 M stock solution; the concentration range was from 9.99 × 10−9 to 2.88 × 10−5 M AMP;
(b) the corresponding calibration plots for exf-NGr/GCE (red) and GCE (black), using background
subtracted signals.

The electrochemical performances of developed exf-NGr/GCE-modified electrode
were compared to other reports from literature. As shown in Table 2, the developed sensor
is similar or outperforms prior studies in terms of linear detection range and detection
limit. The enhanced functionality can be ascribed to the incorporation of nitrogen atoms in
the graphene structure, which increases the number of defects generating additional active
sites. Furthermore, the lone pair of electrons from the nitrogen atoms serves as carriers,
raising the graphene-based material charge density, enhancing the modified electrode
conductivity [67].

Table 2. Electrochemical performances comparison toward AMP detection for different types of
modified electrodes.

Modified
Electrode Method Linear Range

(µM)
LOD
(µM) Reference

MWCNTs-GNS/GCE
MWCNTs-GNS—multiwalled carbon
nanotubes-graphene nanosheet nanocomposite
GCE—glassy carbon electrode

DPV 90–112 9 [68]

MWCNT-β-CD/GCE
MWCNT-β-CD—multiwalled carbon
nanotubes-β-cyclodextrin
GCE—glassy carbon electrode

DPV 0.05–1
1–300 0.0115 [30]

MoS2@NHCSsx/GCE
MoS2@NHCSs—nitrogen-doped hollow carbon
spheres wrapped with MoS2 nanosheets
GCE—glassy carbon electrode

DPV 0.05–20 0.02 [69]

PCA@Zn/Ni-ZIF-8–800/GCE
PCA@Zn/Ni-ZIF-8–800—poly caffeic acid
(PCA)-Metal-organic frameworks Zn/Ni-ZIF-8–800
GCE—glassy carbon electrode

DPV 0.08–1000 0.029 [70]

Cr-SBC/GCE
Cr-SBC—poly(chromium Schiff base complex)
GCE—glassy carbon electrode

DPV 0.008–0.125 0.0056 [71]
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Table 2. Cont.

Modified
Electrode Method Linear Range

(µM)
LOD
(µM) Reference

PEDOT/GCE
PEDOT—poly(3,4-ethylenedioxythiophene)
GCE—glassy carbon electrode

DPV 1–100 0.4 [72]

GO-Y/CPE
GO-Y
CPE—carbon paste electrode

DPV 7–400 1.45 [32]

CNTs/SPCE
CNTs—carbon nanotubes
SPCE—screen-printed electrode

CV 2.5–1000 0.1 [73]

BDDE
BDDE—boron-doped diamond electrode CV 10–100 0.97 [74]

MWCNT-BPVCM/GCE
MWCNT-BPVCM—branched amphiphilic
photo-sensitive and electroactive
polymer-multiwalled carbon nanotubes hybrid
GCE—glassy carbon electrode

CV 5–1000 3.5 [75]

Graphene/GCE
GCE—glassy carbon electrode CV 0.1–20 0.032 [76]

GI/GCE
GI—graphene ink
GCE—glassy carbon electrode

CV 10–500 2.7 [77]

PDDA-GR/GCE
PDDA-GR—poly(diallyl- dimethylammonium
chloride) functionalized graphene
GCE—glassy carbon electrode

CV 20–200 0.221 [78]

GO/GCE
GO—graphene oxide
GCE—glassy carbon electrode

SWV 0.05–1 0.049 [79]

EFTAG/CPE
EFTAG—ethyl
2-(4-ferrocenyl-[1,2,3]triazol-1-yl)-graphene
CPE—carbon paste electrode

SWV 1–150 0.5 [80]

BDDE
BDDE—boron-doped diamond electrode SWV 2.99–283 0.768 [81]

RGO-CB-CTS/GCE
RGO-CB-CTS—reduced graphene oxide-carbon
black-chitosan
GCE—glassy carbon electrode

SWV 2.8–19 0.053 [82]

FeS/rGO/GCE
FeS/rGO—FeS anchored reduced graphene oxide
nanosheets
GCE—glassy carbon electrode

Amperometry 2–8 0.1 [83]

Ni-Al-HCF LDH/GCE
Ni-Al-HCF LDH—Ni-Al-hexacyanoferrate
(III)-layered double hydroxides
GCE—glassy carbon electrode

Amperometry 3–1500 0.8 [84]

Protonated g-C3N4/CTS-GCE
Protonated g-C3N4
/CTS graphitic carbon nitride nanosheets
GCE—glassy carbon electrode

Amperometry 1.7–2020 0.15 [85]



Int. J. Mol. Sci. 2022, 23, 14866 11 of 19

Table 2. Cont.

Modified
Electrode Method Linear Range

(µM)
LOD
(µM) Reference

RGO-gold dendrite/GCE
RGO-gold dendrite—reduced graphene
oxide-supported gold dendrite
GCE—glassy carbon electrode

Amperometry 0.07–3000 0.005 [86]

GrNF/GCE
GrNF—graphene nanoflakes
GCE—glassy carbon electrode

Amperometry 0.001–150 0.004 [87]

exf-NGr/GCE Amperometry 0.009–28.8 0.003 current work

exf-NGr/GCE CV 0.1–100 0.03 current work

CV—cyclic voltammetry, DPV—differential pulse voltammetry, SWV—square wave voltammetry.

2.2.4. Reproducibility, Accuracy, Stability, and Interference Effects

In order to assess the reproducibility of GCE surface modification, the electrochemi-
cal signals of five electrodes modified under identical circumstances were recorded and
compared (see Figure S2a from Electronic Supplementary Materials; 100 µM AMP solu-
tion prepared in pH 4.4 acetate buffer). The variances in anodic peak current intensity
do not surpass 5.91%, showing that the working electrode preparation is reproducible.
Investigations were also conducted on the sensor’s stability. The electrode retains at least
87.72% of its initial response while subjected to 50 consecutive CV scans in acetate buffer
(pH 4.4 solution) containing 100 µM AMP, at a scan rate of 10 mV/s (see Figure S2b from
Electronic Supplementary Materials). In addition, the sensor was stored in ultrapure water
over a long time period (more than 6 months) and its accuracy and long-time stability were
evaluated recording its CV current response to 100 µM AMP from time to time. The results
indicate that the modified electrode retains 94.53% of its initial response over a time period
that exceeds 7 months (see Figure S2c from Electronic Supplementary Materials). These
findings attest to the sensor’s excellent repeatability and stability.

The impact of different interfering species or a mixture of interfering species was
studied to determine the modified electrode selectivity. First CV measurements were per-
formed in acetate buffer solution pH 4.4 containing 100 µM AMP combined with different
organic molecules (uric acid—UA, ascorbic acid—AA, citric acid—CA, glucose—GCZ,
cysteine—CYS, tartaric acid—TA) at two fix concentrations of 10 µM and 100 µM. As
shown in Figure S3a from Electronic Supplementary Materials, the presence of uric acid in
the working solution generated the apparition of a small peak located at approximately
0.51 V, corresponding to uric acid electrochemical oxidation at the surface of N-doped
graphene-modified surface. The UA peak is clearly separated from the one generated by
AMP oxidation. All the other molecules do not give rise to any additional contribution
in the AMP cyclic voltammograms (see Figure S3b–f). In the presence of UA, AA, CA,
GCZ, and CYS (concentration 100 µM), the AMP signal is only slightly affected, while
TA produces a decrease in anodic peak intensity (as visible in Figure S3f from Electronic
Supplementary Materials). A slight decrease in the voltammetric signal was also recorded
when the interference was set at an equal amount with the analyte of interest (100 µM) for
CA, GCZ, and TA, but the modified electrode still retains over 80% of its initial response.
The presence of a complex interference matrix does not seem to significantly affect the AMP
electro-oxidation process, as suggested by the results obtained in Figure S3g from Electronic
Supplementary Materials, indicating that the developed sensor is a suitable candidate for
real sample analysis.

2.2.5. Real Sample Analysis

In order to test the practical ability of exf-NGr/GCE-modified electrodes, different
brands of pharmaceutical tablet formulations containing acetaminophen (500 mg/tablet)
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were examined for the presence of labeled paracetamol content. First, the tablets were
weighted, crushed, and grounded to form a homogeneous fine powder. The corresponding
quantity of the powdered tablet was accurately weighted and transferred in 10 mL acetate
buffer solution (pH 4.4) in order to obtain a real sample solution of 0.1 mg/mL AMP.
Further, aliquots of 100 µL of the as-prepared paracetamol-containing tablet solution were
transferred in acetate buffer solution up to a maximum of 5 mL (which resulted in a final
concentration of 13.2 µM AMP). This was regarded as the ‘unidentified’ concentration
that had to be discovered. Next, three different volumes (50, 100, and 150 µL) from AMP
standard stock solution (1 mM) were spiked in three different beakers, each containing
aliquots of 100 µL paracetamol-containing tablet solution 0.1 mg/mL (the total volume
in each beaker was set to 5 mL) and cyclic voltammograms were recorded for each of the
as-prepared solutions (see green curves from the insets of Figure 9 and Figure S4a,b from
Electronic Supplementary Materials). Then, the oxidation peak current was plotted versus
the added AMP concentration, and the unknown AMP concentration in the real sample
solution was determined from the calibration plot (Figures 9 and S4).
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Figure 9. Calibration plot obtained for the standard addition method in case of paracetamol-
containing solutions obtained from Brand 1 real tablet sample; Inset: CVs recorded after spiking
AMP from the stock solution (1 mM) supporting electrolyte acetate buffer (pH 4.4) solution; scan rate
10 mV/s.

The findings for AMP detection in pharmaceutical drugs are shown in Table 3. The
results are in suitable agreement with those obtained using UV-Vis as a complementary
analytical technique (see Table 3 and Figure S5 from Electronic Supplementary Materials),
demonstrating the suggested method’s accuracy and, consequently, its applicability for
determining AMP in actual samples, including tablet formulation.
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Table 3. Summary of the detected acetaminophen contents of different commercially available
tablet samples.

Tablet
(500 mg AMP/Tablet)

Analyzed Solution
Concentration 13.2 µM

Detected AMP Content
(µM) * Recovery (%)

CV UV-Vis

Brand 1 12.9 14.1 97.72

Brand 2 12.6 13.7 95.45

Brand 3 11.18 13.3 84.69

* according to CV.

3. Materials and Methods
3.1. Reagents

All chemical materials were of the highest purity and used as they were, with no fur-
ther purification, unless otherwise mentioned. Acetaminophen (AMP, C8H9NO2, ≥99.0%),
graphite rods (6 mm diameter, 99.995% purity), potassium chloride (KCl, 99.98%), uric
acid (UA, C5H4N4O3, 99%), and L-(+)-Tartaric acid (TA, C4H6O6, ≥99.5%) were obtained
from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). Sodium dihydrogen phos-
phate (H2NaO4P, 100%) and disodium hydrogen phosphate anhydrous (HNa2O4P, 99.7%)
were acquired from VWR BDH Chemicals (Leuven, Belgium). Sodium acetate anhydrous
(CH3COONa,≥99.0%), sodium thiosulfate pentahydrate (Na2S2O3·5H2O), and ammonium
sulfate ((NH4)2SO4, ≥99.0%) were purchased from ChimReactiv SRL (Bucuresti, Romania).
Potassium hexacyanoferrate(III) (K4[Fe(CN)6, ≥99%), L(+)-ascorbic acid (AA, C6H8O6,
99.7%) were acquired from Merck (Darmstadt, Germany). Citric acid (CA, C6H8O7, 99+%)
and L-cysteine (CYS, C3H7NO2S, 98+%) were acquired from Alpha Aesar GmbH & Co
KG (Karlsruhe, Germany) aqueous solutions were freshly prepared using ultrapure water
(18.2 MΩ, Milli-Q water purification system), protected from light by refrigeration at 4 ◦C
when not in use.

3.2. Synthesis of Nitrogen-Doped Exfoliated Graphenes

A rapid, low-cost, and environmentally friendly protocol has been developed for
nitrogen-doped graphene preparation based on direct voltage anodic graphite exfoliation
in the presence of inorganic salt. Shortly, an electrochemical exfoliation cell was set in a
150 mL Berzelius beaker. Next, two graphite rods (6 mm diameter), fixed with the aid
of a Teflon holder at a distance of 2 cm, were immersed in the beaker containing 100 mL
ammonium sulphate solution (0.3 M). Then, a low bias of 6 V was applied for about 4 h
from a power supply (Mesit DC; Mařatice, Slovakia). Under these mild conditions, shortly
after the experiment started, the anode surface became rough, and exfoliated graphene
flakes appeared in the solution. At the end of the 4 h, a very concentrated dark-brown
solution was obtained, and it was left to rest overnight. The next day, the two phases
separated, the black colour product settled at the bottom of the electrochemical cell, and so
it was filtered and rigors washed with a high quantity of ultrapure water to remove the
ammonium sulphate salt. The nitrogen-doped graphene sample was finally obtained via
the freeze-drying method, and it was further denoted exf-NGr.

3.3. Instruments

Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scan-
ning transmission electron microscopy (STEM) with energy-dispersive X-ray (EDX) spectroscopy
technique for the elemental mapping of C, O, and N atoms distribution were performed using
a SU-8230 STEM system (Hitachi, Japan). CuKα1 radiation (λ = 1.5406 Å), filtered with a
Ge (111) monochromator, from a Brucker D8 Advance Diffractometer, over the 2θ range
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of 3–85◦ was employed to collect the X-ray diffraction (XRD) patterns. Raman measure-
ments were performed at room temperature using a JASCO-NRS 3300 Spectrophotometer
arranged in backscattering geometry, equipped with a CCD detector (−68 ◦C), Ar-ion
laser (514 nm) with the power at the sample surface of 1.3 mW, an incident laser beam
(of about 1 µm2) focused with an Olympus Microscope and a 100× objective, using a
600 L/mm grid, spectral resolution of 14.6 cm−1. X-ray Photoelectron Spectroscopy (XPS)
measurements were performed under irradiation with an AlKα X-ray source (1486.6 eV)
operated at 200 W, using a SPECS spectrometer, equipped with a dual-anode X-ray source
Al/Mg, a PHOIBOS 150 2DCCD hemispherical energy analyzer and a multi-channeltron
detector. The XPS survey spectrum was recorded at 30 eV pass energy, 0.5 eV/step. The
high-resolution spectra for individual elements were recorded by accumulating 15–20 scans
at 30 eV pass energy and 0.1 eV/step. The surface cleaning was ensured through argon ion
bombardment at 500 V for 5 min. The sample did not show electrostatic charging; thus, the
binding energies are presented without any correction. The raw data were used with no
preliminary smoothing. Data analysis and experimental curve fitting of the C 1s, O 1s, and
N 1s spectra were performed using Casa XPS software—version 2.3.16 (Casa Software Ltd.,
Wilmslow, Cheshire, UK), with a Gaussian-Lorentzian product function and a non-linear
Shirley background correction. UV-Vis spectra were acquired in the 200–800 nm range
using a SPECORD 250 PLUS spectrophotometer (Analytik Jena GmbH, Jena, Germany).
A Milli-Q water purification system (Biobase Biotech(jinan) Co., Ltd, Jinan, China) was
used to prepare ultrapure water (18.2 MΩ). In order to determine the pH levels of the
solutions, an Apera PC9500 research-grade benchtop multiparameter was employed, and
the dispersions were assured with an ultrasonic bath Elmasonic P 120 H (1000 W).

3.4. Electrochemical Experiments
3.4.1. Preparation of Nitrogen-Doped Graphene-Modified Electrodes (exf-NGr/GCE)

The modified electrode was prepared via the drop-casting method, depositing succes-
sive layers on the surface of a clean, glassy carbon electrode from a homogeneous solution
prepared by blending 1.5 mg exf-NGr material with 2 mL DMF. The optimization studies
revealed that a total volume of 8 µL exf-NGr/DMF solution was necessary to obtain the best
electrochemical performances compared to the bare GCE. Smaller graphene colloidal solu-
tion volumes were not enough to obtain a suitable electrochemical signal, while for higher
volumes, the electronic transport during the redox process is hampered by the thick coating,
which is reflected in the decrease in the peak current. The obtained electrode was denoted
as exf-NGr/GCE, and it was further employed for the AMP electrochemical detection.

3.4.2. Electrochemical Setup

Cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spec-
troscopy (EIS) measurements were performed at room temperature for the AMP electro-
chemical assay at the surface of the exf-NGr/GCE-modified electrode. The experiments
were carried out with a 302 N potentiostat/galvanostat (Metrohm-Autolab B.V., Kanaalweg,
Utrecht, The Netherlands) controlled by Nova 1.11 version, using a three-electrode setup,
with Ag/AgCl (KCl at 3 M) as a reference, platinum wire as a counter electrode, and the
modified exf-NGr/GCE as a working electrode. The potential range was set between
(0.2–1) V, and CVs were recorded at scan rates ranging between 2 and 100 mV/s. Besides
being used for the electrochemical behavior of bare and all modified electrodes, the CV
technique was also applied to investigate the active surface area of the electrodes, the scan
rate and pH effect in the study of AMP electrochemical oxidation, interference studies,
and real sample analysis. The amperometric analysis was performed at +0.51 V for exf-
NGr/GCE and +0.68 V for GCE. The EIS spectra were recorded within 0.1–105 Hz at an
applied potential of +0.263 V and +0.241 V for the bare and exf-NGr/GCE, respectively
(5 mV excitation signal). It is worth mentioning that after each measurement, the work-
ing electrode was electrochemically cleaned by successive CV scans (>50 cycles), within
0.2 . . . .1 V potential range, in acetate buffer solution (pH 4.4) at a scan rate of 50 mV/s.
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Furthermore, between measurements, the modified electrode was permanently kept in
ultrapure water at room temperature to ensure a complete desorption process.

3.4.3. Preparation of Working Solutions

The supporting electrolyte acetate buffer solution (pH 3.6, 4.4, and 5) was prepared
by mixing specific amounts of sodium acetate and acetic acid solution in double distilled
water while supporting electrolyte of phosphate buffer solution (PBS, pH 6, 7, and 8)
was obtained by mixing equimolar (0.1 M) sodium dihydrogen phosphate and disodium
hydrogen phosphate anhydrous in distilled water, followed by adjusting the pH value
with additional drops of HCl (0.1 M) and NaOH (0.1 M). A stock AMP solution (1 mM)
was prepared by dissolving 3.78 mg acetaminophen in 25 mL acetate buffer (pH 4.4), and
working solutions of different concentrations (in the range of 0.1–100 µM) were obtained
by dilution. For real sample preparation, three paracetamol tablets (different brands, all
labeled 500 mg paracetamol/tablet) were weighed and further ground to powder. A total
of 1 mg of the homogenized powdered tablet from each brand was transferred in 10 mL
acetate buffer solution (pH 4.4). Further aliquots of 100 µL from the obtained real sample
solutions were diluted in acetate buffer (pH 4.4) up to a maximum volume of 5 mL; then
CV and UV-Vis measurements were performed. For the standard addition, four different
beakers containing aliquots of 100 µL from the prepared tablet sample solution and the
corresponding volume of acetate buffer (up to a maximum volume of 5 mL) were spiked
with three different volumes (50, 100, and 150 µL) from a stock AMP solution (1 mM); the
corresponding voltammetric signals were recorded, and the acetaminophen content in the
real sample solution was calculated. All experiments were performed in triplicate.

4. Conclusions

An economic and easy method to obtain a sensor for sensitive and selective ac-
etaminophen detection and quantification was developed from glassy carbon electrode
surface modification with N-doped graphene. The exf-NGr/GCE sensor shows improved
electrocatalytic activity toward the acetaminophen oxidation process, with a linear depen-
dence of the oxidative peak current on a wide concentration range (0.1–100) µM and a
limit of detection of 30.3 nM when applying the CV method and (0.009–28.8) µM with
LOD = 3.03 nM while using the amperometric technique. The method’s usefulness for
determining paracetamol in different brands of tablet formulations was proven by its
satisfactory recovery result, above 93.13% of the labeled content. Therefore, the developed
sensor may be successfully applied in low-cost sensing systems for AMP assay.
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