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Abstract: Accumulating evidence are available on the involvement of l-arginine-nitric oxide (NO)
system in complex biological processes and numerous clinical conditions. Particular attention was
made to reveal the association of l-arginine and methylarginines to outcome measures of women
undergoing in vitro fertilization (IVF). This review attempts to summarize the expression and func-
tion of the essential elements of this system with particular reference to the different stages of female
reproduction. A literature search was performed on the PubMed and Google Scholar systems. Publi-
cations were selected for evaluation according to the results presented in the Abstract. The regulatory
role of NO during the period of folliculogenesis, oocyte maturation, fertilization, embryogenesis,
implantation, placentation, pregnancy, and delivery was surveyed. The major aspects of cellular
l-arginine uptake via cationic amino acid transporters (CATs), arginine catabolism by nitric oxide
synthases (NOSs) to NO and l-citrulline and by arginase to ornithine, and polyamines are presented.
The importance of NOS inhibition by methylated arginines and the redox-sensitive elements of the
process of NO generation are also shown. The l-arginine-NO system plays a crucial role in all stages
of female reproduction. Insufficiently low or excessively high rates of NO generation may have
adverse influences on IVF outcome.
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1. Introduction

Since the discovery of the l-arginine-NO system, great progress has been made in
our understanding of its physiological role and clinical implications [1]. Most studies
have been published in the field of cardiology, nephrology, neurology, neuroendocrinology,
immunology/inflammation, and fertility in an attempt to delineate NO involvement in
complex, interacting biological processes. In addition to its major role in maintaining
vascular homeostasis by controlling vascular tone, by inhibiting platelet and leukocyte
/monocyte adhesion to the endothelium, as well as by inhibiting the growth and prolifera-
tion of vascular smooth muscle cells, NO exerts cell/tissue-specific autocrine/paracrine
function [2]. Moreover, NO/NOS proved to be a critical player in signal transduction and
transcription factor regulation.

In the present review, we made an attempt to summarize the major aspects of the func-
tion of the l-arginine-NO system, from cellular l-arginine uptake to l-arginine catabolism by
NOS to NO, arginase to l-ornithine and downstream metabolites, arginine methylation, and
l-arginine-NO related oxidative stress. Particular attention was given to the relevance of the
l-arginine-NO system in female reproduction and the debate on l-arginine supplementation
to improve IVF success, and pregnancy outcomes were briefly discussed.
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2. Clinical and Physiological Significance of L-Arginine Methabolism
2.1. L-Arginine Transport into the Cells

Amino acid uptake is an essential part of cellular metabolism and required for protein
synthesis and numerous enzymatic reactions. Associations have been proven between the
turnover rate of amino acids and the developmental potential of oocytes and early embryos.
Cellular uptake of individual amino acids or a certain group of amino acids is achieved
by separate, well-defined transporters that are encoded by different genes. L-arginine
is transported by members of the cationic amino acid transporter (CAT) family. This
transport system is Na+-independent, pH-insensitive, and activated by hyper-polarization
and substrate trans-stimulation. CAT-1, CAT-2B, and CAT-3 isoforms are involved in
arginine transport that are encoded by the respective genes of the solute carrier (SLC) gene
families. CAT-2A is a split variant without transport activity. Isoform 1 has been identified
as a low-affinity, high-capacity transporter that enhances the cellular uptake of cationic
arginine, lysine, and ornithine, while isoform 2B mediates the transport of these same
amino acids but with much higher affinity for arginine than isoform 1 [3].

The major characteristics of amino acid transport systems in early mouse embryo
development have been explored by Van Winkle et al. It has been demonstrated that these
systems are developmentally regulated to meet the requirements of rapid growth and
differentiation. Accordingly, the most highly expressed transport proteins for arginine have
been identified in oocytes (CAT-2, CAT-1), in two-or-eight-cell embryo and blastocyste
(CAT-1/CAT-2). It was supposed that the co-expression of CAT-1 and CAT-2 might be
accounted for by at least two distinct transport activities of the superfamily they belong to.
The abundance of corresponding mRNAs expression has also been demonstrated in mouse
embryos at different stages of preimplantation development. As the same amino acid trans-
port systems are operating in humans, it is reasonable to assume that the developmental
pattern seen in mouse embryos may apply for human preimplantation embryos [4]. In
support of this notion, microarray studies of human oocytes revealed the presence of genes
encoding members of the transport systems mediating the cellular uptake of l-arginine [5].
Furthermore, mRNAs for cationic amino acid transporters (SLC7A1, SLC7A2, and SLC7A3)
have been detected in ovine uterus epithelia and in the trophectoderm and endoderm of
peri-implantation conceptus. The abundance of SLC7A1 and SLC7A2 has been enhanced
by the estrous cycle and pregnancy and progesterone treatment, whereas that of SLC7A3
proved to be unaffected by either of these conditions [6].

Importantly, arginine transport is also accomplished via the B+o transport systems
that mediate cellular accumulation of leucine, tryptophan, and arginine, with particular
preference to arginine. These systems are operating already in the early embryonic devel-
opment, therefore, they have been claimed to deplete amino acids from uterine secretions,
to suppress T cell proliferation, and to protect implanted embryos from rejection [4].

With respect to tryptophan uptake by B+ transport system, it is to be stressed that this
essential amino acid is the substrate of two competing metabolic pathways: the tryptophan-
kynurenine and the tryptophan-serotonin (5-HT) pathways [7]. Convincing evidence
have been provided for the essential role of tryptophan catabolism to both 5-HT and
kynurenine in oocyte maturation, fertilization, implantation, and early embryonic/fetal
development. In fact, embryo viability has been shown to be enhanced through 5-HT
signaling as the paracrine/autocrine function of the serotoninergic network is required in
the earliest embryonic development [7–10]. On the other hand, activation of kynurenine
pathways resulted in decreased number of CD45-positive leukocytes and provided a
possible immunological mechanism to establish embryo tolerance in early pregnancy [11].

The immune protection of embryo by kynurenines is further supported by the obser-
vations that with progressing pregnancy, IDO (indoleamine-2,3-dioxygenase, the enzyme
initiating tryptophan catabolism) expression is up-regulated by inflammatory cytokines in-
cluding its most potent stimulant, interferon gamma, and immunosuppressive kynurenines
are generated [12]. Conversely, IDO inhibition with methyl-tryptophan, or deletion of IDO
gene caused pregnancy complications and fetal compromise [13,14]. It can be concluded,
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therefore, that adequate tryptophan supply for the generation of 5-HT and kynurenines
is critical for the success of reproduction, and the two metabolic pathways should be
kept in balance, although in IVF patients the tryptophan-5-HT pathways prevailed over
tryptophan-kynurenine pathway when chemical/clinical pregnancy could be achieved [7].

2.2. The Process of Arginine Methylation

NO generation is mainly controlled by methylarginines. Asymmetric dimethylargi-
nine (ADMA) and monomethylarginine (MMA) competitively inhibit NOS isoforms, while
MMA and symmetric dimethylarginine (SDMA) inhibit cellular uptake of l-arginine
by cationic amino acid transporters [15] (Figure 1). Methyl groups for the methyla-
tion of arginine residues of proteins are provided by the folate-dependent homocys-
teine/methionine cycle. In this metabolic pathway, methionine is initially activated by ATP
to S-adenosylmethionine (SAM) that serves as methyl donor for methyltransferases to add
methyl groups to substrates including proteins, histones, DNAs and RNAs [16].
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After methyl transfer, SAM is converted to S-adenosylhomocysteine (SAH) that may
undergo hydrolysis to homocysteine and adenosine. To prevent homocysteine accumula-
tion, it is remethylated to methionine by the vitamin B12- and folate-dependent enzymes;
methylene tetrahydrofolate reductase and methionine synthase (Figure 1). Inadequate
dietary folate supply and/or gene polymorphisms of the remethylation enzymes may
compromise the function of methionine/homocysteine circle with subsequent elevation of
plasma homocysteine levels, and reduced methyl group generation for transmethylation
reaction that may be associated with adverse clinical consequences [17–19].

With respect to female reproduction, folate insufficiency and homocysteine excess
were found to result in multiple developmental abnormalities, recurrent early miscarriage,
pre-eclampsia, and low birth weight. Folate/vitamin B12 supplement proved to reduce
these complications by overcoming methionine trap and by re-establishing the functional
integrity of the methionine /homocysteine circle [16–20].

Concerning NO production, inhibitory methylarginines are formed by protein argi-
nine methyltransferases (type I PRMT and type II PRMT) via immediate precursor protein
MMA, then it is catabolized to ADMA (type I PRMT) and SDMA (type II PRMT). After
proteolysis, these methylarginines are released, and in their free form they exert their biolog-
ical action. Accelerated proteolysis of proteins with methylated arginine residues and/or
their reduced elimination may result in the accumulation of methylarginines. ADMA and
MMA are mainly metabolized by dimethylarginine dimethylaminohydrolases (DDAHs) to
dimethylamine and citrulline, while SDMA is removed by urinary excretion [15].

A great body of evidence indicates that methylarginines, especially ADMA and the in-
tegrated index of arginine methylation (arg-MI), is a well-established marker and mediator
of the progression of cardiovascular and renal diseases [21]. With these observations in line,
our group reported significant inverse relationships of the number of oocytes retrieved
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and that of the embryos conceived to follicular fluid l-arginine, ADMA, SDMA, and MMA
levels, respectively, in women undergoing IVF. Furthermore, higher FF methylarginine
levels had negative impact on IVF outcome in terms of pregnancy rate. Importantly, no
differences were noted in the l-arginine/ADMA ratio, an estimate of NO bioavailability,
between groups of different IVF outcome [22].

These seemingly conflicting findings can be reconciled by assuming that to a certain
extent, methylated arginines may influence the reproductive performance independent
of NOS inhibition and NO generation. Consistent with this notion, methylarginines have
also been shown to act beyond direct NOS inhibition in patients undergoing cardiac evalu-
ation [21]. The concern about the high rate of methylation is further emphasized by the
observations that members of PRMT family mediate the methylation of arginine residues
in several nuclear and cytoplasmic protein substrates. Therefore, it may interfere with
multiple cellular functions including signal transduction, transcription factor activation,
RNA splicing, chromatin remodeling, DNA damage repairs, and protein-protein interac-
tion [23,24].

The involvement of PRMTs in oocyte maturation and early embryo development has
been well-documented. Altered patterns of their ovarian gene expression and dysregulation
of PRMTs mediating post-translational modifications of histone protein and DNA may
be associated with poor quality oocytes and compromised developmental potential. In
support of this notion, the essential role of PRMTs in genome maintenance, cell proliferation,
folliculogenesis, and post-implantation development has been demonstrated [25–29].

A recent mRNA-seq and genome-wide DNA methylation study of human ovarian
granulosa cells demonstrated significant non-random changes in transcriptome and DNA
methylome features as women age and their ovarian functions deteriorate. Increased
methylation in highly methylated regions and decreased methylation in poorly methylated
regions were equally associated with age-related decline in ovarian function [30]. Methy-
lation of arginine residues of histone and non-histone proteins are also thought to be an
important regulator of cellular functions, in particular, the structure and function of DNA,
so it may also contribute to epigenetic modifications [30] (Figure 2).
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teine for cysteine and glutathione, as well as folate deficiency reduce the reaction by methionine
synthase and causes homocysteine accumulation with the subsequent inhibition of the conversion
of 5-methyl-tetrahydroforate to the metabolically active folate, tetrahydrofolate. Abbreviations:
MAT = methionine adenosyltransferase, MT = methyltransferase, SAAH = S-adenosylhomocysteine
hydrolase, MS = methionine synthase, MTAFR = methylene tetrahydrofolate reductase.

Taken together, methyl groups are generated as a normal product of cellular metabolism
and have a regulatory role in several cellular processes. However, both a low rate and the
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excessively high rate of methylation have the potential to cause cellular dysfunction, to
interfere with the finely tuned, complex interactions of metabolic pathways related to or
independent of NO production. As a result, it may compromise healthy development of
oocytes and embryos with subsequent pregnancy failure/complications. Unfortunately,
the narrow range of methylation optimum has not been defined, therefore, efforts should
be made to determine the upper and lower limit of methylation normality outside of which
higher risk of fertilization and pregnancy success can be anticipated.

2.3. L-Arginine-Arginase Pathway

Arginase is a urea cycle enzyme that hydrolyses l-arginine to urea and l-ornithine. Two
distinct arginase isoforms, arginase I and arginase II, have been identified with different
tissue distribution, cellular location, and immunoreactivity. The two isoforms are encoded
by different genes. The cytosolic arginase type I is mainly expressed in the liver and
involved in urea synthesis, while mitochondrial type II is widely distributed and plays a
critical role in regulating NO synthesis [31–33].

Importantly, arginase competes with NOS for their common substrate, l-arginine, so
it may reduce l-arginine bioavailability by redirecting l-arginine catabolism from NO to
l-ornithine, which is the precursor of polyamines and proline (Figure 2). It has been well-
established that these substrates are intimately involved in various levels of reproductive
processes, from folliculogenesis to clinical pregnancies [34]. Furthermore, arginase causes
NOS uncoupling, resulting in superoxide and peroxynitrite generation, which further
compromises NOS activity [35,36]. It is also to be considered that arginase is co-expressed
with NOS in endothelial cells suggesting the mutual tight control of their activity [37].

Concerning the involvement of arginase in regulating reproductive functions, it has
been demonstrated in reproductive organs, in particular in the ovarian structures, that it
plays a role in the production of ornithine which can be metabolized to polyamines that are
required for cell division, proliferation, and differentiation [38,39].

A comprehensive review by Lefevre et al. provides a detailed outline of the critical
role of polyamines (putrescine, spermidine, spermide) in female reproduction. Experi-
mental evidence are given indicating that they are needed for oogenesis, embryogenesis,
implantation, and placentation. The hormonal regulation of polyamine synthesis and the
association of polyamines with ovarian steroid hormones are also presented. These results
were obtained by genetic and pharmacological manipulations of ornithine decarboxylase
(ODCI), the rate-limiting enzyme of polyamine synthesis, and the antizyme (AZI) family
members modulating the activity of ODCI [34] (Figure 3).
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2.4. Role of NO in Female Reproduction

The endothelium-derived relaxing factor (NO) is a cellular messenger and effector
molecule that participates in the control of a series of female reproductive processes.
This gaseous molecule is highly reactive, unstable with very short half-life, and diffuses
readily within the cells and into the neighboring cells. It is generated by NO synthases
(NOSs). Three NOS isoforms have been identified: the constitutional neuronal (nNOS)
and endothelial (eNOS) that are calcium/calmodulin-dependent, and the inducible (iNOS)
that is calcium independent and induced by inflammatory cytokines/immune mediators.
NOSs catalyze the reaction: l-arginine + O2 → NO + citrulline. The resulting NO activates
soluble guanylate cyclase (sGC), increases cGMP concentration, and induces the activity
of cGMP-dependent protein kinases, cGMP-gated ion channels and cGMP- regulated
phosphodiesterase. Importantly, NO has been shown to have dual effects on reproductive
processes depending on its cellular levels. NO exerts its physiological functions within a
narrow range of cell/tissue NO levels. Both, excessive, or insufficient NO production may
result in functional impairment and/or cellular damage. NOS isoforms are expressed in
species-, cell- and maturational stage-specific manner [40,41].

The expression pattern of individual NOS has been established in various animal
models and in humans during the whole period of the reproductive cycle including fol-
liculogenesis, oocyte maturation, embryonic development, implantation, and pregnancy
maintenance. The major observations of these studies have been recently reviewed in detail.
Shortly, the major ovarian NOS isoforms are the eNOS and iNOS. Both have been detected
in human granulosa and luteal cells and have been claimed to be involved in follicular de-
velopment as stimulation with hCG increased their expression. Based on the cellular level
of NO it may have different effects on developing follicles. High NO concentration proved
to have anti-apoptotic effects and to protect cell survival, whereas decreased iNOS expres-
sion and low NO concentration induced apoptosis by activating the caspase-mediated
cascade in in vitro cultured granulosa cells. Therefore, the alterations in NO generation of
granulosa cells may result either in developing or in atretic follicles [40,41].

The involvement of l-arginine-NO system in the central regulation of reproduction
has been documented by demonstrating the presence of neuronal NOS in the somatostatin
neurons in the ventral medial nucleus of the hypothalamus [42]. In response to sustained
elevation of estradiol levels eNOS containing neurons are activated and GnRH and LH
surge occurs. On the other hand, inhibition of nNOS with intracerebroventricular l-NAME
the estrogen induced LH surge was completely blocked implying the critical role of NO in
the feedforward regulation of estradiol-LH axis [43].

NO has also been reported to have a regulatory role in steroidogenesis in granulosa
and luteal cells of various species including humans. Namely, NO inhibited basal and
gonadotropin-stimulated estradiol and progesterone secretion by inhibiting p450 aromatase
activity and by down-regulation of its mRNA transcription [44,45]. In addition to the au-
tocrine regulation of ovarian steroidogenesis by NO it has also been suggested to stimulate
the secretion of hypothalamic gonadotropin-releasing hormone (GnRH) and the release of
gonadotropins by pituitary cells [46,47].

The requirement of NO/NOS system for oocyte maturation, ovulation and luteiniza-
tion, embryo development and trophoblast outgrowth has been established. However,
evidence have been provided for the double role of NO in granulosa cells and oocytes
depending on its concentration. High concentration of NO donor inhibited, while its low
concentration stimulated meiotic resumption and resulted in higher rate of oocytes reaching
metaphase II stage [48,49]. In this regard, it is also to be noted that while single-NOS knock-
out mice encountered no reproductive anomalies, double-knockout mice (iNOS/eNOS,
eNOS/nNOS, iNOS/nNOS) were preferentially lost during early embryonic develop-
ment [50–53]. Furthermore, administration of NOS inhibitors L-NA or L-NAME could
induce developmental arrest of the embryo, but these inhibitory effects could be reversed
by addition of an NO donor, or the second messenger cGMP analogues [50,54,55]. The
essential role of NO/NOS in reproductive processes are further emphasized by the ob-
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servations that the elevated levels of follicular fluid l-arginine and methylarginines were
inversely related to the number of mature oocytes, viable embryos, and clinical pregnancies.
These negative associations were assumed to be due to the reduction of NO generation by
the NOS inhibitor endogenous methylarginines [24].

The NO/NOS system has been widely studied in normal pregnancies and in pregnant
women presenting with preeclampsia. It has been confirmed that during pregnancy NO
generation in the myometrium and placenta is markedly elevated and the high NO concen-
tration has been implicated in maintaining uterus relaxation and low vascular resistance
in utero-placental circulation. When the NO production is insufficient the foeto-placental
circulation is compromised and pre-eclampsia with or without fetal growth retardation
may develop. This pattern of NO generation may be causally related to the concomitant
alterations of the endogenous NOS inhibitor ADMA, which was found to decease early in
normal pregnancy and to increase in preeclampsia [56–59].

The pregnancy-related changes in ADMA [60] concentrations are thought to be ac-
counted for by reduced expression of DDAH in trophoblast that control metabolic elimina-
tion of ADMA. It is also to be considered that beside the impaired function of l-arginine-NO
system the up-regulation of l-arginine-arginase pathway may also be involved in the
pathogenesis of pre-eclampsia [61].

The importance of NO in labor and delivery has also been documented. All three
isoforms of NOS (eNOS, iNOS, nNOS) are expressed in the cervix and eNOS and iNOS
expressed in the corpus of rat uterus. Furthermore, iNOS expression increased in the cervix,
whereas it decreased in the corpus during labor indicating that its different regulation may
be involved in the process of cervical ripening [62] (Figure 4).
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2.5. Oxidative Stress and L-Arginine NO System

The role of oxidative stress in female reproduction has been extensively studied.
Recent reports on the association between reactive oxygen species (ROS) and metabolic
adaptation of oocytes and early embryos to the changes in their environment have shown
ROS to affect oocyte developmental competence and subsequent embryo quality [63–65].

ROS are generated as a normal product of cellular metabolism and have a regulatory
role in several cellular processes. When their excessive generation exceeds the capacity
of antioxidant defense mechanisms oxidative stress ensues and ROS reacts with essential
cellular elements causing cellular dysfunction, damage, and apoptosis. For oocyte matura-
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tion, successful fertilization and embryo formation physiological levels of ROS are needed,
however, the optimum ROS levels have not been established. According to the “quiet
metabolism” concept there are upper and lower limits of metabolic normality, outside of
which embryo viability declines [66,67].

The present review attempts to summarize the impact of oxidative stress on various
elements of l-arginine-NO system, and to present its relevance to female reproduction.
Basic studies on this topic have been performed in vascular endothelial cells but the major
messages appear to apply to the redox-sensitive reactions of NO generation and/or elim-
ination during reproductive processes [68]. The oxygen-derived free radical superoxide
rapidly reacts with NO and forms highly reactive intermediate, peroxynitrite which may
cause oxidative damage to proteins, lipids, and DNA. In response to absolute or relative
depletion of NOS substrate l-arginine NOS uncoupling occurs and the uncoupled NOS gen-
erates superoxide rather than NO [69]. Furthermore, endogenous (ADMA) or exogenous
(L-NMMA) NOS inhibitor stimulates superoxide production by competing for the binding
site of the enzyme thus limiting NO generation. The production of ADMA by PRMTs and
its degradation by DDAH takes place in redox-sensitive fashion, therefore, the activation of
these enzymes results in enhanced accumulation of the cellular ADMA pool [68]. ADMA
and l-arginine analogues can further impair NO production by inhibiting cellular uptake of
l-arginine through the cationic amino acid transporter and by the interaction of arginase
with the l-arginine-NO system. This latter contention is supported by the observations that
arginase over-expression depleted tissue l-arginine pool that redirected NOS to form super-
oxide anions which reduced NO bioavailability by generating peroxynitrite. Based on these
findings the concept of feedforward regulation of arginase and peroxynitrite was developed
implying that peroxynitrite up-regulates arginase which in turn generates more perox-
ynitrite that further compromise NO production [70]. ADMA and other methylarginines
in follicular fluid have been claimed to be negatively associated with IVF success [24].
Others, however, failed to demonstrate any differences in plasma ADMA levels between
the implantation positive and negative groups indicating that ADMA cannot be used as
predictive marker of implantation success in IVF cycles [71].

2.6. L-Arginine Supplementation

In view of the relative or absolute l-arginine deficiency in clinical conditions with
elevated ADMA levels it was relevant to assume that supplementation with exogenous
l-arginine replenishes the tissue l-arginine store and restore the NOS/NO balance. In
support of this concept the following mechanisms are to be considered; (a)l-arginine
supplement may counteract the ADMA inhibition of the NOS-mediated NO production:
(b) its cellular uptake via cationic amino acid transporter may be enhanced by mitigating
the inhibitory effect of ADMA and (c) as an antioxidant it may reduce NOS-mediated
superoxide production and may scavenge superoxide [72].

In spite of these theoretical considerations, the results of clinical trials with l-arginine
supplementation are controversial, and its protective role has not been consistently proved.
The reason for the inconsistencies of this approach is not apparent, although the possible
role of “l-arginine paradox” has been proposed. This implies the dependence of cellular
NO generation on exogenous l-arginine supply in spite of the calculated saturation of NOS
with l-arginine [73].

In agreement with the potential of exogenous l-arginine to protect the functional
integrity of l-arginine-NO system there have been reports on the l-arginine-related im-
provement of early embryonic development. Transcriptome analysis of porcine embryo
culture medium revealed that its treatment with increasing concentrations of l-arginine
increased the number of embryos developing to blastocyst stage and they have more total
and trophoectoderm nuclei. High l-arginine concentration reduced the gene expression
for cationic amino acid transporter (SLC7A1) but it left unaffected for protein arginine
methyltransferases (PRMT1, PRMT3 and PRMT5). Furthermore, DDAH1 and DDAH2
message was differently regulated during development. In support of the essential role of
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the PRMT-DDAH-NO axis in development of preimplantation porcine embryos, DDAH1
null mutation proved to be lethal [74]. Supplementation the bovine embryo culture medium
with l-arginine also favors preimplantation embryo development by improving embryo
hatching rates and quality [75].

In humans, poor-responder patients undergoing IVF arginine treatment resulted in
increased plasma and follicular fluid levels of arginine, citrulline and NO2_/NO3_ that was
associated with increased number of oocytes retrieved and embryo transferred. Uterine
and follicular Doppler flow improved indicating better ovarian response, endometrial
receptivity, and the subsequent higher pregnancy rate. Moreover, l-arginine supplementa-
tion improved pregnancy outcome by reducing fetal loss, intrauterine growth restriction
and pre-eclampsia [76,77] Additional evidence for increased endometrial receptivity by
l-arginine was provided by the study showing that l-arginine added to the culture media
at physiological or supra-physiological concentrations enhanced endometrial RL95-2 cell
proliferation and reduced mitochondria-mediated apoptosis [78].

3. Conclusions

In spite of the beneficial effects of l-arginine supplement concerns are to be expressed
about its routine clinical use. Namely, excess l-arginine may promote uncontrolled genera-
tion of NO and the related superoxide and peroxynitrite as well as the excessive formation
of methylarginines that may further amplify the production of ROS. As a result, the finely
tuned balance between NO generation and its complex control mechanisms may be dis-
turbed with unwanted clinical consequences. Large-scale, randomized, double-blind,
prospective studies are to be conducted to establish the safe timing, dose, and duration of
l-arginine supplementation in female patients receiving care for reproductive disorders.
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AZI antizyme
CAT cationic amino acid transporter
cGMP cyclic guanosine monophosphate
DDAH dimethylarginine dimethylaminohydrolase
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DNA dezoxyribonucleic acid
FF follicular fluid
FOXO3a forkhead box O3
5-HT 5- hydroxyl- tryptamine (serotonin)
hCG human chorionic gonadotropin
IDO indoleamine-2,3-dioxygenase
IVF in vitro fertilization
L-NA Nitro-l-arginine
L-NAME Nitro-l-arginine methyl ester
MMA mono-methylarginine
mRNA messenger ribonucleic acid
NO nitric oxide
NOS nitric oxide synthase
ODC ornithine decarboxylase
PRMT protein arginine methyltransferase
ROS reactive oxygen species
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SDMA symmetric dimethylarginine
sGC soluble guanylate cyclase
SLC solute carrier
cGMP cyclic guanosyl monophosphate
DDAH dimethylarginine dimethylaminohydrolase
DNA dezoxyribonucleic acid
FF follicular fluid
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