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Abstract: Cholangiocarcinoma (CCA) is a malignant neoplasm arising in the epithelium of the biliary
tract. It represents the second most common primary liver cancer in the world, after hepatocellular
carcinoma, and it constitutes 10–15% of hepatobiliary neoplasms and 3% of all gastrointestinal
tumors. As in other types of cancers, recent studies have revealed genetic alterations underlying
the establishment and progression of CCA. The most frequently involved genes are APC, ARID1A,
AXIN1, BAP1, EGFR, FGFRs, IDH1/2, RAS, SMAD4, and TP53. Actionable targets include alterations
of FGFRs, IDH1/2, BRAF, NTRK, and HER2. “Precision oncology” is emerging as a promising
approach for CCA, and it is possible to inhibit the altered function of these genes with molecularly
oriented drugs (pemigatinib, ivosidenib, vemurafenib, larotrectinib, and trastuzumab). In this review,
we provide an overview of new biologic drugs (their structures, mechanisms of action, and toxicities)
to treat metastatic CCA, providing readers with panoramic information on the trajectory from “old”
chemotherapies to “new” target-oriented drugs.
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1. Introduction

Cholangiocarcinoma (CCA) is a malignant neoplasm arising in the epithelium of the
biliary tract. It represents the second most common primary liver cancer in the world, after
hepatocellular carcinoma, and it constitutes 10–15% of hepatobiliary neoplasms and 3%
of all gastrointestinal tumors [1]. In Europe, incidence rates vary between 0.4 and 1.8 per
100,000 inhabitants. The highest incidence is observed between the sixth and seventh
decade of life, with a male to female ratio of 3:2 [2]. CCAs are divided into intrahepatic
(iCCA) and extrahepatic (eCCA) tumors according to their anatomic location. Specifically,
iCCA tumors include those arising from the proximal to the second-order bile ducts. eCCA
tumors include perihilar CCA originating between the second order ducts and the insertion
of the cystic duct and those arising from the epithelium distal to the insertion of the cystic
duct, which are called distal CCAs [3,4]. As in other types of cancers, recent studies
have revealed genetic alterations underlying the progression of CCA. The most frequently
altered genes in CCA are ARID1A, AXIN1, BAP1, EGFR, FGFRs, IDH1/2, KRAS, SMAD4,
and TP53 (Table 1). Among the genetic alterations, there are interesting actionable targets [5].
These include the alterations of BRAF (p.V600E), NTRK fusions, and HER2 amplifications.
“Precision oncology” has recently emerged as a promising approach for CCA, and it is
possible to inhibit the altered function of these genes with molecularly oriented drugs.
In this review, we present an overview of the current drugs under investigation to treat
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metastatic CCA, providing readers with panoramic information from “old” chemotherapies
to “new” target-oriented drugs.

Table 1. Genetic landscape of cholangiocarcinoma.

Acronym Full Name Incidence (%)

APC Adenomatous polyposis coli 15
ARID1A AT-rich interaction domain 1A 25

AKT1 Homologue retrovirus kinase
isolated from AKT-8(-1) <5

AXIN1 Axis inhibition protein 1 40
BAP1 BRCA1-associated protein 1 25

BRAF v-raf murine sarcoma viral
oncogene homolog B1 20

BRCA1 Breast Cancer gene 1 <1
BRCA2 Breast Cancer gene 2 3

CDKN2A/B Cyclin-dependent kinase
inhibitor 2A/B 15

CTNNB1 Catenin Beta 1 8

c-MET Cellular-mesenchymal
epithelial transition factor <5

EGFR Epidermal growth factor
receptor 20

FGFR2 Fibroblast growth factor
receptor 2 15

HER2 Human epidermal growth
factor receptor 2 <10

IDH1/2 Isocitrate dehydrogenase 1/2 15

KRAS Kirsten rat sarcoma viral
oncogene homolog 20

MEK Mapk/erk kinase 15

NTRK Neurotrophic tyrosine
receptor kinase <1

PIK3CA Phosphatidylinotitol 3-kinase
catalytic subunit alpha 15

ROS1 ROS proto-oncogene 1 10

SMAD4 Mothers against
decapentaplegic homolog 4 25

TP53 Tumor protein 53 35

VEGF Vascular endothelial growth
factor 15

2. The Chemotherapy Treatment for Advanced CCA

During the last three decades, the incidence rates of intrahepatic forms of CCA, al-
though less common than extrahepatic ones (approximately 20% of CCAs), have increased
in Western Europe and Japan compared to eastern countries [2]. From a histological point
of view, over 90% of CCAs are adenocarcinomas. The remaining 10% may be mucinous,
adenosquamous, squamous, clear cell, sarcomatoid, or lymphoepithelial carcinomas. Un-
specific symptoms frequently generate delays in diagnosis; in fact, for only one in five
patients it is possible to carry out a surgical removal with radical intent. Most patients
present with locally advanced or metastatic disease primarily involving the local lymph
nodes, peritoneum, and liver. Less commonly, CCA can metastasize to the lungs, bones,
and brain. Biliary stenting and/or biliary bypass drainage are the most common early
active symptom control (ASC) therapeutic interventions [3,4].

Specific palliative treatment options for the late stages of CCA include chemotherapy
and radiotherapy. Based on the results of the randomized phase three ABC-02 study, the
combination of cisplatin and gemcitabine (cisplatin 25 mg/m2 followed by gemcitabine
1000 mg/m2 on days 1 and 8 every three weeks) became the standard treatment for the first
line therapy of metastatic disease. The association of these drugs achieves a response rate
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of 26.1% (versus 15.5%) and a median overall survival rate of 11.7 months (versus 8.1) in
patients treated with gemcitabine alone (HR: 0.64; 95% CI: 0.52–0.80; p < 0.001) [5]. There is
currently no standard second-line treatment for patients who have progressed after first-line
platinum and gemcitabine. Numerous studies, largely underpowered and retrospective,
have investigated the clinical efficacy of monotherapies or various chemotherapeutic com-
binations (irinotecan, taxanes, fluoropyrimidines, etc.), with response rates ranging from
0% to 22% [6]. A recent phase three study (ABC-06) showed a survival advantage of
FOLFOX (oxaliplatin 85 mg/m2, folinic acid 350 mg, fluorouracil 400 mg/m2 bolus, and flu-
orouracil 2400 mg/m2 as a 46 h continuous intravenous infusion) as a second line over ASC
in 162 patients progressing to a standard first-line therapy [7]. The median overall survival
was 6.2 months (95% CI: 5.4–7.6) in the ASC plus FOLFOX group compared to 5.3 months
(4.1–5.8) in the ASC group (+0.9 months; HR: 0.69; 95% CI: 0.50–0.97; p = 0.031). The over-
all survival rate in the ASC group was 35.5% (95% CI: 25.2–46.0) at 6 months and 11.4%
(5.6–19.5) at 12 months compared to 50.6% (39.3–60.9) at 6 months and 25.9% (17.0–35.8) at
12 months in the ASC plus mFOLFOX group. The response rate was 5% in 81 patients in
the ASC plus mFOLFOX group (one complete response and three partial responses).

Thus, we can conclude that the activity of chemotherapy in advanced CCA is question-
able and, unfortunately, the prognosis remains dismal, with survival very rarely surpassing
18 months.

3. Targeting FGFRs in CCA

In the last 10 years, fibroblast growth factors (FGFs) and their associated receptors
(FGFRs) have been studied to exploit the therapeutic potential of inhibiting their signaling.
In fact, recent studies have shown that FGFRs have important roles in the pathogenesis
and biology of CCA. Indeed, in vitro data has revealed the expression of FGFRs in human
CCA specimens by immunohistochemistry (FGFR1, 30% positive; FGFR2, 65% positive) [8].
The binding of FGFs is necessary for FGFR activation [9]: after ligand binding at the cell
surface, FGFR dimerizes, and it activates the RAS-RAF-MAPK, PI3K-AKT-mTOR, and
JAK-STAT pathways [10,11], resulting in the transcription of genes involved in cellular
survival, proliferation, migration, and differentiation (Figure 1A). FGFR alterations (due
to mutations, chromosomal translocations, gene fusions, or gene amplifications) lead to
ligand-independent signaling activation, which, in turn, results in constitutive kinase
activation causing tumor progression, neoangiogenesis, and chemoresistance (Figure 1B).
In a recent study, researchers analyzed 4853 solid tumors, and among 115 CCAs, 7%
harbored FGFR aberrations [12].
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Fusion proteins arise from chromosomal translocations that merge two genes and their
consequent protein products. FGFR2 is the most common gene fusion in CCAs [13]. To date,
hundreds of FGFR2 fusion partners have been identified, but the most common are the
BICC family RNA binding protein 1 (FGFR2-BICC1), S-adenosylhomocysteine hydrolase-
like protein 1 (FGFR2-AHCYL1), Periphilin 1 (FGFR2-PPHLN1), the sickle tail protein
homolog (FGFR2-KIAA1217), and the coiled-coil domain containing protein 6 (FGFR2-
CCDC6) [14]. In particular, among CCAs bearing FGFR2 fusions, FGFR2-BICC1 fusion
was found in 28.9% of the patients [15], FGFR2-AHCYL1 in 10.6% [16], FGFR2-PPHLN1 in
16.8% [17], FGFR2-KIAA1217 in 37%, and FGFR2-CCDC6 in 1.9% [15]. Many studies have
demonstrated that the oncogenic properties of FGFR2 fusion proteins can be completely
suppressed by treatment with FGFR kinase inhibitors, both in vitro and in vivo [18–20].
FGFR-targeted treatments have entered into the therapeutic panorama of CCA patients
since these agents have reported positive results in phase one/two clinical studies. In fact,
recently, infigratinib [21] and pemigatinib [22] have been approved by the FDA in pretreated
metastatic CCA bearing fusions or mutations of FGFR2. The approval for infigratinib was
based on a phase two study that showed a surprising response rate (RR) of 23.1% and a
median progression-free survival (PFS) rate of 7.3 months. Pemigatinib showed a robust
RR of 35.5% and a median PFS rate of 6.9 months [23]. Another FGFR-targeted agent,
derazantinib, was tested in CCA patients in recent years; its role was evaluated in a phase
one/two, open-label trial that reported a high DCR of 82.8% and an RR of 20.7% [24]. This
study included both patients with FGFR2 gene fusion and patients with FGFR2 mutations
or amplifications. Finally, in recent years, futibatinib (an irreversible inhibitor) has shown
activity in CCA patients pre-treated with other FGFR inhibitors, suggesting its possible role
in overcoming acquired resistance [25]. Furthermore, in the FOENIX-CCA2 (NCT02052778)
trial, a single-arm multicenter phase two study evaluating the activity of futibatinib in
CCA patients with FGFR2 gene fusions experiencing disease progression after standard
treatments (including gemcitabine plus platinum-based chemotherapy) [26] emerged an
impressive RR of 34.3% in 67 of the cases enrolled.

4. Targeting IDH-1/2 in CCA

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are cytosolic and mitochondrial
enzymes that catalyse the conversion of isocitrate to α-ketoglutarate (αKG) while reducing
NADP to NADPH (nicotinamide adenine dinucleotide phosphate hydrogen). NADPH is a
crucial cellular reducing agent in detoxification processes involved in protection against
the toxicity of reactive oxygen species and oxidative DNA damage [27]. In fact, IDH1
and IDH2 are key metabolic enzymes that frequently mutate in a variety of solid tumors,
including glioma, glioblastoma, chondrosarcoma, CCA, etc. [28]. In particular, mutations in
IDH1 are detected in approximately 13% of iCCA and 1% of eCCA tumors [29]. Numerous
studies have shown that IDH1/2-mutant enzymes gain neomorphic enzymatic activity
(gain-of-function), converting αKG and NADPH to D-2-hydroxyglutarate (D-2HG) and
NADP+ [30–32]. In physiological conditions, D-2HG intracellular concentration is low;
in IDH1/2 mutant enzymes, high levels of D-2HG are produced. An excess of D-2HG is
associated with increased histone and DNA methylation, which alters cancer cell differenti-
ation and proliferation [33,34]. The biological roles of wild-type and mutant IGH1/2 are
summarized in Figure 2.

Interestingly, high D-2HG levels cause the inhibition of hepatocellular differentia-
tion and the uncontrolled proliferation of liver progenitor cells, suggesting that IDH1mut

may represent an early event in CCA carcinogenesis, as observed in glioblastoma and
acute myeloid leukemia [35]. However, even if D-2HG produces a genetic instability con-
tributing to mutagenesis and, consequently, cancer initiation, the accumulation of DNA
damage could predispose patients to the beneficial effects of radiotherapy, chemotherapy,
and immunotherapy [36].
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consequence of its neomorphic activity acquired upon hot-spot mutations. (A) Wild-type enzymes
promote normal cellular processes through metabolic pathways and the activity of α-ketoglutarate.
(B) Mutant enzymes (IDH1/2mut) produce the oncometabolite D-hydroxyglutarate, a potent inhibitor
of α-ketoglutarate-dependent dioxygenases, with the concomitant depletion of the NADPH, resulting
in an aberrant activation of signaling pathways and sustaining cancer initiation and progression.

IDH1 mutations are more common than those of IDH2 [37]. After the crucial discovery
of gain-of-function properties in the IDH1 mutated enzyme, research has focused on the de-
velopment of small synthetic molecules able to inhibit the aberrant activity of IDH1mut. In-
hibitors of IDH1mut (IDH305 and FT-2102), IDH2mut (AG221), and pan-IDH1/2mut (AG881)
are under investigation for CCA patients [38–41]. All these molecules demonstrate rapid
oral absorption, slow elimination rates, and long half-lives. In particular, in IDH1-mutated
CCA patients’ refractories to previous systemic therapies, ivosidenib (AG120) showed a
significant—albeit small—improvement in the median PFS versus the placebo (2.7 months
versus 1.4 months; HR: 0.37; 95% CI: 0.25–0.54; p = 0.001) and a DCR of 53.2% (3 RP and 63
SD out of 124 patients). Based on the results of this randomized phase three study, the FDA
approved the use of ivosidenib in this clinical setting [22].

5. Inhibition of BRAF p.V600E in CCA

The mitogen-activated protein kinase (MAPK) pathway is involved in the crucial
cellular processes of proliferation and survival [42]. BRAF is a serine/threonine protein
kinase representing an oncogenic driver in many human cancers [43]. It is an important
player in the EGFR (epidermal growth factor receptor)-mediated MAPK (mitogen-activated
protein kinase) pathway via activation through the RAS small GTPase [44]. BRAF is crucial
for activating the MAPK pathway, profoundly influencing cell growth, proliferation, and
differentiation, and it is involved in several cellular processes, including cell migration,
apoptosis, and survival [45]. In particular, mutations at codon 600 result in the constitutive
activation of BRAF and aberrant MAPK signaling (Figure 3).
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BRAF mutations have been found in several malignancies including melanoma, non-
small cell lung cancer, CCA, and colorectal cancer [43,46–48]. To date, more than 50 BRAF
mutations have been identified in CCA, but the most common is the p.V600E variant [49]. In
an interesting study, BRAF p.V600E mutation detected by immune-histochemistry in CCAs
was associated with (i) a higher TNM stage, (ii) resistance to systemic chemotherapy, and (iii)
an aggressive clinical course with worse survival rates (median survival 13.5 months versus
37.3 in wild-type patients) [50]. The first attempt at evaluating the possibility of targeting
BRAF mutations in metastatic biliary tract cancers was a phase two basket trial [51]. In this
study, a dismal response rate of 12% (one partial response/eight total patients) was reported
with vemurafenib, likely related to the high burden of disease and poor patient conditions.
Later, successful combination therapies involving BRAF inhibitors (i.e., vemurafenib or
dabrafenib) for the treatment of metastatic CCAs were reported [52,53]. In most cancers
bearing BRAF mutations, patients treated with BRAF inhibitors develop disease progression
within a few months from the start of treatment. It has been demonstrated that resistance
is predominantly mediated by downstream MAPK pathway alterations, including MEK
activating mutations. For this reason, the concomitant BRAF and MEK inhibition overcomes
the acquired resistance to BRAF inhibitors and potentiates the anti-tumor effects [54,55]. Of
note, the interesting phase two study by Subbiah and colleagues demonstrated a promising
efficacy of dabrafenib (a BRAF inhibitor) and trametinib (a MEK inhibitor) in BRAF p.V600E-
mutated biliary tract cancers, with an ORR of 51% and a median PFS and median OS of
9.0 months and 14.0 months, respectively [56]. To date, the last is still considered the best
anti-tumor approach in BRAFmut CCAs [52,57]. The clinical benefit highlighted with this
drug combination represents an important step forward in the management of this group
of tumors. We believe that, given the relevant frequency of the BRAF p.V600E mutation in
CCAs, genetic testing should always be performed in these neoplasms.

6. NTRK Fusions: Role in CCAs

The neurotrophic tyrosine receptor kinase (NTRK-1, -2, -3) genes encode for TRK-
A, -B, and -C (Tropomyosin receptor kinase-A). These are the high affinity receptors for
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the “neurotrophin” (or nerve growth factor, NGF) that is crucially involved in neural
development. NTRK is a member of the tyrosine kinases family associated with the
MAPK signaling pathway [58]. Each protein consists of an intracellular kinase domain, an
extracellular ligand-binding domain, and a transmembrane region [59]. Upon activation,
they strongly stimulate cell differentiation, proliferation, and survival. Fusions or genomic
translocations in NTRK genes determine a constitutive activation of the associated receptor
tyrosine kinases. The products of these aberrant fusions have been found as key-driver
alterations in many different malignant tumors, including CCAs [60]. For this reason,
NTRK fusion inhibitors have been considered a “tumour-agnostic” treatment in NTRK
fusion-positive cancers. Notably, TRKs are constitutively activated by various mechanisms
in malignancies, but the most frequent is represented by the NTRK gene fusions.

In the literature, approximately 80 fusion partners have been described. In this mecha-
nism, the 3′ region of the NTRK gene is rearranged, intra- or inter-chromosomally, and it
connects with the 5′ sequence of the fusion partner gene [61]. The fusion eliminates the
ligand binding site, resulting in ligand-independent dimerization and a phosphorylation
cascade that potently triggers the proliferation and growth of cancer cells [62]. A schematic
representation of the molecular cascade sustained by NTRK fusions is provided in Figure 4.
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However, the estimated prevalence of NTRK fusions in CCAs is very low, and they
are considered rare events (0.75%) [63]. Furthermore, even if gene fusions may potentially
involve all NTRK genes (1–4), in CCAs only NTRK-1 has been detected so far [59]. The
NTRK gene, fusion partner, and chromosomal localization involved in CCAs [64–67] are
summarized in Table 2.
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Table 2. NTRK gene fusions identified in CCAs.

Gene/Fusion Partner Chromosomal
Localization Ref.

NTRK1/LMNA (Lamin A) 1q22 [64,67]
NTRK1/TPM3 (Tropomyosin 3) 1q21.3 [64]

NTRK1/RABGAP1L (RAB GTPase
Activating Protein 1 Like) 1q25.1 [65,67]

NTRK1/PLEKHA6 (Pleckstrin Homology
Domain Containing A6) 1q32.1 [66]

Over the past decade, NTRK fusions have been intensively study as potential antitumor
targets focusing on the development of a large number of TRK small molecule inhibitors.
There are only two NTRK inhibitors that have been approved by both the FDA and the
EMA: larotrectinib and entrectinib. These inhibitors have achieved high response rates
and durable responses in metastatic solid tumors (including those of patients with CCA).
Larotrectinib and entrectinib were associated with ORRs of 75% and 57%, respectively. The
median response duration was 10 months with larotrectinib, though none was reached
with entrectinib [68,69]. These high response rates accounted for the pharmaceutical au-
thorities’ approvals for their use in patients with NTRK-fusion-positive cancers refractories
to standard treatments. Interestingly, the NCCN guidelines currently recommend NTRK
inhibitors as first or subsequent treatment lines of therapy in NTRK-fusion-positive CCAs.

7. HER2 Amplification in CCA

The human epidermal growth factor receptor 2 (EGFR2 or HER2 or ERBB2) belongs
to a family of tyrosine kinase receptors with four distinct domains that, following ligand
binding, undergo to homo- or hetero-dimerization [70]. Consequently, the intrinsic tyrosine
kinase domain activates and triggers a downstream signaling cascade, including the MAPK
and PI3K/PKB pathways, which are essential for cell growth/proliferation and malignant
transformation [71]. Currently, these represent solid predictive biomarkers for targeted-
therapy in gastric, oesophageal, and breast cancers [72,73]. However, recent research has
demonstrated HER2 aberrations in CCAs.

In an interesting and large study [74], HER2 amplification was found in 1.4% of more
than 400 surgically resected and histologically confirmed CCAs. More variable results have
been reported in South American or Asian populations [75–79] (from 0.1% to 20%). These
differences are likely attributable to the remarkable inconsistency in HER2 testing methods
used so far. However, based on these data, we cannot rule out that HER2 could also be
a significant prognosticator in CCAs. Interestingly, some studies, although downsized
(case reports or small retrospective series), have reported partial responses in patients
with HER2-positive CCAs receiving anti-HER2-targeted therapy [80–82]. In the future,
prospective, comparative, and large trials are needed to confirm the efficacy of anti-HER2
in the management of CCAs. However, one of the most promising molecules to target
amplified HER2 in CCA is trastuzumab; it is a humanized monoclonal antibody able to
bind the extracellular binding domain of HER2. It suppresses the signaling pathways
and induces HER2 degradation [83]. Currently, trastuzumab is under evaluation in a
phase one study in combination with the use of tipifarnib (a farnesyltransferase inhibitor
known to block RAS signaling) [84]. Trastuzumab as an antibody-drug conjugate with
deruxtecan (DS-8201) is also being evaluated in CCA patients with HER2 alterations [85].
Neratinib, an oral, irreversible pan-HER tyrosine kinase inhibitor, is under investigation in
the phase two SUMMIT basket trial study (NCT01953926); encouraging results, with an
objective response rate of 16% and a clinical benefit rate of 28% in 25 patients with CCA,
have been obtained [86].



Int. J. Mol. Sci. 2022, 23, 15124 9 of 14

8. Overview of Target-Oriented Drugs in CCA

An overview of the pharmacodynamics and molecular characteristics of the target-
oriented drugs used in the treatment of CCA is provided in Table 3 and Figure 5. Their
toxicities are manageable and profoundly different from those registered with chemother-
apy. These drugs are emerging examples of “precision oncology” based on the specific
genetic profile of CCAs. Ideally, advances in the knowledge of the role of still-not-actionable
genetic alterations (Table 1) and of the mechanism of resistance will lead to the exploration
of combined, sequential treatments and re-challenges in the future.

Table 3. Molecular and clinical characteristics of the target-based drugs used in CCA.

Target Drug Molecular Weight
(Da) Type of Inhibition IC50 * Most Common Clinical Toxicities

(All Grades)

FGFR

Pemigatinib 487.50 Reversible 0.5 nM/L * Diarrhea, fatigue, alopecia, and eye tox
Infigratinib 560.48 Reversible 1.4 nM/L * Eye tox, stomatitis, and fatigue

Derazantinib 468.57 Reversible 1.8 nM/L * Eye tox, stomatitis, and fatigue
Futibatinib 418.45 Irreversible 1.4 nM/L * Nail tox, fatigue, and musculoskeletal tox

IDH1 Ivosidenib 582.96 Reversible 70.0 nM/L Diarrhea, neutropenia, leukocytosis, and fatigue

BRAF
Vemurafenib 482.92 Reversible 31 nM/L Alopecia, arthralgia, fatigue, and eye tox
Dabrafenib 519.56 Reversible 0.7 nM/L Fever, neutropenia, and fatigue

NTRK
Larotrectinib 526.51 Reversible 11 nM/L ** Anemia, fatigue, and nausea
Entrectinib 560.63 Reversible 1 nM/L ** Dysgeusia, fatigue, and diarrhea

HER2 Trastuzumab 145,531.5 Reversible 1 mg/mL Fever, nausea, allergy, and diarrhea

Da: Daltons; IC50: inhibitory concentration by 50%; Tox: toxicity. * All IC50, except for HER row, refer to cell-free
assays (kinase activity); * IC50 on FGFR2 activity; ** IC50 on TRKA activity.
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cellular model used to establish it is reported). For exploring the single amino acids involved in the
structural interactions between the chemical compounds and the molecular target in a 3D navigation
perspective, please visit the online research tool of the NCBI (National Center for Biotechnology
Information) [87]. When the crystal structure of the protein in the complex with the molecule reported
in the article was not available, we reported the structure bounded to a chemical compound belonging
to the same functional class (vorasidenib for ivosidenib and repotrectinib for larotrectinib, both
interacting with the same functional regions of IDH1 and TRKA, respectively). The inhibitory effect
through the “allosteric mechanism” signifies that the molecule inhibits the target by binding to an
allosteric site that is distant from the catalytic/active site of the kinase. In this case, a conformational
change is induced, preventing access to the enzymatic pocket.

9. Conclusions and Perspectives

CCA incidence is increasing and, unfortunately, its prognosis remains very poor.
The reasons are large genetic heterogeneity (from a molecular point of view) and scarce
chemotherapy responsiveness (from a clinical point of view). These characteristics render
the CCA a perfect model to study and apply innovative and molecularly oriented drugs.
A new class of drugs is now emerging, and its application is necessarily preceded by the
genetic profiling of CCA towards a “precision oncology” (i.e., next-generation sequencing).
Every patient will deserve a “from bench to bad” approach and commitment. In this
expanding context, future clinical research paradigms (first-line biologic therapies, repeated
genetic assessments with liquid biopsy, associations, biologics re-challenges, etc.) must be
pursued that revolutionize our dogmatic approaches to sequential treatments, molecular
testing, and response monitoring.
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