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Abstract: An additive- and pollution-free method for the preparation of biogenic silver and silver
chloride nanoparticles (Ag@AgCl NPs) was developed from the bacteria Shewanella sp. Arc9-LZ,
which was isolated from the deep sea of the Arctic Ocean. The optimal synthesizing conditions
were explored, including light, pH, Ag+ concentration and time. The nanoparticles were studied
by means of ultraviolet-visible (UV-Vis) spectrophotometry, energy dispersive spectrometry (EDS),
X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometers (ICP-OES).
The transmission electron microscope (TEM) showed that the nanoparticles were spherical and well
dispersed, with particle sizes less than 20.00 nm. With Ag@AgCl nanoparticles, the kinetic rate
constants for congo red (CR) and rhodamine B (RhB) dye degradation were 2.74 × 10−1 min−1 and
7.78 × 10−1 min−1, respectively. The maximum decolourization efficiencies of CR and RhB were
93.36% and 99.52%, respectively. Ag@AgCl nanoparticles also showed high antibacterial activities
against the Gram-positive and Gram-negative bacteria. The Fourier transform infrared spectroscopy
(FTIR) spectrum indicated that the O-H, N-H and -COO- groups in the supernatant of Arc9-LZ might
participate in the reduction, stabilization and capping of nanoparticles. We mapped the schematic
diagram on possible mechanisms for synthesizing Ag@AgCl NPs.

Keywords: Ag@AgCl nanoparticles; synthesis mechanisms; Shewanella sp.; dye reduction; antibacterial
activity

1. Introduction

Since they display a high surface-to-volume ratio and exhibit improved properties
compared with bulk materials, metal nanoparticles (MNPs) have been extensively applied
in catalysis, biological labelling, optoelectronics, surface-enhanced Raman scattering detec-
tion, etc [1,2]. Among all MNP-based goods available on the market, silver nanoparticles
(AgNPs) show the highest degree of commercialization, accounting for approximately
55.4% [3]. Currently, AgNPs have been widely used for making catalysts for the degrada-
tion of environmental pollutants [4], developing new antimicrobial [5], antiviral [6] and
anticancer drugs [7], and manufacturing packing materials [8].

Due to the COVID-19 pandemic, it is reasonable to find an agent with long-term
sterilization properties and broad-spectrum antimicrobial activity. AgNPs have strong
antibacterial activity against a wide range of pathogens and low cytotoxicity towards
mammalian cells [9,10]. Notably, the combination of Ag+ ions and Cl radicals will further
enhance their antibacterial effects [11]. Highly reactive chlorine-free radicals from silver and
silver chloride nanoparticles (Ag@AgCl NPs) could efficiently inactivate pathogenic bacte-
ria by attacking the bacterial cell wall and disrupting cellular metabolism [11,12]. However,
most studies focus on the antibacterial activities of AgNPs rather than Ag@AgCl NPs.

Conventional physiochemical methods for MNP synthesis involve the use of toxic
solvents, harsh chemicals and complicated, expensive techniques, limiting their use in
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biomedical and clinical fields [13]. Biological nanoparticles are often water soluble and bio-
compatible, which are essential properties for many applications [14], especially medical
applications, such as coatings for bone prostheses, surgical devices, silver-impregnated
catheters, infusion systems and dental composites [3]. To date, AgNPs have been synthe-
sized via biological systems including bacteria, fungi, yeast, viruses, algae and plants [15–17].
However, Ag@AgCl NPs are mainly synthesized via chemical methods, such as the
ion-exchange process [18], vapour diffusion strategy [19], precipitation method [20] and
solvothermal method [21]. The preparation of Ag@AgCl NPs via plant extract is emerging
as a new approach, including Saccharum officinarum juice [13], Aquilaria agallocha leaf
juice [22], Salvia officinalis leaf extract [23], Elaeagnus angustifolia leaf extract [24], beetroot
juice [25] and Allium sativum leaf extract [26]. To the best of our knowledge, Staphylococcus
pasteuri sp. nov., ZAR1, which is isolated from the Zarshouran gold mine, is the only
bacteria reported to have the ability to synthesize Ag@AgCl NPs [27]. So, the preparation
of Ag@AgCl NPs via bacteria has great significance and broad implications.

As a well-known dissimilatory reducing bacteria, the Shewanella genus plays crucial
roles in biogeochemical cycles, nanomaterials formation, microbial fuel cells and biore-
mediation owing to its ability to use a wide range of terminal electron acceptors [28–30].
Shewanella microbial fuel cells boosted the charge-extraction efficiency substantially by
introducing transmembrane and outer-membrane silver nanoparticles [29]. Remarkably,
despite the large number of metal nanoparticles synthesized by the Shewanella genus, there
are very limited reports on Ag@AgCl NPs.

The concrete mechanisms of AgNPs and Ag@AgCl NPs remain unknown. Previous
studies suggested that plasmid-mediated silver resistance rendered bacteria capable of
accumulating the silver intracellular and silver resistance gene homologues including
silE, silP and silS [31,32]. The reductases, reducing agents, amino acids and peptides
produced by microorganisms might participate in metal reduction as well as the capping
of nanoparticles to a narrow size range [33,34]. However, for extracellular metal ion
reduction, microorganisms face the dilemma of how to transfer electrons derived from
central metabolisms onto extracellular electron acceptors [35]. The Shewanella species appear
to be specially adapted for the reduction of extracellular electron acceptors, and the electron
transfer mechanisms involve c-type cytochromes, extracellular electron shuttles and direct
interspecies electron transfer [35]. Thus, it is significant to investigate the mechanism of
nanomaterial synthesis by microorganisms from the perspective of electron transfer.

Here, we synthesized biogenic Ag@AgCl NPs via the cell-free supernatant of She-
wanella sp. Arc9-LZ in darkness. The bacteria were isolated from the marine sediments
of the Arctic Ocean (158◦01′12”W; 84◦28′38”N). The synthesis conditions of Ag@AgCl
were optimized for silver nitrate concentrations, pH and duration. The nanoparticles were
studied by means of ultraviolet-visible (UV-Vis) spectrophotometry, transmission electron
microscopes (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and
inductively coupled plasma optical emission spectrometers (ICP-OES). The degradation
kinetic rate constants for congo red (CR) and rhodamine B (RhB) dye were calculated, and
the antimicrobial activity against Gram-negative (Pseudomonas aeruginosa and Escherichia
coli) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) were investi-
gated. Combined with genome annotation, we mapped the electron transfer and synthesis
mechanism of Ag@AgCl NPs in Shewanella sp. Arc9-LZ.

2. Results and Discussion
2.1. Identification of the Bacterium

The scanning electron microscope (SEM) results showed that Shewanella sp. Arc9-
LZ is rod-shaped, lacks flagella, and is 1.2–1.5 µm in length and 0.25–0.40 µm in width
(Figure 1A,B). The 16S rRNA gene sequence of this strain was blasted against the National
Centre for Biotechnology Information (NCBI) and showed 99.50% similarity with Shewanella
livingstonensis LMG 19866 (MK131328.1). The phylogenetic trees based on the 16S rRNA
gene sequence also indicated that strain Arc9-LZ was clustered with the genus Shewanella
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and showed the highest similarity with Shewanella livingstonensis LMG 19866 (Figure 1C).
This strain has been deposited in the China General MicroBiological Culture Collection
Centre (CGMCC) with accession number CGMCC 1.18550.
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Figure 1. SEM results of the stain Shewanella sp. Arc9-LZ (A,B). Phylogenetic tree based on 16S rRNA
gene sequences, Bootstrap ≥ 1000. GenBank accession numbers are indicated in parentheses (C).

The biological nanoparticles synthesised from the genus Shewanella are summarized in
Table 1. All the genera mentioned were isolated from warm and tropical regions, including
Shewanella sp. PV-4 (isolated from deep-sea, Hydrothermal Naha vent, HI, USA) [36],
Shewanella sp. HN-41 (isolated from tidal flats, Haenam, the Republic of Korea) [37,38], She-
wanella algae bangaramma (isolated from the coast, Pudhumadam, India) [39], Shewanella algae
ATCC 51181 (isolated from bottom sediments, Great Bay estuary, New Hampshire) [40–42],
Shewanella oneidensis KR-12 (isolated from Ke-Ya River, Hsinchu, Taiwan) [43] and She-
wanella oneidensis MR-1 (isolated from Oneida Lake, NY, USA) [28,44–50]. To the best of
our knowledge, no research shows that genus Shewanella isolated from cold environments
has the ability to reduce metal ions, and Ag@AgCl NPs are a novel material compared to
the metal nanoparticle synthesis by Shewanella that was previously investigated. It gives
clues for understanding the biogeochemical cycles of silver in mid to high ocean latitudes,
especially in polar regions.
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Table 1. The summary of biological nanoparticle synthesizing from the genus Shewanella.

Bacteria Size (nm) Shape Type of
Nanoparticle Location Reference

S. sp. HN-41 140–221 Spherical Se Intracellular [37]
10–30 Short rod Magnetite, siderite Intracellular [38]

S. sp. PV-4 - - Magnetite Extracellular [36]
>35 - magnetite Intracellular [51]

S. algae bangaramma 5–30 Spherical Ag Intracellular [39]
S. oneidensis KR-12 2–8 Spherical Pb Intracellular [43]

S. algae ATCC 51181

5 - Pt Intracellular [41]
10–20 Spherical, triangle Au Extracellular [40]

40–50
Rectangular,
rhombic,
hexagonal

Fe3O4 Extracellular [44]

2–50 Spherical Au Extracellular [45]
- Spherical Pd Intracellular [46]
nano-sized Needle, hexagonal Jarosite Extracellular [47]

30–43
Pseudohexagonal,
irregular,
rhombohedral

Fe2O3 Intracellular [28]

17–23 Spherical Ag and Au Extracellular [48]
V Intracellular [49]

nano-sized Amorphous round Manganese oxide Intracellular [30,50]

2.2. Synthesis of Biogenic Ag@AgCl Nanoparticles

Surface plasmon resonance (SPR) excitation in the collective oscillation of free con-
duction electrons is provoked by an interacting electromagnetic field, leading to colour
changes [52]. Thus, AgNP formation could be estimated visually by the observed colour
change from light yellow to reddish brown (Figure 2) [53]. The presence of AgNPs rather
than AgCl enabled the absorption of light in the visible region, with an absorption peak of
approximately 410 nm [13]. This solution presented fine homogeneity, and no precipitation
was detected, suggesting that the nanoparticles were stable and well dispersed [54]. No
obvious biogenic AgNP formation was detected in the control (only AgNO3 and culture
medium with AgNO3) (Figure 2).
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supernatant of Shewanella sp. Arc9-LZ with AgNO3 (c) over the wavelength range of 300–700 nm
after 48 h of reaction.
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2.3. Characterization of Biogenic Ag@AgCl Nanoparticles

After freeze-drying, brown-red Ag@AgCl nanoparticle powder was obtained
(Figure 3A). On the basis of SPR, optical absorption peaks at 3 keV targeted the presence
of metallic silver nanoparticles [55] (Figure 3B). The EDS results illustrated the presence
of silver and chlorine elements, accounting for 6.53% and 2.08% of the total Ag@AgCl
NPs, respectively (Figure 3B). The strong signals targeting C and O might indicate the
presence of proteins acting as capping material on the nanoparticle’s surface [56]. The XRD
pattern of the biogenic Ag@AgCl nanoparticles is shown in Figure 3C. It exhibits peaks at
2θ = 32.24, 46.13, 54.88, 57.52, 67.2, 76.8, corresponding well to the (200), (220), (311), (222),
(400) and (420) planes of AgCl and matching the JCPDS file 31-1238 for solid AgCl. This
spectrum also shows peaks at 2θ = 38.30, 44.01, 64.24, and 77.48, which can be assigned
to the (111), (200), (220) and (311) planes, corresponding well to the face-centred cubic
structure of metallic silver, matching the JCPDS file 65-2871 for cubic Ag.
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Ag@AgCl nanoparticles.

The morphology, size distribution and dispersibility of biogenic nanoparticles are
shown in Figure 4. The Ag@AgCl NPs were spherical and ellipsoidal with beneficial
dispersibility (Figure 4A). The size ranged from 4 nm to 20 nm, and most nanoparticles
concentrated in the size of 8–16 nm, which was in accordance with the normal distribution
(Figure 4B). There are limited reports on the biogenic Ag@AgCl NPs, so we summarized
the morphology and size of AgNPs synthesized by bacteria (Table 2). Most biogenic
nanomaterials from other reports were spherical. The nanoparticles in this study have
larger specific surface areas, which may improve the loading of the surfaces or enable a
greater release of ions into the solutions [1]. For example, small nanoparticles display larger
surface areas than large particles, leading to higher antimicrobial and catalytic activity [57].
The nanoparticles will have great significance when they are uniform in size and shape
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and are well dispersed [13]. The results demonstrated that Shewanella sp. Arc9-LZ cell-
free supernatant provided natural capping to synthesize nanoparticles and prevent the
aggregation of nanoparticles [34].
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Figure 4. TEM image (A) and size distribution (B) of Ag@AgCl NPs.

Table 2. The summary of AgNP synthesis from the bacteria.

Stains Location Morphology Size (nm) Reference

Acinetobacter calcoaceticus
PUCM 1005 Extracellular Spherical 4–40 nm [58]

Pseudomonas stutzeri AG259 Intracellular Subglobose 5–25 nm [59]
Bacillus subtilis MSBN 17 Intracellular Spherical 60 nm [60]
Ureibacillus thermosphaericus Extracellular Spherical 10–100 nm [61]
Pseudomonas aeruginosa
ATCC 27853 Extracellular Spherical 33–300 nm [62]

Streptacidiphilus durhamensis
HGG16n Extracellular Spherical 8–48 nm [63]

Paracoccus sp. Arc7-R13 Extracellular Subglobose 2–25 nm [64]

Staphylococcus epidermidis
ATCC 12228 Intracellular

Spherical, oval,
short rod,
triangle

10–100 nm [65]

Klebsiella pneumoniae Extracellular Spherical 5–32 nm [66]
Aeromonas sp. THG-FG1.2 Extracellular Spherical 8–16 nm [67]
Actinomycetes MRS- 1 Extracellular Spherical 4.7–18.8 nm [68]
Fusarium oxysporum Extracellular Spherical 40 nm [69]
Trichoderma spp. Intracellular Spherical 14–25 nm [70]

2.4. Influence of Synthesizing Conditions on Ag@AgCl NPs

The pH, Ag+ concentration and reaction time are important parameters affecting
morphology, diameter and dispersity [71,72]. Therefore, we investigated the influence of
pH, Ag+ concentration and reaction time on biogenic Ag@AgCl NP production (Figure 5).
The reaction system has the highest absorbance at 410 nm and the deepest reddish brown
under neutral conditions, followed by alkaline and acidic conditions (Figure 5A,B). There
was a flocculent precipitate existing in the solution under acidic conditions (pH = 3.0 and
pH = 5.0), which may be attributed to the protein denaturation. We concluded that the
optimal pH for microbial synthesis of nanoparticles was related to the pH of the microbial
environment. As shown in Figure 5C,D, the producing number of AgNP nanoparticles
positively correlated with the AgNO3 concentration (0–8 mmol/L) added to the cell-free
supernatant of Shewanella sp. Arc9-LZ (R2 = 0.98, p < 0.01). Abundant reducing and
capping agents exist in the Arc9-LZ cell-free supernatant. The synthesis efficiency of the Ag
nanoparticles increases with increasing Ag+ concentration, which may be attributed to the
increased probability of the reducing agent colliding with silver ions. As shown in Figure 5E,
the SPR intensity at approximately 410 nm increased steadily as a function of reaction time,
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without an obvious band shift that targets the increase in particle size [73]. Therefore, our
results preliminarily indicated that the amount of biogenic Ag@AgCl nanoparticles grew
over time (R2 = 0.98, p < 0.01) and that the size was stable from 1 d to 9 d (Figure 5E,F).
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2.5. Catalytic Activity of the Biogenic Ag@AgCl Nanoparticles

Dyes and dyestuffs are widely used within the food, pharmaceutical, cosmetic, textile
and leather industries [74]. Over 7 × 105 tons of synthetic dyes are produced per year, and
approximately 10–15% is discharged into the environment [75]. Both azo and rhodamine B
dyes can cause direct destruction of aquatic wildlife and are mutagenic and carcinogenic
to humans [76]. Newer and stricter legislation has been established in many countries to
enhance enforcement concerning wastewater discharge [75]. Thus, there is a growing need
to develop eco-friendly methods to remove dyes from wastewater. Capping agents and
stabilizers might lead to the production of small nanoparticles. However, steric hindrance
on the surface of the nanoparticle might affect its activities [77]. Hence, it is necessary to
verify the catalytic activity of our biogenic Ag@AgCl nanoparticles.

Figure 6A demonstrates the UV-Vis absorption spectra and colour changes of the CR
solution treated with NaBH4 in the presence of biogenic Ag@AgCl nanoparticles over a
12 min period. Before degradation, the bright red CR solution showed a strong absorp-
tion peak of 497 nm. Upon the addition of 0.025 mg/L (ultimate concentration) biogenic
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Ag@AgCl nanoparticles into the reaction system, the colour of the solution changed from
bright red to colourless within 10 min. Meanwhile, the absorption peak of 497 nm signif-
icantly decreased over time. Figure 6C shows the UV-Vis absorption spectra of the CR
solution treated with NaBH4 in the absence of the Ag@AgCl nanoparticles. It is obvious
that there is no change in the colour or the maximum absorption peak of the CR solu-
tion. Thus, the degradation of CR by NaBH4 is limited in the absence of the Ag@AgCl
nanoparticles. The pseudo-first-order linear relation of ln(At/A0) versus the reaction time
of the degradation of CR is depicted in Figure 6E. According to At and A0, the kinetic rate
constant (k) of the catalytic reaction in the presence of the biogenic Ag@AgCl nanoparticles
is 2.74 × 10−1 min−1. Figure 6F shows the decolourization efficiency of the CR solution
with the Ag@AgCl nanoparticles. The maximum decolourization efficiency of CR by the
Ag@AgCl nanoparticles was 93.36% (10 min), which was much higher than the natural
decolourization efficiency (9.51%, 8 min) in the absence of Ag@AgCl nanoparticles. We,
therefore, suggested that the biogenic Ag@AgCl nanoparticles synthesized by Shewanella
sp. Arc9-LZ exhibited excellent catalytic activity.
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Figure 6. The reduction of CR in aqueous solution recorded every 2 min: the Uv-vis spectral of
CR reaction with Ag@AgCl nanoparticles (A) and without (C); Digital images of CR reaction with
Ag@AgCl nanoparticles (B) and without (D); ln(At/A0) versus reaction time for CR reduction (E);
Decolourization efficiency versus reaction time for CR reduction (F).

The RhB dye will absorb light at 554 nm in the visible region, showing a bright rose-red
colour. After the addition of the biogenic Ag@AgCl nanoparticles to the RhB dye solution,
the absorbance intensity at 554 nm showed a sharp decline within 6 min (Figure 7A). In con-
trast, the absorbance intensity of the dye solution lacking Ag@AgCl nanoparticles remained
stable as the reaction time proceeded to 22 min (Figure 7C). Figure 7E indicates that after
the addition of NaBH4, the kinetic rate constant (k) for RhB degradation with Ag@AgCl
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nanoparticle treatment was 7.78 × 10−1 min−1, which was higher than that of the control
(1.38 × 10−1 min−1). Additionally, the RhB decolourization efficiency with Ag@AgCl
nanoparticle treatment at 6 min was 99.52%, higher than the control of 74.12% (6 min) and
93.91% (22 min) (Figure 7F). It was obvious that the biogenic Ag@AgCl nanoparticles could
accelerate the reduction rate of RhB.
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Figure 7. The reduction of RhB in aqueous solution recorded every 2 min: the Uv-vis spectral of
RhB reaction with Ag@AgCl nanoparticles (A) and without (C). Digital images of RhB reaction with
Ag@AgCl nanoparticles (B) and without (D). ln(At/A0) versus reaction time for RhB reduction (E).
Decolourization efficiency versus reaction time for RhB reduction (F).

The colour fading of the dyes might be attributed to efficient particle-mediated electron
transfer from the BH4

- ion to the dye resulting in the break of azo bonds [78]. With a large
surface-to-volume ratio, the nanoparticles expose atoms on the surface as potential catalytic
sites [79] and act as a substrate for the electron transfer reaction [80]. They might also
indirectly increase the collision probability between the dyes and NaBH4 through physical
factors [81]. Therefore, the small biogenic Ag@AgCl NPs synthesized by Shewanella. sp.
Arc9-LZ enables good catalysis.

2.6. Antibacterial Activity

The nanoparticles’ antimicrobial ability is not only influenced by the compounds of the
material, but it is also related to the material’s size. Smaller nanoparticles have stronger an-
tibacterial effects with larger total surface area per unit volume [82]. In this study, Ag@AgCl
nanoparticles showed obvious antimicrobial activity against Gram-positive (Bacillus sub-
tilis ATCC6633 and Staphylococcus aureus ATCC6538) and Gram-negative (Pseudomonas
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aeruginosa PAO1 and Escherichia coli CGMCC1.2340) bacteria. Compared to the control,
the treatments with the Ag@AgCl nanoparticles presented an obvious inhibition zone
when the concentrations of nanoparticles reached 20 µg/mL. With increasing Ag@AgCl
nanoparticle concentration, the diameter of the inhibition zone tended to increase (Fig-
ure 8A,B). Among the strains, Gram-negative Pseudomonas aeruginosa PAO1 had the
greatest response to the Ag@AgCl nanoparticles, which can be attributed to the structure
of its cell wall.
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E. coli and B. subtilis: digital images (A) and inhibitory zone diameter (B).

Ag@AgCl nanoparticles may be related to the release of silver ions, which adhere to
the membrane surface, disturb its normal function, cause protein denaturation, affect the
respiratory chain and cause irreversible DNA damage, eventually leading to microbial
death [9,12]. Tamboli and Lee [83] believed that the changes and damage to the membranes
engendered by the Ag@AgCl nanoparticles caused a significant increase in permeability,
leaving bacterial cells incapable of properly regulating transport through the plasma
membrane and destroying the double-stranded DNA structure, resulting in cell death.
Studies have found that the antibacterial effects of silver nanoparticles increased with
decreasing particle size [84]. Particles with higher specific surface areas dissolve faster than
those with smaller surface areas, which is why smaller particles have higher effective Ag+

concentrations and better antibacterial effects [82].

2.7. The Mechanism of Nanoparticle Formation

Duan et al. [33] believed that proteins, amino acids, organic acids and secondary
metabolites are related to reducing, capping and stabilizing nanoparticle formation. Ac-
cording to the FTIR spectrum of the cell-free supernatant and biogenic Ag@AgCl solution,
the functional groups responsible for the reduction of Ag+ were tentatively explored
(Figure 9). During the reduction, three bands at 1403.21, 1453.76 and 1652.95 cm−1 weak-
ened or disappeared, and two major peaks at 3422.05 and 668.90 cm−1 appeared. The
stretching vibrations of the O–H and N–H groups are located at 3422.05 cm−1 [85]. The
bands observed at 1403.21 cm−1 and 668.90 cm−1 can be assigned to the O–H stretching
vibrations of the carboxylate and N–H deformation vibrations of the amine. The band
at 1453.76 represents the stretching vibrations of –COO– groups of amino acids with free
carboxylate groups [86]. The peak of 1650 cm−1 is attributed to carbonyl stretching and is a
typical indicator of amide linkages [87]. The FTIR spectra showed that amino acids, proteins
and organic molecules with amide linkages in the supernatant of Arc9-LZ might participate
in the reduction, stabilization and capping of the biogenic Ag@AgCl nanoparticles.
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supernatant (A) and biogenic Ag@AgCl nanoparticle solution (B).

To speculate the mechanism of Ag@AgCl NPs synthesis, we summarized the genes,
enzymes, proteins and small molecules that may be involved in the synthesis of Ag@AgCl
NPs in Table 3. The complete genome sequence of Shewanella sp. Arc9-LZ has been
submitted to the GenBank database under accession number CP048031 [88]. The whole
genome of Shewanella sp. Arc9-LZ was annotated by databases of Kyoto Encyclopedia
of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Non-
Redundant Protein Database (NR), Transporter Classification Database (TCDB), Swiss-
Protand Database and Carbohydrate-Active enZYmes Database (CAZy) [88]. We concluded
that the mechanism of Ag@AgCl NP synthesizing by Shewanella sp. Arc9-LZ is not plasmid-
mediated silver resistance but extracellular electron shuttles. The schematic diagram of
mechanisms is shown in Figure 10, which needs further evidence.
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Table 3. Microbial substances that may be involved in the synthesis of silver nanomaterials.

Substances Functions Reference

Silver-binding gene homologue: silE
Encoding a periplasmic silver-binding
protein that presents histidine sites for
silver ion binding.

[32]

Three major gene homologues of silE,
silP, and silS Participation in silver resistance [31]

Periplasmic c-type cytochrome
(MacA) and outer membrane c-type
cytochrome (OmcF)

Reduction of Ag+ to Ag0 [89]

NADH-dependent enzymes,
especially nitrate reductase Roles in AgNP synthesis [90]

Reducing enzymes belonging to class
of nitrogenase and hydrogenase Reduce silver ions to nano-silver [91]

Cellular nitrogenase Enzyme concentration dictating the size
of AgNPs [91]

NfsA, an oxygen-insensitive
nitroreductase Reducing AgNO3 to AgNPs [66]

Spore-associated enzymes, like
glucose oxidase, alkaline
phosphatase, laccase and catalase

Generating the reducing cofactors and
stimulating the biogenesis of AgNPs [92]

Glutathione and thioredoxin systems
Maintaining the reducing conditions
indirectly and regulating the activity
of enzymes

[93]

Riboflavin Acting as a soluble redox shuttle to
mediate metal reduction [94]

3. Materials and Methods
3.1. Materials

The strains Bacillus subtilis ATCC6633, Staphylococcus aureus ATCC6538, Pseudomonas
aeruginosa PAO1 and Escherichia coli CGMCC1.2340 were used for assaying antibacterial
activities and were stored at −80 ◦C. The dyes CR and RhB were purchased from Sangon
Biotech (Shanghai, China) and Aladdin (Shanghai, China), respectively. NaBH4 was
supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). AgNO3 was
obtained from the Shanghai Chemical Reagent Factory (Shanghai, China). The yeast extract,
tryptone and agar powder were all purchased from Solarbio Ltd. (Beijing, China).

3.2. Isolation and Identification of the Strain Shewanella sp. Arc9-LZ

Shewanella sp. Arc9–LZ bacteria were isolated from the marine sediments of the
Arctic Ocean (158◦01′12”W; 84◦28’38”N) collected during the 9th Chinese National Arctic
Expedition in 2018. Firstly, Shewanella sp. Arc9-LZ was activated in the marine ZoBell 2216E
medium (peptone, 5 g/L; yeast extract, 1 g/L; natural seawater, 1 L) at 150 r/min. After
incubation at 15 ◦C for 2 d, the culture was serially diluted and spread on 2216E medium
agar plates (ZoBell 2216E medium with 15 g/L agar powder) to isolate the single clone.

Based on the 16S rRNA sequence alignment, the strain was identified by PCR with the
Bact27F and Univ1492R primers. PCR amplicons of 16S rRNA genes were sequenced by
Sangon Biotech (Shanghai, China). Sequences (1500 bp fragments) were analysed using
CodonCode Aligner software. Additionally, 16S rRNA gene sequences were aligned with
the closest matches available in GenBank and EzTaxon server 2.1 with the Clustal W func-
tion of BioEdit software (7.1.3.0). Phylogenetic trees were constructed with the Molecular
Evolutionary Genetics Analysis software (MEGA version 4.0) using the neighbour-joining
method, and 1000 bootstraps were performed to assign confidence levels to the tree nodes.

The DNA of this stain was extracted with a Bacteria DNA kit (TIANamp, DP302,
Tiangen Biotech, Beijing, China). Gene Pools were constructed on the Pacbio platform
with an SMRT bell TM Template kit (version 1.0) and Illumina PE150 platform with
NEBNext®Ultra™ DNA Library Prep Kit for Illumina (NEB, Ipswich, Ipswich, MA, USA),
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respectively. The sequence was analysed by PacBio Sequeland Illumina NovaSeq PE150 for
different libraries [88].

3.3. Biosynthesis of the Silver Nanoparticles in the Dark

Shewanella sp. Arc9–LZ was cultured in the YP medium (peptone, 10 g/L; yeast extract,
5 g/L; ultra-pure water, 1 L) and incubated at 150 r/min and 15 ◦C for 48 h. To obtain 100 mL
of cell-free extracts, the fermented liquid was centrifuged at 12,000 r/min for 15 min before
being filtered through a 0.22 µm syringe filter. Then, biogenic Ag@AgCl nanoparticles were
synthesized by mixing the cell-free supernatant and AgNO3 at 150 r/min and 35 ◦C in the
dark. The cell-free supernatant without AgNO3 and the liquid media with AgNO3 were
kept under the same conditions and set as controls.

3.4. Characterization of Biogenic Ag@AgCl Nanoparticles

To characterize biogenic Ag@AgCl nanoparticles, samples were monitored using
ultraviolet-visible (UV-Vis) spectrophotometry (Shimadzu Model UV 2550, China) in the
range of 300–700 nm at a resolution of 1 nm. The biogenic Ag@AgCl nanoparticles were
designed under different pH conditions (pH = 3.0, 5.0, 7.0, 9.0, 11.0), final concentrations
of AgNO3 (1 mmol/L, 2 mmol/L, 4 mmol/L, 8 mmol/L and 10 mmol/L) and lengths
of time (1 d, 2 d, 3 d, 4 d, 5 d, 6 d, 7 d, 8 d and 9 d). The morphology and size of the
produced Ag@AgCl nanoparticles were discerned by means of transmission electron mi-
croscopy (TEM) (Hitachi HT7700, Tokyo, Japan). The presence and structure of the biogenic
Ag@AgCl nanoparticles in the samples were determined by means of X-ray diffraction
(XRD) (Bruker D8 Advance, Karlsruhe, Germany) and energy dispersive spectrometry
(EDS) (IXRF, USA). Fourier transform infrared spectroscopy (FTIR) spectra were obtained
on a Nicolet iN10 (Thermo Electron Scientific Instruments LLC, Madison, WI, USA) with
wavelengths ranging from 500 to 4000 cm−1. The concentration of biogenic Ag@AgCl
nanoparticles was analysed by means of inductively coupled plasma optical emission
spectrometry (ICP-OES) (Perkin-Elmer Optima, Waltham, MA, USA).

3.5. Catalytic Activity for Azo Dyes and RhB

The catalytic activity of biogenic Ag@AgCl nanoparticles for dye reduction was carried
out as follows. Firstly, 10 mL of 100 mg/L dyes (CR and RhB), 10 mL of 50 mmol/L NaBH4
and 30 mL of ultrapure water were mixed in a conical flask at 40 ◦C in the dark. Two reaction
setups were employed at the same time. In the first setup, biogenic Ag@AgCl nanoparticles
were present in the reaction system at a final concentration of 0.025 mg/L. In the second
setup, an equal volume of ultrapure water instead of biogenic Ag@AgCl nanoparticles
was put into the reaction system as a control. At pre-determined time intervals, a UV-Vis
spectrophotometer recorded the reduction of CR and RhB in the ranges of 400–600 nm and
450–600 nm, respectively. Considering that the amount of added NaBH4 was much larger
than that of the dyes, the catalytic reduction should follow pseudo-first-order kinetics,
which can be expressed as ln(At/A0) = −kt [72]. In this equation, At represents the dye
absorbance at time t, A0 represents the initial dye absorbance and slope k represents the
apparent reduction rate constant [52].

3.6. Antibacterial Activity

The antibacterial activity of biogenic Ag@AgCl nanoparticles was based on the stan-
dard agar-well diffusion method with some modifications [95]. The tested strains were
cultured in the LB medium (peptone, 10 g/L; yeast extract, 5 g/L; NaCl, 10 g/L, ultra-pure
water, 1 L) and spread uniformly on LB agar plates with cotton swabs at a final concentra-
tion of 1 × 105–1 × 106 CFU/mL. A sterile cork borer was used to punch 4 circular holes of
8 mm diameter into the plates, and 100 µL of various concentrations of Ag@AgCl (0, 20,
40, 80 µg/mL) was added to the holes. The negative control in the antibacterial study was
the LB medium with the same volume. The plates were incubated at 37 ◦C for 12 h for the
observation and calculation of the inhibition zone.
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4. Conclusions

Ag@AgCl NPs, which are a novel material, were synthesized by the strain Shewanella
sp. Arc9-LZ, which was isolated from the Arctic Ocean. The methods are eco-friendly (no
additional chemical reductant, low energy consumption and waste emission), simple (mild
reaction conditions, one-pot process), repeatable, sustainable and renewable. With a small
size (≤20 nm), spherical shape and beneficial dispersity, Ag@AgCl nanoparticles exhibited
excellent catalysis and antibacterial ability application prospects. The kinetic rate constants
(k) for CR and RhB degradation with Ag@AgCl nanoparticles were 2.74 × 10−1 min−1

and 7.78 × 10−1 min−1, and the maximum decolourization efficiency of CR and RhB
were 93.36% and 99.52%, respectively. Moreover, Ag@AgCl nanoparticles showed high
antibacterial ability against the Gram-positive and Gram-negative bacteria investigated.
In addition to excellent material and good applications, this method might give clues for
the further development of the synthesis of new biomaterials, utilization of abundant
microbial resources from the Arctic, explanation of the origin of deep-sea metal resources,
and understanding of life and the biogeochemical silver cycle in aqueous environments.
The schematic diagram of mechanisms for the synthesis of Ag@AgCl NPs was mapped.
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