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Abstract: Inflammation is an essential action to protect the host human body from external, harmful
antigens and microorganisms. However, an excessive inflammation reaction sometimes exceeds
tissue damage and can disrupt organ functions. Therefore, anti-inflammatory action and resolution
mechanisms need to be clarified. Dietary foods are an essential daily lifestyle that influences various
human physiological processes and pathological conditions. Especially, omega-3 fatty acids in the
diet ameliorate chronic inflammatory skin diseases. Recent studies have identified that omega-
3 fatty acid derivatives, such as the resolvin series, showed strong anti-inflammatory actions in
various inflammatory diseases. Maresin-1 is a derivative of one of the representative omega-3
fatty acids, i.e., docosahexaenoic acid (DHA), and has shown beneficial action in inflammatory
disease models. In this review, we summarize the detailed actions of maresin-1 in immune cells and
inflammatory diseases.
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1. Introduction

The human body is exposed to various environmental stimuli which drive appropriate
host defense reactions to protect against harmful antigens and/or microorganisms [1].
On the one hand, inflammatory responses are essential to drive host defense actions
and the remodeling of organ tissues [2]. On the other hand, an inflammatory reaction
sometimes exacerbates the inflammatory response, leading to tissue damage and the
development of systemic inflammatory diseases [3]. Because inflammation has been
implicated in many human diseases, anti-inflammatory agents should be applied to various
inflammatory diseases. Steroid or non-steroidal anti-inflammatory drugs (NSAIDs) are
currently available medications for the treatment of these inflammatory diseases; however,
these medications have disadvantages due to the fact adverse reactions have been associated
with them. Therefore, there is a need to develop some safe agents for the treatment of
inflammatory diseases.

The daily diet is one of the essential daily lifestyles to sustain the lives of human
beings, in which nutrition comprises their body elements and cell components. Among
the various nutritional factors, fatty acids are components of cell membranes that regulate
cellular signal transduction [4,5]. Recently, research has increased our knowledge of the
beneficial actions of fatty acids on human health [6]. Omega-3 fatty acids are abundant in
fish oil and are known to have potential benefits in various inflammatory diseases including
asthma, psoriasis, inflammatory bowel disease, and rheumatoid arthritis [7]. Furthermore,
lipid mediator metabolites derived from omega-3 fatty acids act on various physiological
processes or pathological conditions by regulating lipid metabolism, cell signaling, and
inflammation [8–11].

Maresin-1 is one of the highlighted metabolites from eicosapentaenoic acid (EPA) that
shows various strong anti-inflammatory actions in inflammatory diseases. In this review,
we summarize the actual impacts of maresin-1 on various diseases and discuss the detailed
molecular mechanisms of maresin-1 focusing on its anti-inflammatory action.
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1.1. The Anti-Inflammatory Actions of Maresin-1

Maresin-1 was first identified in human macrophages and was shown to be a lipid
mediator that was active in the process of inflammatory resolution. Studies have shown
that human macrophages produce maresin-1 mediated by 14-lipoxylation of DHA and
enzymatic hydrolysis from 13S,14S-epoxymaresin [12,13]. Regarding its anti-inflammatory
action, maresin-1 has been shown to suppress neutrophil migration [14] and cytokine
production by activating CD8+ T cells, CD4+ T helper (Th1) cells, and Th17 cells. Maresin-1
has also been shown to negatively regulate the transcription factors T-bet and Rorc, prevent
Th1 and Th17 differentiation, and simultaneously enhance Foxp3+ regulatory T (Treg) cells
generation mediated by the GPR32 receptor [15].

Considering the action mechanism of maresin-1, a recent study identified one receptor,
i.e., a leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6), which had the
structure of GPCRs and was widely identified in various tissues [16]. Another receptor,
i.e., retinoic acid-related orphan receptor α (RORα), has been located in the nucleus [17].
Although these two receptors play roles in the action mechanism of maresin-1, the total
detailed molecular mechanisms of the resolution of inflammation, host defense, tissue
homeostasis, and wound healing are still unclear.

Maresin-1 has been demonstrated to have various actions on immune cells. In this
section, we review the influence of maresin-1 on dendritic cells (DCs)/macrophages, T
cells/regulatory T cells, and neutrophils, as shown in Table 1 and Figure 1.

Table 1. The detailed action of maresin-1 in immune cells. ↑ upregulated, ↓ downregulated.

Macrophage
DC

Phagocytosis ↑
M2 Polarization

IL-1β ↓, TNF-α ↓, IL-6 ↓, ROS ↓

T cells Th1, Th2, Th17 induction ↓
Treg ↑

Neutrophil Apoptosis ↑

Figure 1. The detailed action of maresin-1 in immune cells. ↑ upregulated, ↓ downregulated.

1.2. DCs/Macrophages

External pathogens and apoptotic cells exacerbate tissue inflammation. However,
DCs and macrophages dampen these inflammatory responses by phagocytosis of these
pathogens and apoptotic cells for inflammatory resolution. Maresin-1 has been shown to
enhance phagocytotic activity in macrophages and promote anti-inflammatory action [18].

Maresin-1 has been shown to promote polarization of CD11c−CD206+ (M2) macrophages
and inhibit polarization of CD11c+CD206− (M1) macrophages [19]. The M2 macrophages
secreted anti-inflammatory cytokines such as IL-10 and TGF-β, which accelerated tissue
remodeling and the clearance of apoptotic debris by phagocytosis [20]. This action of
maresin-1 negatively regulated the inflammatory response.
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In addition, maresin-1 has been shown to impair inflammatory cytokine production in
anti-inflammatory actions. Maresin-1 suppressed the production of IL-1β [21] and TNF-
α [22]. In addition, maresin-1 suppressed the production of TNF-α and IL-6 through the
suppression of the SIRT1/PGC-1α/PPARγ pathway [23].

1.3. T Cells

Studies have demonstrated that maresin-1 has anti-inflammatory effects on T cells.
Maresin-1 suppressed the induction of CD4+ cells, CD8+ cells, and Th17 cells by downregu-
lation of T-bet and Rorc expression [15]. On the contrary, maresin-1 enhanced the induction
of Tregs and the production of anti-inflammatory cytokine IL-10. Maresin-1 negatively
regulated IL-23 receptor expression on γδ T cells through downregulation of RORγ and
internalization of IL-23 receptor [24]. Therefore, maresin-1 suppressed induction of effector
cells and induced Treg expansion and anti-inflammatory cytokine production in T cells [15].

1.4. Neutrophils

Neutrophils are involved in the innate immune response and rapidly migrate to
infection or injury sites to eliminate invading microorganisms by phagocytotic activity.
Maresin-1 has been shown to suppress neutrophil infiltration and decrease the production
of CXCL1, which is one of the major chemokines to recruit neutrophils. Apoptosis is a
programmed cell death process that prevents the release of cytotoxic contents in cells, and
neutrophils contain various abundant cytotoxic substances. Maresin-1 has also been shown
to promote apoptosis of neutrophils to induce the resolution of inflammatory response [25].

2. The Inflammatory Actions of Maresin-1 in Inflammatory Diseases

In this section, we introduce the detailed action of maresin-1 in various diseases,
especially, neurological disorders, pain, respiratory diseases, diabetes and obesity, kidney
disease, liver disease, arthritis, colitis, infectious disease, cardiovascular diseases, and
cutaneous diseases.

2.1. Neurology

Neurological actions are essential for human beings to sustain life and the dysregula-
tion of neurological action leads to various severe disorders, such as Alzheimer’s disease.
Because there is no radical treatment for these neurological diseases, novel therapeutic or
preventive options are desired. Consistently, several studies have identified that maresin-1
had beneficial effects against these neurological diseases. It has been shown, in mouse
models, that maresin-1 showed an inhibitory effect on acute neurological damage such
as spinal cord injury and cerebral ischemia. In addition, maresin-1 has been shown to
impair the disease progress of a chronic degenerative disease, Alzheimer’s disease, by
the action mechanism of an inflammatory resolution against the deposition of amyloid-β
protein-mediated inflammation [26].

A spinal cord injury accelerates the inflammatory response in neurological tissue
and causes delayed remodeling of neurological function. Therefore, early resolution of
inflammation associated with a spinal cord injury is required to avoid an excessive in-
flammatory response in the inflammatory site. Maresin-1 has been shown to be active in
the resolution of inflammatory after a spinal cord injury. In an animal model of spinal
cord injury, maresin-1 accelerated the resolution of neutrophils and decreased macrophage
infiltration at the lesion, which contributed to neurological recovery after a spinal cord
injury [27].

In an animal model of brain infarction, maresin-1 also impaired inflammatory reac-
tions in lesions and reduced neurological defects [28]. Epigenetic modification is a powerful
gene regulatory mechanism through DNA and/or DNA-binding proteins, such as histone,
which modulate open chromatin sites to enhance transcriptional activation [29,30]. Inter-
estingly, maresin-1 has been shown to activate epigenetic modification mediated by silent
information regulator 1 (SIRT1 signaling), which is one of the histone deacetylases, to nega-
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tively regulate acetylation of nuclear factor kappa B and Bax expression, as well as to reduce
downstream proinflammatory cytokines, such as TNF-α and IL-1, leading to a reduction in
infarction size and the neurological defects after cerebral ischemia/reperfusion [31].

Epidemiological studies have shown the benefits of DHA intake to reduce the risk
of Alzheimer’s disease [32]. Furthermore, oral intake of DHA has been shown to impair
disease activity in an animal model of Alzheimer’s disease [33]. These findings suggest
that maresin-1, which is a derivative of DHA, should show therapeutic efficacy against
Alzheimer’s disease. Consistently, maresin-1 has also shown potential benefits associated
with neurological degenerative diseases. For instance, Alzheimer’s disease is a repre-
sentative neurological degenerative disease, and its incidence is increasing worldwide.
Because there are few therapeutic options that have obtained a satisfactory level of clinical
use, various research approaches are currently being conducted. In an animal model of
Alzheimer’s disease, amyloid-β42 protein was believed to play a central role in the patho-
genesis of Alzheimer’s disease by causing an inflammatory response in the amyloid-β42
proteins deposited in the brain. Maresin-1 has been shown to decrease the production
of proinflammatory cytokines, such as TNF-α and IL-6, while increasing the secretion
of the anti-inflammatory cytokines, IL-2 and IL-10, by the regulation of the amyloid-β42
protein [34–36].

2.2. Pain

The therapeutic potential of maresin-1 against pain has been investigated in various
animal models. Dorsal root ganglion (DRG) neurons were used to cause neurological pain
by capsaicin and vincristine sulfate injection into the hind paw plantar surface, and these
stimuli enhanced pains mediated by the transient receptor potential V1 (TRPV1), which
was suppressed by maresin-1 treatment [37]. Consistently, maresin-1 inhibited the TRPV1
agonist-induced activation of pain [38].

The beneficial effect of maresin-1 has also been shown in allodynia and thermal hy-
peralgesia, which relate to nerve hypersensitivity to pain [39]. Maresin-1 has also been
shown to be effective in chronic pain, when administered between the L4 and L6 vertebrae
of the spinal cord and the analgesic effect was observed for 5 days [40]. Regarding the
mechanisms, maresin-1 decreased proinflammatory cytokines (IL-1β, IL-18, and TNFα)
and reduced NLRP3 inflammasome, leading to the impairment of cell death and positive
activation of NF-κB/p65-mediated inflammation and pain [41]; the mechanical and ther-
mal hypersensitivity enhanced the IL-1β and IL-18 levels and the expression of NLRP3
inflammasome components, which were markedly suppressed by maresin-1 treatment [42].

Polyunsaturated linoleic acid decreases in Ca2+ ions in the cytosol of neurons and
astrocytes in an ischemia model [43]. Because maresin-1 is a derivative of polyunsaturated
linoleic, maresin-1 might also show therapeutic potential against brain stroke as another
possible action mechanism.

2.3. Respiratory Diseases

The anti-inflammatory effects of maresin-1 have been confirmed in various respiratory
diseases. Organic dust becomes the cause of chronic airway inflammation, especially
obstructive pulmonary disease, due to increased neutrophil infiltration and the production
of TNF-α and IL-6. Maresin-1 suppressed proinflammatory cytokine production and
intracellular adhesion molecule-1 (ICAM-1) expression in bronchial epithelial cells under
organic dust exposure [44]. Maresin-1 significantly decreased bronchoalveolar lavage
neutrophil infiltration, and the secretion levels of IL-6, TNF-α, and chemokine C-X-C motif
ligand 1 (CXCL1) [45].

High-dose maresin-1 treatment has been shown to impair lung inflammation in an
LPS-induced acute lung injury (ALI) mouse model [46]. Infiltrating neutrophils enhance
the inflammatory response and release proteolytic enzymes and reactive oxygen species to
cause excessive tissue damages. Neutrophil apoptosis was accelerated under LPS-induced
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ALI, which was impaired by maresin-1 due to the enhancement of caspase-dependent
neutrophil apoptosis [25].

Pulmonary fibrosis is a progressive, chronic lung epithelial injury that results in an
uncontrolled fibrotic response. Epithelial-to-mesenchymal transition (EMT) is thought to
have a pathogenetic role in pulmonary fibrosis by causing epithelial cells to irreversibly
shift to a mesenchymal phenotype. TGF-β1 plays a role as a positive driver for EMT
in pulmonary fibrosis and enhances collagen synthesis and fibroblast proliferation. The
concentration of TGF-β1 in bronchoalveolar lavage fluid and fibrosis markers, such as
fibronectin and α-SMA, were suppressed by maresin-1 administration [47]. Maresin-1 has
also been shown to inhibit proliferation, migration, and differentiation in fibroblast by
suppressing phosphorylation of decapentaplegic homolog 2/3 (Smad2/3) and extracellular-
signal-related kinase 1 and 2 (ERK1/2) in a dependent manner [48].

Bronchial asthma is a chronic inflammatory disease of the lower respiratory tract medi-
ated by Th2 allergic reactions, which are essential to exacerbate an inflammatory response
by NF-κB-induced ICAM-1 expression in vascular endothelial cells and lung epithelial
cells to increase eosinophil adhesion to endothelial cells and to promote Th2 differentiation.
Epidemiological studies have suggested that increased dietary intake of fish oil containing
omega-3 fatty acids was associated with a reduced risk of asthma [49], suggesting a possible
therapeutic efficacy of maresin-1 for asthma. In a mouse model of OVA-induced asthma,
maresin-1 markedly suppressed activation of the NF-κB signaling pathway and its down-
stream cascades, such as COX-2 and ICAM-1 [50]. Maresin-1 enhanced the suppression of
innate lymphoid cell type 2 (ILC2) in a TGF-β-dependent manner [51].

Pulmonary ischemia/reperfusion injury causes obstructive bronchiolitis, such as
pulmonary thrombolysis and oxidative stress generation plays some part in its pathogenesis.
A study has shown that maresin-1 impaired oxidative and antioxidant production leading
to protection of the lung tissues [52].

2.4. Diabetes and Obesity

The role of inflammation in the development of type 2 diabetes mellitus and its
complications has received increasing attention because the incidence is currently increasing
in the world. IL-1β, IL-6, and CRP are considered to be prognostic factors in diabetes [53],
and anti-inflammatory lipid mediators such as maresin-1 should prevent the worsening
of diabetic retinopathy by converging such adipose inflammation and altering insulin
resistance and adipokine secretion [54]. Diet-induced obese mice treated with maresin-
1 also exhibited decreased proinflammatory cytokines such as TNF-α and IL-1β [55].
Furthermore, high-fat diet-induced hyperglycemia has been improved by maresin-1 [56]
and maresin-1 has enhanced the repair function of macrophages and has also promoted the
diabetic wound repair ability [57].

Nonalcoholic fatty liver disease (NAFLD) associated with obesity is a pathological con-
dition caused by endoplasmic reticulum stress and activation of unfolded protein responses.
Maresin-1 has been shown to inhibit the endoplasmic reticulum stress of hepatocytes and
to enhance the phagocytic activity of Kupffer cells, leading to the protection of hepatocytes
from apoptosis [58]. DHA supplementation has been shown to impair metabolic abnormal-
ities in children with NAFLD [59], suggesting a possible therapeutic potential of maresin-1
against NAFLD. Studies have shown that maresin-1 ameliorated hepatic steatosis by in-
hibiting AMPK/SERCA2b-mediated endoplasmic reticulum stress [60]; impaired hepatic
lipidosis by inhibiting AMPK activation and inducing autophagy [61]; and suppressed
liver injury by increasing the expression and transcriptional activity of RORα [62].

2.5. Kidney Disease

Leukocyte-mediated inflammation also plays a pathogenetic role in acute kidney injury.
One study reported that maresin-1 influenced the survival of neutrophils and subsequently
prevented kidney injury. The macrophages produced 14S,21R-dihydroxydocosahexaenoic
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acid (14S,21R-diHDHA), which repaired the vascular endothelium and contributed to the
protection of kidney function [63].

Inflammation and fibrosis are also important pathologies in diabetic nephropathy. In a
mouse model of diabetic nephropathy, maresin-1 exerted a protective effect on glomerular
mesangial cells by decreasing the expression of ROS, NLPR3, caspase-1, and IL-1β, which
are responsible for the development of diabetic nephropathy [64].

Inflammation and oxidative stresses are also involved in ischemia/reperfusion-induced
renal injury; TLR4-mediated inflammatory response and the signal pathway mediated by
ERK, JNK, and P38 MAPK play an important role. Maresin-1 treatment has been shown to
decrease the expression levels of ERK, JNK, and P38 MAPK [65].

2.6. Liver

The effects of maresin-1 in hepatic injury have also been investigated in a mouse model
of acute hepatic injury. Maresin-1 inhibited reactive oxygen species and inflammatory
cytokines and chemokines, such as IL-6, IL-1β, and monocyte chemotaxis protein-1 (MCP-
1), and suppressed carbon tetrachloride-induced liver injury [66]. In another acute liver
injury mouse model induced by concanavalin A, maresin-1 also impaired liver injury by
reducing hepatocytes apoptosis while increasing apoptosis of mouse macrophages, in
addition to reducing ROS in macrophages [67].

Hepatic ischemia-reperfusion injury causes liver dysfunction after liver surgery. In
a rat model, maresin-1 impaired hepatic injury by activating hepatocyte and promoting
nuclear localization of Nrf-2, leading to a decrease in NF-κB activity [68].

In another study, the hepatoprotective effect of maresin-1 was abrogated by pretreat-
ment with Boc2 (lipoxin A4 receptor antagonist), and the hepatoprotective effect of maresin-
1 was further reversed by inhibition of Akt. Thus, maresin-1 protected the liver from
hepatic ischemia-reperfusion injury mediated by the ALXR/Akt signaling pathway [69].

2.7. Arthritis

Several studies have shown the therapeutic potential of maresin-1 against arthritis. The
concentration of maresin-1 in synovial fluid of rheumatoid arthritis patients has been shown
to be related to disease activity [70], suggesting that maresin-1 might have a protective role
in the development of rheumatoid arthritis. The serum level of maresin-1 was also lower
in inactive rheumatoid arthritis than active rheumatoid arthritis. An inverse correlation
was observed between the FoxP3/RORc ratio and the disease activity score 28, which is
a measure of disease activity in rheumatoid arthritis. Furthermore, maresin-1 has been
shown to suppress inflammatory response, in a rheumatoid arthritis animal model [71].
Maresin-1 also showed therapeutic potential by elevating intra-articular lavage fluid in a
treadmill-loaded mouse model of osteoarthritis. Maresin-1 treatment has been reported to
enhance type II collagen in cartilage and to decrease MMP13 in the synovium, mediated by
the PI3k/Akt and NF-κB p65 pathways [72].

2.8. Colitis

The beneficial effects of EPA and DHA on inflammatory bowel disease have been
reported. In a colitis animal model induced by dextran sulfate sodium (DSS) and 2,4,6-
trinitrobenzene sulfonic acid, maresin-1 suppressed disease activity in colitis and improved
weight loss by decreasing IL-1β, TNF-α, IL-6, and IFN-γ in the acute phase. Maresin-1
also decreased neutrophil migration and ROS production mediated by the NF-κB path-
way [73]. Maresin-1 negatively regulated the toll-like receptor 4 (TLR4)-mediated NF-κB
pathway [74].

2.9. Infectious Diseases

Acute inflammation induced by infections can cause excessive tissue damage, and
therefore, the resolution of an acute inflammatory response during the early phase is im-
portant for infectious disease regulation. Maresin-1 has also been shown to regulate the
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inflammatory immune response during an Escherichia coli infection [75]. Furthermore, in
a sepsis animal model induced by intestinal ligation and puncture, maresin-1 decreased
the serum concentration of LPS, promoted bacterial clearance, and protected critical organ
functions in addition to improved survival [76]. Furthermore, mitochondrial dysfunc-
tion leads to increased ROS production in sepsis, and maresin-1 has been reported to
increase mitochondrial membrane integrity by retaining adenosine triphosphate content
and decreasing ROS production [77].

During severe sepsis, acute kidney injury is the most severe complication, which has
been shown to be impaired by maresin-1 treatment. Neutrophil infiltration is inhibited by
maresin-1 via the NF-κB/STAT3/MAPK pathway and negatively modulated proinflamma-
tory cytokine levels [78]. Maresin-1 can also impair myocardial infarction during sepsis and
reduce the levels of LDH and CK, leading to the improvement of cardiac function through
promoting M2 macrophages differentiation [79].

2.10. Cardiovascular Diseases

Cerebrovascular diseases are life-threatening diseases with inflammation responses
that can result in vascular damage. Maresin-1 treatment could impair these responses
through anti-inflammatory effects in vascular endothelial cells. Maresin-1 has been shown
to inhibit TNF-α-induced monocyte adhesion and ROS generation in vascular endothelial
cells and smooth muscle cells by causing upregulation of cAMP and downregulation
of the transcription factor NF-κβ [80]. Vascular injury activates remodeling of vascular
endothelial cells by inflammation and sometimes causes neointima formation leading to
re-occlusion in blood vessels. Systemic administration of maresin-1 has been shown to
reduce neointima formation, and therefore, should suppress the re-occlusion of blood
vessels [81].

There is agreement that chronic inflammation is one of the causes of atherosclerosis.
Profiling of the aortic qualities of mediators in Apoe-deficient mice fed a high-fat diet
showed increased inflammatory lipid mediators leukotriene B4 and prostaglandin E2, and
decreased omega-3 polyunsaturated fatty acid lipid mediators, such as resolvin D2 (RvD2)
and maresin-1. Maresin-1 inhibited the progression of atherosclerosis by suppressing
necrosis in the atherosclerosis site and macrophage accumulation, and increasing the
fibrous coat thickness of smooth muscle cells [82].

Smooth muscle cell-specific TGF-β2 receptor-deficient mice were used to induce
localized abdominal aortic aneurysms to confirm the therapeutic potential of maresin-1;
maresin-1 treatment suppressed the growth of aortic aneurysms mediated by LGR6 receptor
signaling which was responsible for TGF-β2 and MMP2 activity in macrophage-apoptotic
smooth muscle cell crosstalk [83].

2.11. Cutaneous Diseases

Psoriasis is an inflammatory skin disease that is characterized by scaly erythematous
plaques, which can also drive the inflammatory immune reaction to systemic organs. Pa-
tients with psoriasis have been shown to have a lower amount of omega-3 fatty acids as
compared with healthy controls [84], indicating the importance of a diet with regular intake
of foods that provide omega-3 fatty acids. A study reported that consistent fish oil supple-
ment intake impaired psoriatic skin inflammation in approximately 80% of patients with
psoriasis [85]. There are several benefits of omega-3 polyunsaturated fatty acid metabolites
in inflammatory skin diseases. Maresin-1 has also been known to have anti-inflammatory
action in psoriasis [24]. A topical application of maresin-1 showed anti-inflammatory effects
in a mouse model of psoriasis induced by imiquimod. Maresin-1 inhibited the production
of IL-17A by γδTCRmid+ and CD4+ cells in the skin by downmodulation of IL-23 receptor
(IL-23R) expression in clathrin-dependent internalization mechanisms in γδTCRmid+ and
CD4+ cells [24]. Therefore, topical maresin-1 could become a therapeutic option for the
treatment of IL-17-mediated other inflammatory diseases.
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There are various types of skin inflammations. For instance, Th1 is involved in the
pathogenesis of contact dermatitis and Th2 mediates atopic dermatitis. The pathogenesis
of alopecia areata is associated with changes in Th1, Th2, and Th17. Therefore, maresin-1
should show anti-inflammatory actions in various skin diseases.

3. Conclusions

In this review, we summarized the therapeutic potential of maresin-1 in various
inflammatory diseases. Maresin-1 could be an alternative therapeutic option to overcome
the disadvantages of current anti-inflammatory agents. Furthermore, by discovering the
effects on other types of cells, such as keratinocytes, the actions of maresin-1 could be
clarified. Because the incidence of inflammatory diseases is currently increasing, future
basic research and clinical trials for maresin-1 should provide beneficial information on its
use for the daily clinical treatment of inflammatory diseases.
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