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Abstract: The purpose of this review article is to outline the extended applications of polyurethane
(PU)-based nanocomposites incorporated with conductive polymeric particles as well as to condense
an outline on the chemistry and fabrication of polyurethanes (PUs). Additionally, we discuss related
research trends of PU-based conducting materials for EMI shielding, sensors, coating, films, and
foams, in particular those from the past 10 years. PU is generally an electrical insulator and behaves
as a dielectric material. The electrical conductivity of PU is imparted by the addition of metal
nanoparticles, and increases with the enhancing aspect ratio and ordering in structure, as happens
in the case of conducting polymer fibrils or reduced graphene oxide (rGO). Nanocomposites with
good electrical conductivity exhibit noticeable changes based on the remarkable electric properties of
nanomaterials such as graphene, RGO, and multi-walled carbon nanotubes (MWCNTs). Recently,
conducting polymers, including PANI, PPY, PTh, and their derivatives, have been popularly engaged
as incorporated fillers into PU substrates. This review also discusses additional challenges and
future-oriented perspectives combined with here-and-now practicableness.

Keywords: polyurethane; nanocomposite; conducting filler; conductive; electrical

1. Introduction

Among various insulating polymers matrices, such as epoxies, alkyds, polyacrylates,
polyurethanes (PUs), and others, PUs in particular consist of isocyanates of hard segments
and polyols of soft segments, and are one of the widest applicable polymers through
tailoring polymer structures. Therefore, they have various polymer properties. PUs were
first synthesized by German professor Bayer and his colleagues [1]. They have outstand-
ing properties, including excellent elasticity, elongation, high impact, tensile strength,
high abrasion resistance, good weathering resistance, excellent gloss, color retention, and
corrosion resistance properties [2]. The aforementioned properties allow them to find appli-
cations in a variety of industries, including leather [3], foams [4–6], furniture, fibers [7–9],
elastomers [10], adhesives [11], paints [12,13], coatings [14], sensors [7], electronic compo-
nents [15], biomedical [16,17], and others [18,19]. In spite of versatile applications, the use
of standalone PU often cannot ensure that sufficient thermal and mechanical performances
are attained.

For these reasons, it is inevitable to supplement character by blending and composite
type in PUs. The effect of introducing conducting polymers into insulating matrices,
such as PU, is already well-known. This effect is associated with improved processability,
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stability, and solubility and better thermal, mechanical, electrical, and optical properties.
These composites have infinite potential as functional materials for various industries,
thereby motivating researchers. However, interestingly, only seven review articles related to
conducting polymer in PU matrices have been published since 1993 [2,20–26]. Nevertheless,
their steady research progress has been reported, which has brought about extended
applications of PUs.

Interest in the current technology has highlighted nanocomposites composed of con-
ducting polymers and a non-conducting PU matrix. The emerging applications of the
nanocomposites involve electronic devices, actuators, batteries, chemical/biological sen-
sors, etc. The target of conductive polymers is to fabricate polymeric materials with
excellent mechanical properties, good processability, and high conductivity. The objective
is the preparation of conducting polymeric materials with good mechanical properties and
processability associated with high conductivity or electrochromism [27,28]. The incorpo-
ration of conducting polymer in a PU matrix is performed covalently or non-covalently,
leading to improved characteristics such as conductivity.

This review article aims to review not only the increased applications of the nanocom-
posites with conducting polymers in conducting but also summarize an outline on chem-
istry, fabrication, and applications such as electromagnetic interference (EMI) shielding,
sensors, coating, and films and foams. Furthermore, we provide interesting challenges and
future-oriented perspectives combined with here-and-now practicableness.

2. Synthesis of Polyurethanes (PUs)

PUs are the only class of plastic, i.e., thermosetting or thermoplastic, rigid or flexible,
solid or open cellular type, with extensive alterations in a property. The sort, site, and
structure of both isocyanate and -ol determine not only the progress of PUs’ forming
reactions, but also their properties and final applications [29]. They are formed via a
chemical reaction which is in step-growth or condensation polymerization, between an
isocyanate (di or poly) and -ol (di or poly) to form a prepolymer. Segmented PU comprises
a soft segment with a low Tg and a hard segment of isocyanate and chain-extender. The
prepolymers react with the chain extender for increasing a molecular weight and building
a linear block copolymer with alternating blocks of the hard segment and soft segment [30].
The main reaction in PU synthesizing is the formation of the carbamate or urethane bond
occurred as the isocyanate reacts with an alcohol and the urea bond generated as the
isocyanate reacts with an amine. The reaction can be affected by some parameters, including
steric hindrance, enabling the reaction or adjacent electron-withdrawing groups to be
slowed down, in turn allowing an increase in the degree of reactions [31].

The polyols employed in PU involve polyesters, polyethers, polycarbonates, and com-
binations of these polyols in the formation of diblocks and triblocks. The main isocyanates
qualified for generating biomedical PU are aromatic and aliphatic. The polyols allow the
resultant PUs to possess outstanding tensile properties with high Tm, and the isocyanates
enable them to be degradable in order to avoid any toxic issue. Diols or diamines are
generally used as chain extenders, which react with isocyanates to build PU’s Mw and
increase the length of block in the hard segment. The raw materials used in PU synthesis
are summarized in Tables 1–3.

Bio-based PU is mainly prepared by a pre-polymerization process, of which hy-
droxyl or isocyanate-terminated prepolymers are fabricated by the reaction of the desired
macroglycol with diisocyanate. Then, a chain extender and a branch-generating moi-
ety are supplemented to the prepolymer to acquire a polymer with a high Mw. The PU
is mainly accompanied with a solvent, such as xylen, tetrahydrofuran (THF), dimethyl-
formamide (DMF), dimethylacetamide (DMAc), or dimethylsulfoxide (DMSO). When a
branch-generating moiety is added to the prepolymer, high-branched PU (HPU) is obtained,
which creates a gel with solvent.
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Table 1. Raw materials used in PU synthesis using soft-segment.

Soft-segment Polyols
(-OH)

Polyester segments
[29–32]

Poly (ε-caprolactone)(PCL) diol
Poly (D,L,-lactide)(PDLLA) diol
Poly (glycolide)(PGA)diol
Poly (ethylene adipate) diol

- Rigid PU with good heat and
chemical resistance

- Susceptible to hydrolysis

Polyether segments
[30,33–35]

Poly (ethylene oxide) (PEO)
Poly (propylene oxide) (PPO)
Poly (tetramethylene oxide) (PTMO)
Poly (hexamethylene oxide) (PHMO)

- High moisture permeability
and low Tg

Triblock segments
[36–38]

PCL-b-PEO-b-PCL diol
PCL-b-PPO-b-PCL diol
PCL-b-PTMO-b-PCL diol

Table 2. Raw materials used in PU synthesis using hard-segment.

Hard-segment

Isocyanates
(R-N=C=O)

Aliphatic
[39,40]

1,4-Diisocyanatobutane (BDI)
1,6-Diisocyanatohexane (HDI)
Lysine methyl ester diisocyanate (LDI)

- Vinyl terminated
isocyanate, which
provides site of
crosslinking

Cycloaliphatic
[41,42]

Dicyclohexylmethane
diisocyanate(H12MDI)
Isophorone diisocyanate (IPDI)

Aromatic
[43]

Methylene diphenyl diisocyanate
(MDI)

- Negative charge, more
reactive, to produce
rigid PU, lower
oxidatives & ultraviolet
stabilities

Chain extender

Di/poly-hydroxyl
[44]

1,4-Butane diol
Cyclohexane dimetnanol

- Require organometallic
catalysts

Hydroxyl amine
[45] Diethanol amine (DEA)

Diamine
[46]

Ethylene diamine (ED)
1,4-Butanediamine(putrescine)

- Increase bridging with
biuret linkages

Table 3. Raw materials used in PU synthesis using additives.

Additives Catalysts

Amines
[29] Diaminobicyclooctane (DABCO)

- By complex formation
between amine and
isocyanate

Organometallic
compounds [47]

Dibutyltin dilaurate
Dibutyltin diacetate

- Toxic and cause disposal
problems

Alkali metal salts of
carboxylic acid and

phenols [48]

Calcium, magnesium, strontium,
barium, salt of hexanoic, octanoic,
naphthenic, linolenic acid

The PU could be modified according to the demands of their applications alternated
with bio-based materials; as such, it is necessary to obtain the desired polyols utilized as
chain-extenders for the manufacture of bio-based PU. This involves modifications, includ-
ing hydroxylation of vegetable oils, amidation of tannic acid, epoxidation of unsaturated
natural products, modification of starch with epichlorohydrin and bisphenol A, glycerolysis
of citric acid, etc. [49,50].

3. Diverse Types of Conductive PU-Based Nanocomposites

Some of the main characteristics in outstanding conducting polymers such as graphene
oxide (GO) and carbon nanotubes (CNT) include electrical superconductivity, excellent
stability, and a simple synthesis. Recently, conducting polymers, including polyaniline
(PANI), polypyrrole (PPy), polythiophene (PTh), and their derivatives, are popularly
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engaged as incorporated fillers into PU matrices [2,51–56] due to their features, such as
high charge to surface ratio, high efficiency, light weight, and low cost [57,58]. Several
research groups have reported that a small amount of the conducting polymer, as fillers, is
dispersed in PU matrices. Then, it allows for the fabrication of conductive nanocomposites
applicable for electronic devices such as sensors [59,60], actuators [61], membranes [62,63],
coatings [14], and others [15–19].

The conducting polymer fillers involve polyorthotoluidine (POT), polyaniline (PANI),
polypyrrole (PPy), polythiophene (PTh), and poly (ethylenedioxythiophene) (PEDOT). The
structure of these conducting polymers is shown in Figure 1. Despite common use in a com-
mercial area, there are still unresolved issues in diverse fields such as poor processability,
solubility, and mechanical properties. Most researchers have reported several approaches
in forming various manners to prepare blends and nanocomposites in their synthesis to
overcome the mentioned issues. The properties of nanocomposites primarily depend on
the disposition of conducting polymer dispersion in the PU matrices and the interaction of
conducting polymer fillers and PU matrices [59].
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Figure 1. Structures of commonly used conducting polymer as fillers in PU matrices (n + m = 1, x =
degree of polymerization).

3.1. Polyaniline (PANI)/PUs Composites

PANI is a broadly studied intrinsically conducting polymer using dopants, which is
employed to project soft films for flexible strain sensors. Wang et al. fabricated a novel
stretchable, sensitive, self-healing, and recyclable PANI/PU hydrogel sensor through in-
situ polymerization of aniline, generating a double network [64]. The prepared hydrogel
showed 1.1 MPa of strength, 0.3 MPa of Young’s modulus, and 500% of elongation at break,
which were skin-like mechanical properties, as shown in Figure 2. The hydrogel sensor
also has an outstanding conductivity of 7.87 S m−1 and a sensitivity of 2.89.



Int. J. Mol. Sci. 2022, 23, 1938 5 of 15Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 2. (A) Preparation of dually interpenetrating and synergistic network and (B) Demonstration 

of the conductivity of the interpenetrating PANI/PU hydrogels by lighting the LED bulb (a) the 

original sample, (b) stretched to a strain about 350%, and (c) fracture at strain exceeding 500%. (d) 

C-V curves of PANI/PU hydrogel prepared using different feed concentrations of aniline. (e) and (f) 

relative resistance variation during the successively stretching-releasing from 1% to 100% maximum 

strain. (g) relative resistance variation of the PANI/PU hydrogel as a function of applied strain. (h) 

relative resistance variation during the repeated stretching-releasing deformation for ~1200 cycles 

at 25% maximum strain. Reprinted with permission from Ref. [64]. Copyright 2021 Elsevier. 

Athawale et al. prepared PU films modified with nanocomposites of PANI-zinc oxide 

for biofouling mitigation in 2019 [65]. It was found that this was effective in reducing the 

adhesion of marine bacteria due to the inherent conductivity of PANI and the photocata-

lytic effect of zinc oxide (ZnO). The mechanical properties and bioaffinity of PANI were 

anticipated to be upgraded by incorporating small amounts of nano ZnO. In addition, 

they could obtain enhanced environmental stability associated with long-term applica-

tions and minimize the leaching rate of ZnO from the composites. In 2013, Qin et al. re-

ported that conductive PANI/PU fibers with elasticity were fabricated through in-situ 

chemical oxidative polymerization of PANI on the surface of PU fibers [66]. The 

Figure 2. (A) Preparation of dually interpenetrating and synergistic network and (B) Demonstration
of the conductivity of the interpenetrating PANI/PU hydrogels by lighting the LED bulb (a) the
original sample, (b) stretched to a strain about 350%, and (c) fracture at strain exceeding 500%. (d) C-V
curves of PANI/PU hydrogel prepared using different feed concentrations of aniline. (e,f) relative
resistance variation during the successively stretching-releasing from 1% to 100% maximum strain.
(g) relative resistance variation of the PANI/PU hydrogel as a function of applied strain. (h) relative
resistance variation during the repeated stretching-releasing deformation for ~1200 cycles at 25%
maximum strain. Reprinted with permission from Ref. [64]. Copyright 2021 Elsevier.

Athawale et al. prepared PU films modified with nanocomposites of PANI-zinc oxide
for biofouling mitigation in 2019 [65]. It was found that this was effective in reducing the
adhesion of marine bacteria due to the inherent conductivity of PANI and the photocat-
alytic effect of zinc oxide (ZnO). The mechanical properties and bioaffinity of PANI were
anticipated to be upgraded by incorporating small amounts of nano ZnO. In addition,
they could obtain enhanced environmental stability associated with long-term applications
and minimize the leaching rate of ZnO from the composites. In 2013, Qin et al. reported
that conductive PANI/PU fibers with elasticity were fabricated through in-situ chemical
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oxidative polymerization of PANI on the surface of PU fibers [66]. The conductivity of
the composites depended on PANI contents in which it was decreased for higher PANI
contents with a maximum value of 10−2 (Ω·cm)−1 for 6–7 wt.% PANI. The piezoresistivity
of the resultant composites was shown to have a much higher strain range by up to 400%.

3.2. Polypyrrole (PPy)PUs Composites

Among various conducting polymer fillers, PPy has shown excellent electrical prop-
erties and focused on promising materials in view of the electrical composite perspective.
Tyagi et al. developed percolative polyurethane-polypyrrole-straw composites with en-
hanced dielectric constant and mechanical strength via vapor phase polymerization, as
shown in Figure 3 [67]. It was reported that the fabricated composites showed 26% in-
creased tensile properties and 133% enhanced dielectric constant, low dissipation factor,
and 51.3% decreased water uptake, accordingly having the potential for a wide applications
including sensors, actuation, energy generation, and microelectronics.
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uncoated paddy straw particles. Reprinted with permission from Ref. [67]. Copyright 2020 Elsevier.

Merlini and Barra et al. investigated comparative studies about the effect of mont-
morillonite/PPy and PPy content on the properties of PU solution, morphology, and
mechanical/electrical properties. It was found that the morphology, fiber diameter, proper-
ties, and electrical conductivity of the electrospun composites were affected by the collector
and filler type [68]. Further, an approach was demonstrated for configuring the neural
prostheses, leading to dramatic improvements in adherence, proliferation, and differenti-
ation of both PC12 cells and Schwann cells by Kim et al. [69]. They conducted the study
of PPy-coated aligned (inner) and random (outer) layered nanofibrous composites for
two-layered nerve guidance conduit (NGC) to guide neuronal extension and regeneration
for enhancing tear resistivity. They examined the potential for efficient application of engi-
neered NGC. In that same year, Paun et al. demonstrated the efficiency of micropatterned
PPy/PU composites prepared through dispersing PPy nanograins within a mechanically
resistant PU matrix to improve the osteogenesis in osteoblast-like cells [70]. The coated
PPy/PU layer was micropatterned with 3D geometries by laser, and then the composites
were coated by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) to restore their chem-
ical and electrical activity integrity. They aimed to modulate cellular behavior through
simultaneous morphological signals and electrical stimulation. The fluorescence staining of
Figure 4 notes about two fully developed cells per rectangular pattern. They could control
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the expression of the single cell to about 50 × 50 µm2. One of their studies, related to the
PPy/PU composite for bone regeneration, was also conducted in 2015, showing the effect
of electrically conductive layers of the composites on bone regeneration [71]. In this study,
they also successfully used the MAPLE technique to fabricate biocompatible, electrically
conductive PPy/PU composite layers. In addition, it was found that electrical stimulation
of 200 µA currents passing through the composite layers for 4 h increased osteogenesis in
the cells. The SEM image in Figure 5 confirms the morphology and size of PPy nanograins
and offers their incorporation in PU matrices.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 15 
 

 

through simultaneous morphological signals and electrical stimulation. The fluorescence 

staining of Figure 4 notes about two fully developed cells per rectangular pattern. They 

could control the expression of the single cell to about 50 × 50 μm2. One of their studies, 

related to the PPy/PU composite for bone regeneration, was also conducted in 2015, show-

ing the effect of electrically conductive layers of the composites on bone regeneration [71]. 

In this study, they also successfully used the MAPLE technique to fabricate biocompatible, 

electrically conductive PPy/PU composite layers. In addition, it was found that electrical 

stimulation of 200 μA currents passing through the composite layers for 4 h increased 

osteogenesis in the cells. The SEM image in Figure 5 confirms the morphology and size of 

PPy nanograins and offers their incorporation in PU matrices. 

 

Figure 4. Scanning Electron Micrographs of MG-63 cells growing on the micropatterned PPy/PU 

substrates (a) with insets showing Scanning Electron Micrographs of cells growing inside the rec-

tangular patterns (b,c) and their corresponding fluorescence microscopy images (d,e). Reprinted 

with permission from Ref. [70]. Copyright 2018 Elsevier. 

 

Figure 5. (A) SEM micrographs of the PPy-based layers: (upper panel) native; (lower panel) depos-

ited by MAPLE. (a) PPy; (b) PPy/PLGA; (c) PPy/PU (the white arrows point toward the PPy 

nanograins). The insets from (b) display the PPy/PLGA layers viewed in cross-section, and (B) Mor-

phological appearance of the MG63 osteoblast-like cells stained with AO (green)/HO (blue) after 1 

day of cell culture on PPy, PPy/PLGA and PPy/PU layers: (upper) native; (middle) deposited by 

Figure 4. Scanning Electron Micrographs of MG-63 cells growing on the micropatterned PPy/PU
substrates (a) with insets showing Scanning Electron Micrographs of cells growing inside the rectan-
gular patterns (b,c) and their corresponding fluorescence microscopy images (d,e). Reprinted with
permission from Ref. [70]. Copyright 2018 Elsevier.
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Figure 5. (A) SEM micrographs of the PPy-based layers: (upper panel) native; (lower panel) deposited
by MAPLE. (a) PPy; (b) PPy/PLGA; (c) PPy/PU (the white arrows point toward the PPy nanograins).
The insets from (b) display the PPy/PLGA layers viewed in cross-section, and (B) Morphological
appearance of the MG63 osteoblast-like cells stained with AO (green)/HO (blue) after 1 day of cell
culture on PPy, PPy/PLGA and PPy/PU layers: (upper) native; (middle) deposited by MAPLE;
(lower) deposited by MAPLE and electrically stimulated. Reprinted with permission from Ref. [71].
Copyright 2015 Elsevier.
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In addition, polymeric nano/micro-fibers as phases have been employed for their
chemical coating with polymeric materials. Coated fibers have been used to develop artifi-
cial muscles [72,73], supercapacitors and batteries [74,75], and sensing applications [76] due
to the large surface area, high electrochemical reactivity, and short path length for the diffu-
sion of ions from the solution compared with the direct employment of conducting polymer
films [73]. Otero et al. developed a chemically generated PPy on a PU microfibrous matrix,
sensing the surrounding conditions [72]. It was reported that the PPy-incorporated PU mat
was prepared using a PU electrospun mat as a template for in situ pyrrole polymerization.
The fabricated composite mat displayed a good electroactivity and high porosity and spe-
cific surface area. The results showed promise in sensing actuators tools and robots based
on conducting polymers. Owing to the increasing of the temperature, the reaction has been
made easier because of Arrhenius temperature dependence, faster and longer conformation
movements of the chains, and greater diffusion coefficients. As shown in Figure 6, they
investigated the sensing capability of the fabricated fibrous matrix electrode by recording
chronopotentiograms at diverse temperatures in which chare was kept constant. It was
shown that the consumption of electrical energy, while the reaction was occurring for both
oxidation and reduction, was a linear function of the temperature.
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Figure 6. Chronopotentiograms obtained at different temperatures, indicated in the figure,
when (a) +0.2 mA and (b) 0.2 mA were applied to a PU/PPy micro-fibrous mat for 116 s in 1 M
NaCl aqueous solution, (c) Variation of consumed electrical energy during reaction at different
temperatures for anodic and cathodic processes of PU/PPy mat. Reprinted with permission from
Ref. [72]. Copyright 2014 Elsevier.

3.3. Poly(Ortho-Toluidine)(POT)PUs Composites

One of the other electrical features of replaced polyaniline, such as poly(ortho-toluidine)
(POT), for diverse applications has inflamed researchers base passion, especially facing the
development of electrochromic devices. The performance of POT nanoparticles dispersed in
PU matrices through a solution blending technique was reported in 2014 [64]. The minimal
dispersion (0.25–1.0 wt.%) of POT in castro oil polyurethane (COPU) considerably increases
the thermal stability, physicomechanical properties, and corrosion resistance performance
of these coatings. The potentiodynamic and electrochemical impedance spectroscopy (EIS)
measurements exhibited that the POT/COPU-coated MS efficaciously offers protection via
a barrier mechanism in anticipation of acid and salt medium to the mild steel. The salt
spray test also showed a similar behavior of coatings to that of the acid environment. The
POT/COPU coatings have indicated a greater corrosion protective performance than that
of the COPU coatings in acid and saline environments.

Hu and Wu reported that an eco-friendly thermoelectric composite made of WPU,
MWCNT, and PEDOT:PSS was developed for textile yarn coating applications, as shown
in Figure 7 [77]. The waterborne polyurethane (WPU) solution they synthesized using
PEG, IPDI, and BDO was added into the MWCNT/PEDOT:PSS dispersions, stirred, and
sonicated. Then, the mixture was poured into a Teflon mold and dried. After that, the
characterization of fabricated composite films displayed enhanced ratios of MWCNT to
PEDOT:PSS, the incorporation of DMSO doped highly conductive PH1000, and higher
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concentration of MWCNT could increase the power factors of the composite. The optimal
formulation was indicated at the sample with 20 wt.% MWCNT, 1:4 ratios of MWCNT to
PH1000, and 5 wt.% DMSO doping, with having an electrical conductivity of ~13,826 S/m,
Seebeck coefficient of ~10 mV/K, and power factor of ~1.41 mW m−1 K−2 at room tem-
perature. Compared with organic solvent-based polymers, this fabricated waterborne
composite showed satisfactory thermoelectric performance and good processability. The
application in textile yarn coating was further demonstrated on polyester and cotton yarns,
respectively. The results exhibited that the prepared composite could be successfully coated
on textile yarns, and the polyester filament was more suitable for coating substrate than
staple cotton yarn. Those coated yarns are able to be treated as thermoelectric legs in the
future design of fabric thermoelectric generators (TEG). The proposed fabric TEG concept
is emerging to overcome the obstacles of the difficulty of wearable flexible film TEG.
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Figure 7. Schematic diagram of the film formation process of nonionic WPU/PEDOT:PSS/MWCNT
composite. Reprinted with permission from Ref. [77]. Copyright 2016 Elsevier.

3.4. Poly(ethylenedioxythiophene)(PEDOT)/PUs Composites

Uniform and transparent ILPU gels, consisting of PU elastomer and ionic liquid (IL),
were synthesized, and then their mechanical and electrical properties were investigated
as shown in Figure 8. It was indicated that IL/PU/PEDOT:PSS composites, which were
developed through sandwiching the IL/PU gel between two PEDOT:PSS films as flexible
electrodes, showed rapid and intensive bending to anode under the electric field, where
the bending displacement of 3.8 mm was obtained at IL 40 wt.%, 2 V, appropriable for the
strain of 0.32%. Accordingly, the fabricated electrical composite actuator has potential at
frequencies higher than 10 Hz [78]. In another report, T. Chen et al. synthesized PEDOT:PSS
noncovalent functionalized graphene–polyurethane dielectric elastomer composites with
ultrahigh relative permittivity (350 at 1 kHz), low dielectric loss (0.2 at 1 kHz), low loss
modulus (200 Mpa), and low loss tangent(0.4), which are beneficial for the formation of
microcapacitors in the matrix and suppressing the leakage current. This result was reported
as a promising material for micro-actuator electromechanical applications.
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3.5. Other Conducting Polymer/PU Composites

Nowadays, graphene or reduced graphene oxide (rGO), a one-atom-thick two-dimensional
carbon lattice, has been widely discussed as an emerging alternative of multifunctional
EMI shielding materials due to its surpassing electrical conductivity of 6000 S·cm−1 and
thermal conductivity of 5000 W·m−1·K−1 [79–81]. Nonetheless, many researchers have
been studying to achieve high-performance conductive polymer-reinforced polymer matrix
composites. Solving this task, the introduction of rGO fillers has been usually employed
for improving compatibility within or on a polymer matrix. For instance, Wang et al.
developed through a two-stage bath produce shown in Figure 9 [82]. Briefly, the syn-
thesized WPU with 1, 2 and 3 wt.% of the as-prepared M-rGO (GO modified with 3-
mercaptopropyltriethoxysilane (MPTES)) and rGO were prepared and stirred with a me-
chanical stirrer (300 rpm) for 1 h at room temperature. The prepared cotton fabric was
immersed into the mentioned solution and then dried. Next, it was placed under UV irra-
diation for 30 min. Finally, the M-rGO-WPU/cotton fabric with conductive interconnected
network and low M-rGO loadings was fabricated through thiolene click reaction. Owing to
the creation of the conductive interconnected network, the resultant fabric exhibited good
electrical conductivity, enhanced mechanical properties, higher EMI shielding performance,
and capacity of heat transmission. This investigation showed the potential of this material
for high-performance EMI shielding applications.
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Ding and Xu et al. reported a method for modifying carbon-based materials via
forming possible cation-π interactions between the π-electronic surfaces in carbon fillers
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and 1-aminopropyl-3-methylimidazolium hexafluorophosphate in order to improve the
EMI SE of PU composites. The focus of this study is to compare the effect of the geometry
of the MWCNTs and graphene nanoplates (GNs), as well as the interaction between Fe3O4
and carbon fillers on the dielectric properties and electromagnetic interference shielding
effectiveness (EMI SE) of WPU composites [83]. WPU-base nanocomposites incorporated
with GNs and MWCNTs were developed by polymerizing hybrid emulsions. The carbon
fillers displayed excellent dispersion in the PU polymeric phases, as Magnetic Fe3O4
nanoparticles could offer higher EMI SE of PU/GNs; however they disrupted the EMI SE
of PU/MWCNTs because the two-dimensional geometry of the GNs could restrain the
strong magnetic attraction between Fe3O4 and weaken the aggregation of GNs. The results
indicated that the distinct morphological discrepancies of GNs and MWCNTs influence
the EMI SE and dielectric properties of the PU composites. The tensile strength and the
elongation at fracture of neat PU/12 GNs-IL/10Fe3O4 film could attain 8.9 Mpa and 391.7%,
respectively. It eventuated that the PU/GNs-IL/Fe3O4 composites offer higher SE, further
indicating their advantage for an EMI shielding material.

Lee et al. prepared nanocomposites of waterborne polyurethane (WPU) with function-
alized graphene sheets (FGS) in situ method. They have also observed a 105 fold increase
in the electrical conductivity of WPU after incorporation of factionalized graphene sheets
using an in-situ polymerization technique. This result was from that the FGS enhanced the
crystallization of the soft segment of WPU evidently [84].

Son et al. combined a reentrant honeycomb-shaped graphene-CNT structure within a
shape-memory polyurethane (SMPU) to accomplish high-performance mechanical proper-
ties with graphene-based thermal transport properties [85], as shown in Figure 10. The em-
ployed approach related in ice-templated self-assembly and radial compression fabrication
caused a directionally porous as well as micro-honeycomb graphene-CNT structure, having
continuous conductive paths in vertical and horizontal, highly porous and co-continuous
frameworks, and ommi-directional stretchability owing to 2D properties. The facile infiltra-
tion of SMPU into the graphene-CNT formed a graphene-CNT framework. The fabricated
micro-honeycomb graphene CNT/SMPU composites simultaneously displayed higher
electrical/thermal conducting, caused by the interconnected graphene-CNT framework,
and excellent tensile shape memory properties because of the arranged carbon/SMPU
composite structure.
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graphene/CNT networks for omnidirectionally stretchable supercapacitor electrodes based on a
directional freezing and radial compression process. Reprinted with permission from Ref. [85].
Copyright 2017 RSC Pub.

These nanocomposites exhibit enhanced mechanical properties and thermal stability
and showed an excellent electromagnetic wave healable capability. These flexible PU
electronics can be employed as flexible conductors and strain sensors to detect the bio-
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signals of finger bending. S.R. Mustapa et al. prepared Jatropha-oil based polyurethane
electrolyte film using lithium perchloride ion (LiClO4), replacing conventional petroleum-
based polyurethane. The highest conductivity is achieved at 25 wt.% of LiClO4 salt content,
which is 1.29 × 10−4 S/cm at room temperature 30 ◦C [86].

4. Conclusions and Future Perspective

Among diverse insulating polymers phases such as epoxy, alkyd, and polyacrylates,
PUs are one of the polymers with a wide range of applications, which have versatile nature
due to consisting of both hard and soft segments. Therefore, this allows PUs to be applicable
for various industries in leather, coating, elastomers, adhesives, sensors, electronic compo-
nents, biomedical, and others [3–19]. Recently, it has been shown that the effect between
conducting polymers as fillers and insulating PUs as matrices enables increases in their
properties involving processability, stability, and solubility and their thermal, mechanical,
and electrical properties [76]. Hence, it is critical to introduce structural properties in PU
matrices via blending and composite types, thereby enabling good functionality. Although
conducting polymers such as polyaniline, polythiophene, and polypyrrole show excellent
electrical properties as well as stability, their solubility and mechanical properties result in
poor processability. In order to overcome the mentioned limitations, it has been focused on
the chemical functionalization of conducting fillers within composites with thermoplastic,
highly stretchable polyurethanes being one of the most important classes of functional
materials. Moreover, the conducting polymers mentioned above, incorporating polymer
matrices with biocompatibility and biodegradability, have more emerging applications in
biomedical applications, including tissue engineering, regenerative medicine, drug deliv-
ery, and other alternate products. Although in vitro biocompatibility of the conductive
fillers has been confirmed, in vivo properties have been still remained a significant uncer-
tainty. Therefore, in vivo studies are additionally demanded to be sure of the nontoxicity
of the conducting materials. There is no doubt that a variety of conductive biomaterials
with excellent biocompatibility and biodegradability will be extensively developed in the
not-too-distant future for biomedical applications.
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