
����������
�������

Citation: Romaus-Sanjurjo, D.;

Regueiro, U.; López-López, M.;

Vázquez-Vázquez, L.; Ouro, A.;

Lema, I.; Sobrino, T. Alzheimer’s

Disease Seen through the Eye: Ocular

Alterations and Neurodegeneration.

Int. J. Mol. Sci. 2022, 23, 2486.

https://doi.org/10.3390/

ijms23052486

Academic Editors: Ana Raquel

Santiago and Raquel Boia

Received: 2 February 2022

Accepted: 22 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Alzheimer’s Disease Seen through the Eye: Ocular Alterations
and Neurodegeneration
Daniel Romaus-Sanjurjo 1,*,† , Uxía Regueiro 2,3,*,† , Maite López-López 2,3, Laura Vázquez-Vázquez 1,
Alberto Ouro 1 , Isabel Lema 2,3,4,‡ and Tomás Sobrino 1,‡

1 NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC),
Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
laura.vazquez.vazquez@sergas.es (L.V.-V.); alberto.ouro.villasante@sergas.es (A.O.);
tomas.sobrino.moreiras@sergas.es (T.S.)

2 Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC),
Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
maite.lopez.lopez@sergas.es (M.L.-L.); isabel.lema.gesto@sergas.es (I.L.)

3 Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry,
Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain

4 Instituto Galego de Oftalmoloxía (INGO), Hospital Provincial de Conxo, 15706 Santiago de Compostela, Spain
* Correspondence: daniel.romaus.sanjurjo@sergas.es (D.R.-S.); uxia.regueiro.lorenzo@sergas.es (U.R.);

Tel.: +34-9-8195-1086 (D.R.-S. & U.R.)
† These authors have contributed equally to this work and share first authorship.
‡ These authors share senior authorship.

Abstract: Alzheimer’s Disease (AD) is one of the main neurodegenerative diseases worldwide.
Unfortunately, AD shares many similarities with other dementias at early stages, which impedes an
accurate premortem diagnosis. Therefore, it is urgent to find biomarkers to allow for early diagnosis
of the disease. There is increasing scientific evidence highlighting the similarities between the eye
and other structures of the CNS, suggesting that knowledge acquired in eye research could be useful
for research and diagnosis of AD. For example, the retina and optic nerve are considered part of the
central nervous system, and their damage can result in retrograde and anterograde axon degeneration,
as well as abnormal protein aggregation. In the anterior eye segment, the aqueous humor and tear
film may be comparable to the cerebrospinal fluid. Both fluids are enriched with molecules that can
be potential neurodegenerative biomarkers. Indeed, the pathophysiology of AD, characterized by
cerebral deposits of amyloid-beta (Aβ) and tau protein, is also present in the eyes of AD patients,
besides numerous structural and functional changes observed in the structure of the eyes. Therefore,
all this evidence suggests that ocular changes have the potential to be used as either predictive values
for AD assessment or as diagnostic tools.

Keywords: Alzheimer’s Disease; amyloid burden; anterior segment; aqueous humor; biomarkers;
cornea; posterior segment; retina; tau; tear fluid

1. Introduction

Alzheimer’s Disease (AD) is a degenerative disorder of the nervous system with a
slow and progressive onset. AD is mainly considered an old-age condition, being the
most common neurodegenerative disorder among the elderly in developed countries [1–3].
However, based on age at onset, AD can be defined as either early-onset AD (<65 years)
or late-onset AD (>65 years) [4]. Overall, early-onset AD is mostly caused by autosomal
dominant mutations, with the β-amyloid (Aβ) precursor protein (APP), presenilin 1 (PS1),
and presenilin 2 (PS2) genes among the most studied [4]. Remarkably, these mutations
collectively represent less than 1% of total cases. In contrast, late-onset AD represents most
of AD cases, although its etiology remains unclear because of the multifactorial nature
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of the disease, where both environmental and genetic risk (e.g., the ε4 allele of APOE
(APOEε4)) factors are involved [4,5].

The two pathophysiological hallmarks of AD are neuronal and glial abnormal protein
deposits of both extracellular Aβ and intracellular filamentous aggregates of tau [6]. It is
well known that such protein accumulations trigger cellular pathways underlying neuronal
death but also mediate the activation of microglia and astrocytes, which leads to further
damage of surrounding tissues via inflammatory processes [2,6,7]. As a result, there is
a progressive atrophy of brain structures, including different lobes (frontal, temporal,
and parietal), the entorhinal cortex, amygdala and hippocampus, among others [6,8].
Eventually, these molecular and histopathological changes impact negatively on cortical
cognitive functions, such as memory, motor, and language functions, which can promote
and/or exacerbate depression or anxiety states [2,3,6]. Although there have been significant
advances in the understanding of AD over the last two decades, there are still no reliable
treatments to slow down the progression of the disease and/or its onset. Moreover, the
lack of an early diagnostic test to accurately determine the onset of AD makes the available
treatments almost ineffective, since the neuronal damage is irreparable by the time the
disease is diagnosed [9].

Nowadays, the diagnosis of AD is based on clinical, cognitive, and functional criteria
using brief cognitive tests (e.g., Mini-Mental Status Examination (MMSE) and clinical
dementia rating (CDR)), neuroimaging techniques (e.g., brain scanning by computed to-
mography (CT), magnetic resonance imaging (MRI), and positron emission tomography
(PET)), and biomarker analysis in cerebrospinal fluid (CSF) [10]. Likewise, the National
Institute of Aging and the Alzheimer’s Association established complete clinical and cogni-
tive guidelines for the diagnosis of mild cognitive impairment (MCI) or dementia associated
with AD, allowing for the classification of individuals with probable AD dementia, possible
AD dementia, and probable or possible AD dementia [11]. Early detection/diagnosis is
mandatory in order to obtain an effective treatment of AD patients with drugs to delay
cognitive loss, as well as with non-pharmacological treatments, such as non-invasive brain
stimulation (NIBS), to prolong their quality of life. NIBS approaches are currently getting
attention as they show promising results by stimulating different brain regions simulta-
neously, which improves memory and specific cognitive functions [12–16]. Interestingly,
these NIBS approaches could offer a reliable therapeutic option for those AD patients not
responding to drug treatments [14].

Therefore, it is important to identify neurodegenerative biomarkers that detect cogni-
tive decline or progression from MCI to dementia [17,18]. In this regard, ophthalmological
assessments have detected several ocular changes in patients with central nervous system
(CNS) disorders [19]. In many of these disorders, ocular manifestations often precede brain
symptoms, suggesting that eye exams could offer an early diagnosis of the underlying
disease [19]. Hence, since the eye constitutes an extension of the brain, looking for early
ocular manifestations in AD becomes an essential element to explore further.

Several reasons support the viability of the eye as a useful model for the study of AD.
First, in comparison with other CNS structures, the eye is relatively accessible for manipu-
lation and in vivo observation. Currently, ophthalmological imaging techniques, such as
optical coherence tomography (OCT) or scanning laser ophthalmoscopy (SLO), allow for
the visualization and study of the eye by a non-invasive approach [20–22]. Secondly, differ-
ent aspects of visual processing can be affected by AD. Patients with damage in the dorsal
region have impaired functions, such as angular discrimination and motion perception,
whereas patients with damage in the ventral region have impaired face, color, and shape
discrimination [23,24]. Furthermore, it has been suggested that a thinner retinal nerve fiber
layer is associated with cognitive decline in subjects with MCI and AD [25]. There are also
several studies showing that cognitive decline is associated with brain atrophy and corneal
nerve fiber loss [25–28]. Finally, visual perceptual disturbances are quite common in AD.
Loss of visual field, decreased contrast sensitivity, low visual acuity, impaired color vision
or motion perception, visuospatial deficits, object agnosia, prosopagnosia, and impaired
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recognition of emotional facial expressions are some visual deficits that may be involved
in AD [29].

Recent evidence suggests a plausible connection between eye alterations and brain
changes in AD. Although promising, the usefulness of eye alterations as an early biomarker
for AD is still being developed. Here, we review recent advances in the understanding
of AD-associated changes in the eye regarding histological structure, Aβ/tau aggregation
and vasculature, and their potential to be used as biomarkers in preclinical and clinical
AD. Furthermore, we will highlight the caveats of the studies in order to unify consensual
criteria that could facilitate the comparison of results between different reports in the future.

2. Cognitive Alterations and Visual Repercussions Related to AD

As previously introduced, neuropsychological examination aims to define the state of
the different components of a patient’s cognitive status. Cognition is the set of brain-based
activities that allow us to be aware of ourselves, others, and our environment [30]. Therefore,
the assessment of a potential AD patient should include issues such as memory, orientation,
language, behavior, functional ability, executive function, emotional and affective state, and
behavioral changes. Several neuropsychological tests, including the MMSE, the CDR, the
AD Assessment Scale (ADAS-cog), and the Montreal Cognitive Assessment (MoCA), are
used to define the patterns of affected and preserved cognitive abilities [31–33]. Importantly,
amnesia is the most common form of cognitive impairment attributed to AD, as seen in
patients with MCI [34]. However, additional approaches, such as genetics (APOEε4 carrier),
neuroimaging (medial temporal lobe atrophy on MRI, temporoparietal hypometabolism
and/or amyloid uptake on PET), and molecular biomarkers (Aβ and tau/p-tau levels in
CSF) are also required [35].

Visual perception helps people to acquire information about the surrounding world;
when visual perception deteriorates, quality of life worsens and complicates the assessment
of other cognitive deficits [29]. AD is not an exception since most AD patients experience
defects in visual recognition as a consequence of damage in the associative visual areas [29].
In general, these early visual recognition deficits include impaired ocular fixation and
difficulty in visual analysis and synthesis. In particular, such patients often show difficulty
in describing the content of a complex photograph, recognizing figures presented from
unusual perspectives, or identifying incomplete letters. In advanced stages of AD, patients
show visual apperceptive agnosia, involving great difficulty in identifying objects and loss
of the ability to reconstruct shapes [29]. In fact, AD patients frequently report difficulty
recognizing familiar faces (prosopagnosia) [36]. These patients are also unable to locate
objects in space and exhibit a lack of vision–hand coordination (optic ataxia) [37].

3. Ocular Alterations Related to AD

The eye also displays many features of the AD pathophysiology seen in the brain
(Figure 1). In this regard, there are numerous structural and functional changes in the eye
linked to AD progression [25–28]. As mentioned above, irreversible progression, due to the
lack of both an effective early diagnosis and a treatment that reverses the AD, exalts the
necessity of finding early detection, diagnosis, and curative strategies. In this scenario, eyes
could constitute a promising target for new strategies to detect AD progression and onset.

3.1. Retina and Optic Nerve

The retina is a light-sensitive tissue lining the inner surface of the eye, and it is
composed of 10 different layers (from interior to exterior): the inner limiting membrane,
retinal nerve fiber layer (RNFL), retinal ganglion cell layer (RGCL), inner plexiform layer
(IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, external limiting
membrane, photoreceptor cell layer, and retinal pigment epithelium (Figure 2) [38]. In the
central retina, there is a region called the macula that comprises multiple ganglion cell
layers and supplies ~50% of the visual input to the cortex [39]. The fovea, a thin retinal
zone composed exclusively of cones, is located at the center of the macula and allows for
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high-acuity vision and color perception [39]. In this review, we will focus mainly on the
RNFL, RGCL, and IPL, since these structures form the ganglion cell complex (GCC) and
therefore belong to the CNS.
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The RNFL consists of axons of the ganglion cells guided to the CNS through the optic
nerve (Figure 2). Moreover, there is a type of fiber called the papillomacular bundle, which
carries the information that determines visual acuity and radiates from the macula area to
the optic disc. The retinal ganglion cells (RGCs) form the RGCL, where they are arranged
as a layer with single-cell thickness, except near the macula and the temporal side of the
optic disc. Finally, the IPL is a synaptic area where axons from bipolar cells, amacrine cells,
and ganglion cells converge. Therefore, the main function of this layer is to integrate inputs
from motion detection, brightness changes, and the recognition of contrast and hue.

As a part of the CNS, the retina may also display the classical hallmarks of AD, as
previously mentioned. The optic nerve forms a connection between the retina and the
brain that may allow the crossing of amyloid precursor protein (APP) from RGCs to the
cortex and vice versa. In addition, these changes underlie the atrophy and/or death
of different retinal cells, as well as structural and functional modifications in the retinal
morphology and vasculature [40–43]. Considering the retina as a “window” to the brain,
its visualization offers a direct and non-invasive approach to detect AD hallmarks without
major disturbances in patients.

3.1.1. Histopathological Changes Associated with Progression of Cognitive Impairment

In the late 1980s, first reports demonstrated degeneration of the optic nerve and RGCs,
as well as visual impairments in AD patients [40–43]. Authors observed a significant degen-
eration of the optic nerve [40], which was supported by an apparent loss of RGCs [41] in
the majority of postmortem eyes from AD patients. Besides these histopathological changes,
the study of eye movements and visual evoked potentials [42], as well as electroretino-
grams [43], revealed abnormal patterns in AD patients compared to healthy subjects. A later
study also reported impairments in the peripheral vision of AD patients [44]. Altogether,
these pioneer studies laid the basics to study retinal degeneration and its relationship with
AD. In this regard, a recent morphometric analysis not only confirmed previous studies
but also observed different patterns of retinal thinning, with thinner inner layers than
outer layers in postmortem samples from AD patients [45]. In particular, the RNFL was
significantly thinner in the superonasal region than in the superotemporal region, whereas
the RGCL displayed a greater reduction in the superotemporal region (remarkable in the
macula) than in the superonasal region [45]. Nowadays, novel approaches (e.g., different
OCT analyses) have increased knowledge up to the point of exploring the use of the retinal
inner-layer thickness as an early biomarker for AD.

Screening work in different populations suggests a potential relationship between the
thickness of retinal inner layers and cognitive function [25,46–49]. The use of magnetic
resonance imaging (MRI) in non-dementia subjects revealed a possible link between at-
rophy in the occipital and temporal lobes and reduced GC-IPL thickness [46], as well as
between atrophied visual and limbic networks (hippocampus and cingulum) and thinner
RNFL [48]. Interestingly, OCT measurements from preclinical AD patients (neocortical Aβ
accumulation, no cognitive impairment) did not reveal significant changes in either pRNFL
or retinal inner-layer thickness compared to controls [50,51]. On the contrary, several
follow-up studies suggested a relationship between decreased RNFL thickness and cogni-
tive deterioration [25,47]. Indeed, RNFL thinning increases the risk of gradually developing
an episodic memory impairment, which is markedly related to the AD progression [47].
Another follow-up study by Mutlu and colleagues [49] reported interesting data that show
a probably positive association between GCL-IPL thickness and prevalent dementia; the
risk of suffering AD is increased when RNFL thickness is reduced. Prospective studies in
preclinical AD patients highlighted the plausible role of RNFL and inner macular layers as
early biomarkers. Santos and colleagues [42] reported accelerated macular RNFL (mRNFL)
volume loss in preclinical AD patients compared to controls over a 27-month period,
which also corresponded to increased cerebral amyloidosis [52]. Moreover, this decrease in
mRNFL volume was negatively correlated with total neocortical Aβ accumulation and pos-
itively correlated with a loss of sensitivity to audiovisual stimulus [52]. Likewise, another
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study in preclinical AD patients showed that subjective memory impairment (SMI) and
anxiety were positively correlated with mRNFL volume and mRNFL thinning compared
to controls 27 months after baseline data [53]. Recently, a study showed that preclinical
AD subjects (SMI and brain amyloid aggregation) had significant thickening of their inner
nasal macular region at baseline and after 24 months [54].

It is widely accepted that MCI precedes clinical symptoms of AD, representing the first
phase of the disease in most cases (see review in [6]). It is well known that MCI patients
do not have dementia, but they have an increased risk of developing it in the future [34].
Therefore, studies on subjects with MCI may contribute to finding an early retinal-change
warning about the onset of AD. Similar to screenings, OCT recording of patients with MCI
displayed an overall diminished peripapillary RNFL (pRNFL) thickness when compared
to controls [55–59]; however, the results differ in the specific location where the higher
RNFL thinning occurs: all quadrants [55], inferior [56], superior and inferior [57,59], and
superior and temporal [58]. In contrast, a few studies did not find significant differences
in the pRNFL thickness of MCI subjects compared to controls [60–62]. Regarding the
thickness of retinal inner layers, several studies obtained contradictory results. The RGCL
was thinner in its temporal sector in MCI subjects [63]. The GC-IPL thickness of MCI
patients showed a significant reduction in superior, inferior, and nasal sectors [61]; or in
the inferior, inferotemporal, and superonasal sectors [60] compared to controls. Similarly,
a significant reduction in GCC thickness was observed in MCI patients when compared
to control subjects [59,61]. However, another study reported no significant changes in
GCC thickness compared to controls [64]. Furthermore, patients with MCI showed other
significant changes compared to controls, such as mRNFL thinning in the superonasal
sector [64], superior and inferior sectors [61], and temporal and inferotemporal sectors [63];
reduced macular volume [58]; and inner average perifovea thinning [59,61]. Interestingly,
Almeida and colleagues [50] revealed significant correlations between MMSE scores and
both GC-IPL and GCC thickness data in patients with MCI [61].

It is also interesting to decipher the alterations in the retina of MCI subjects who
eventually develop AD in order to establish retinal degeneration as an early biomarker
for AD. Some of the previous cross-sectional studies also reported changes between MCI
and AD retinas, although with some controversies. Whereas no differences were found
in the average pRNFL thickness of MCI subjects compared to patients with prodromic
AD, patients with severe AD did show a thinner pRNFL compared to MCI subjects [55,62].
However, another study revealed that subjects with prodromic AD have more pRNFL
thinning (superior and inferior quadrants) than MCI subjects (inferior quadrant) when com-
pared to controls [56]. A study in prodromic/moderate AD patients reported that subjects
with AD had more reduced pRNFL thickness (superior quadrant) than MCI patients [60].
Moreover, AD patients also had more reduced GC-IPL thickness than MCI subjects in
all early treatment of diabetic retinopathy study (ETDRS) sectors when compared to con-
trols [60,65]. Regarding moderate AD cases, AD patients showed more pRNFL thinning
in the inferior quadrant than MCI subjects (not significant) compared to controls [58]. In
contrast, Tao and colleagues [49] did not find changes in either pRNFL or GCC thickness
between AD patients and MCI subjects compared to controls [59]. Unfortunately, there are
few longitudinal studies regarding the differences between MCI subjects and AD patients.
In a pioneer study, Shi et al. [66] revealed that the inferior quadrant of the pRNFL was
significantly thinner in a cohort of patients who changed from healthy to MCI or from MCI
to AD compared to subjects whose cognition did not change over 25 months. In a longer
follow-up study, Choi and colleagues [56] showed that a decreased GC-IPL thickness (at
inferior, inferonasal, and inferotemporal sectors), as well as a lower temporal quadrant
pRNFL thickness, was associated with the change from MCI to AD 2 years after baseline
data collection [67]. Interestingly, this study also suggested that changes in both GC-IPL
thickness and average macula thickness can reveal MCI and AD progression [67].

Since the 2000s, many studies have been performed in order to determine the relation-
ship between retinal degeneration and the progression of AD. In patients with prodromic
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AD, some studies showed a significantly thinner pRNFL in either the superior quadrant [68]
or both the superior and inferior quadrants [69]. On the contrary, other studies revealed no
significant differences in pRNFL thickness compared to control subjects [62,70–73]. Studies
in moderate AD subjects also showed some controversial results. An early study reported
a significant decrease in pRNFL (in the superior, inferior, and nasal quadrants) from eyes of
AD patients compared to controls [74]. Subsequently, other studies found different pRNFL
areas significantly affected by moderate AD compared to controls: the temporal quadrant
and infero- and superotemporal sectors [75]; the superior quadrant [76]; the superior and
inferior quadrants [77,78]; all quadrants [79]; and the inferonasal, inferotemporal, and
superotemporal sectors [77]. Although in different quadrants/sectors, all these results
point at a clear progressive loss of RGCs underlying AD progression. Furthermore, there is
evidence of a negative correlation between pRNFL mean thickness and disease duration
since diagnosis [77], as well as a positive correlation between pRNFL mean thickness
and cognitive decline [71,78], although with some controversies [72,73]. Interestingly, a
prospective study by Trebbastoni and colleagues [60] reported a significant reduction in
cognitive decline (from prodromic to moderate AD) and pRNFL thickness (in superior and
inferior quadrants) within the AD group [71]. Besides that, increased pRNFL thinning (in
the same quadrants) was observed in the AD group compared to controls 12 months after
baseline measurements [71].

As previously stated, it has been proposed that the macular region (containing more
than 50% of total RGCs) is more sensitive to neurodegenerative processes than the pRNFL
region; consequently, it could be a good target to detect early AD-related changes. Interest-
ingly, prodromic AD patients showed significantly decreased mRNFL thickness in fovea, all
inner sectors, and the temporal outer sector, as well as reduced macular volume compared
to controls [70]. In contrast, recent studies in prodromic AD patients did not find significant
differences in the thickness of any retinal inner layer [72,73], although they showed a signif-
icant inverse correlation between total macular thickness and brain neurodegeneration (in
areas involved in visual processing) by MRI. Additionally, studies in prodromic to moder-
ate AD patients revealed that the whole mRNFL was thinner than that of controls, besides
a reduction in GCL thickness [80,81]. A study by Iseri and colleagues [63] was the first to
report a correlation between reduced macular volume and lower MMSE score in a cohort
of moderate AD cases [74]. Moreover, a reduction in macular thickness was described in
six out of nine ETDRS sectors of AD eyes compared to controls; unfortunately, this macular
thinning could not be associated with a specific layer due to the low resolution of the OCT
device used. Subsequent studies showed higher mRNFL thinning in eight out of nine
ETDRS sectors [77,78]. When analyzing the GCC, the results not only showed a significant
reduction in the GCC thickness of moderate AD eyes compared to controls [65,75,78,82]
but also a negatively significant correlation between GCC thickness measurements and
MMSE scores [75,78,82]. Moreover, GCC thinning was positively correlated with a longer
AD duration [25]. Importantly, the work of García-Martín and colleagues [75] was first to
demonstrate GCL damage in AD retinas, confirming suggestions of previous studies.

Overall, there is no general point of agreement relative to the presence and/or time
of retinal histopathological changes. Nevertheless, prospective studies suggests clear
association between structural changes and different AD stages. This is remarkable when
combining several layers, such as RNFL + GCL, GCL + IPL, or the GCC. To determine
whether such changes can be used as an early biomarker of MCI or AD or the conversion
from MCI to AD requires further prospective and uniform studies.

3.1.2. Aβ and Tau Accumulation in AD Retinas

As previously mentioned, different visual alterations can be seen at the early stages of
AD, many of which underlie neuronal damage in the inner retina, leading to the loss of
RGCs and subsequent optic nerve degeneration. Besides the plausible death of RGCs by
trans-synaptic retrograde degeneration due to the degeneration of visual-related cerebral
structures [40,41,43], an important role for Aβ and tau deposits in the degeneration of inner
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retinal layers has also been suggested. However, there is controversy as to whether such
accumulations are actually relevant and/or related to the retinal AD phenotype.

Studies in postmortem AD eyes did not detect abnormal Aβ, either in the retina or
the optic nerve [40,41,83–85]. Likewise, some studies in animal models of AD agree with
these results. Retinas from double transgenic mice (APP/PS1: chimeric mouse/human
APP (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9)) displayed either
minimal or no retinal aberrant Aβ accumulation, even when there was robust expression
of APP in all neuronal types [86,87]. Similarly, Schön and colleagues did not observe
retinal accumulation of Aβ in P301S transgenic mice (expressing the mutant form of human
tau) [85], which was expected to be an animal model for tau pathology, not for Aβ. In con-
trast, many other postmortem and in vivo studies in animal models disagree with such
results. In postmortem AD retinas, the presence of Aβ plaques within inner layers has been
observed [76,88–90]. Specifically, the RGCL (including melanopsin RGCs) [76,89,90] and
both the superior and temporal quadrants [89,90] are the areas with the most significant
Aβ accumulation. Recently, another postmortem study showed retinal APP/Aβ pathol-
ogy in AD patients, although it was not enough to discriminate between AD cases and
controls [91]. Interestingly, these Aβ accumulations did not display a fibrillary form [91].
Intriguingly, a few studies [88,92,93] did report retinal Aβ plaques in double transgenic
mice at similar time points to those used in previously cited works [86,87]. Such studies
revealed the existence of Aβ plaques in the RNFL, RGCL, and IPL [88], which even pre-
ceded cerebral Aβ deposition [88,92]. Similarly, other results in double transgenic mice
also showed aberrant retinal Aβ in same layers previously mentioned but only at later
stages [94,95]. Finally, outcomes in the 3xTg-AD mouse model (the only model to exhibit
both Aβ and tau pathology) also have some discrepancies. Although the presence of Aβ
plaques in the retina was reported in pre-symptomatic 3xTg-AD mice (including RGC death
by apoptosis), this Aβ host was not detected in inner retinal layers until approximately
7 weeks of age (middle-aged mice) [96]. However, recent advances have refuted or nuanced
these achievements [97,98]. Significantly RGC dendritic loss was detected in 3xTg-AD mice
at 12 months of age (old mice) but not at 6–7 months, and it was not accompanied by a re-
duction in the number of RGCL nuclei [97]. Strikingly, Rodrigues-Neves and colleagues did
not find retinal changes regarding Aβ levels, retinal cell death by apoptosis, or decreased
RGCs when looking at early stages in 3xTg-AD mice (4–8 months of age) [98].

Besides abnormal Aβ accumulation, the other hallmark of AD is the protein aggregates
of hyperphosphorylated tau, which cause most of the pathological features seen in AD [6].
Again, studies in postmortem retinal samples from AD patients revealed disparate results,
which is in line with the results discussed above. Several studies did not observe either
hyperphosphorylated tau or tau aggregates [40,41,83]. Curiously, one study reported that
hyperphosphorylated tau (only with the AT8 antibody, which targets the phosphorylation
sites Ser202 and Thr205), but no tau aggregates, was detected in the RGCL and IPL of post-
mortem retinas of AD patients [85]. Similarly, a diffuse pattern of hyperphosphorylated tau
expression has been seen with three different antibodies (AT8, AT100 (phosphorylation sites
Thr212 and Ser214), and AT270 (phosphorylation site Thr181)) in the retinas of AD patients,
with no presence of fibrillar tau [91]. Studies in mouse models of AD reveal differences
depending on the strain used. Whereas P301S mice developed early hyperphosphorylation
of tau, showing hyperphosphorylated tau in different epitopes, retinal fibrillar aggregates
of tau and a tau-mediated axonal transport impairment in RGCs [85,99–101]. Results in the
double transgenic APP/PS1 mice are controversial. For example, Zhao and colleagues [102]
did report an increase in the levels of retinal phosphorylated tau compared to controls, but
Chidlow and colleagues [86] could not find the presence of phosphorylated tau in the retina.
The fact that these studies used different antibodies to detect phosphorylated tau may be the
cause of such disparity. A deeper study performing biochemical techniques in the retinas of
triple transgenic mice (3xTg-AD) revealed notable retinal tau accumulation in the soma and
dendrites of RGCs, which surprisingly preceded cerebral accumulation [103]. Moreover,
the authors did not find tangles of hyperphosphorylated in these mice at 3 or 6 months
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of age [103]. In contrast, another report showed tangles of hyperphosphorylated tau in
the RGCL of young mice by using the same antibody (1.5–2.5 months of age) [96]. More
recently, Rodrigues-Neves and colleagues [98] corroborated previous results by reporting
an increase in phosphorylated tau at Ser396 in the retina of 3xTg-AD mice at both 4 and
8 months of age. Strikingly, a study revealed that an N-terminal-domain truncated tau
is associated with the degeneration of the retinas of Tg2576 transgenic mice (carrying
a mutant form of APP linked to early-onset familial AD), highlighting the role of other
post-transcriptional modifications of tau during AD progress [104].

In summary, there is no consensus regarding the presence of Aβ and tau deposits in
retinas from either animal models or AD patients. Based on the literature, it is plausible
that Aβ or tau or both could be found in AD retinas due to seeding [105]. However, the
lack of consistent evidence in both animal and clinical research requires further studies to
decipher the role of such accumulations in retinal neuronal fate and how this affects the
retinal AD phenotype.

3.1.3. Changes in Retinal Vasculature Associated with Progression of Cognitive Impairment

There is growing evidence that points to a neurovascular component as the trigger for
development of AD [7]. Importantly, vascular dysfunction has been suggested to start in
the pre-symptomatic stage of the disease [106,107]. Similar to histopathological changes,
alterations in the retinal vasculature may underlie AD cerebrovascular pathology; therefore,
retinal imaging appears to be a promising approach for characterizing blood vessels in vivo
and identifying markers related to the cerebral microvasculature in AD [108].

A massive prospective clinical study (n = 5553, 11 years) on the elderly population
found that both higher venular calibers and smaller arteriolar calibers are associated with an
increased risk of suffering dementia [109]. Studies in preclinical AD subjects also evidenced
interesting results. For example, preclinical AD patients (neocortical Aβ accumulation, no
cognitive impairment) showed increased retinal arterial pulsation, as well as reduced retinal
venular pulsation, with no other changes in systemic vascular parameters correlated with
cerebral amyloid burden in those patients [50]. In addition, Aβ+ patients (measured in their
CSF) compared to Aβ− subjects (both groups with normal cognition) revealed larger foveal
avascular zone (FAZ) [110]. Therefore, FAZ was suggested as a potential tool to detect
amyloid plaques in the brain. Recently, another study in preclinical AD patients showed
a significantly increased retinal vessel density in the brain compared to healthy controls,
which suggests an underlying retinal inflammation during the preclinical AD stage [111].
In contrast, the authors found no significant differences in the FAZ area. Previously, an
increased vessel branching asymmetry, as well as a reduction in vessel diameters, was
found in neocortical Aβ+ subjects compared to their Aβ− counterparts [112].

In general, retinal vascular measurements do not reveal major changes between MCI
and control subjects, which puts into question the results from studies conducted on
preclinical AD subjects. No differences were found regarding vessel density, perfusion
density, venous diameter, and FAZ area when comparing retinas from MCI subjects with
those from healthy subjects [65,113]. Some studies did report a significant decrease in vessel
density [114] and retinal blood flow/speed [113,115] in MCI eyes compared to controls.

Differences between MCI and AD patients are consistent with those seen for MCI
vs. control subjects. Changes in vessel and perfusion densities are already significantly
decreased in prodromic to moderate AD patients compared to MCI subjects, whereas no
significant changes were observed in the FAZ area [65]. Furthermore, AD patients showed
a decrease in venous diameter and blood flow compared to MCI subjects [113], as well as a
reduction in arterial dilatation [81].

Regarding AD retinas, changes were detected very early in the symptomatic onset. Re-
duced blood flow and impaired tissue perfusion in the inner retinal layers have been shown
in prodromic AD cases [115]. Den Haang and colleagues found no significant changes
regarding retinal vessel density and FAZ size from prodromic AD retinas compared to
control retinas [116]. Nonetheless, some studies reported that prodromic to moderate AD
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patients display both a reduced vessel density and branching pattern complexity, as well
as higher venular tortuosity [114,117,118] or reduced vessel and perfusion densities com-
pared to control measurements [65]; however, the FAZ area remained unchanged [65,117].
Changes in venous diameter, as well as blood flow and speed, were also seen in AD subjects
compared to controls [67,113,118]. Interestingly, a study by Jiang and colleagues found
a correlation between the loss of retinal vasculature and decreased thickness in the GC-
IPL [114]. Similar observations in MCI versus AD subjects, the vasodilatation of arteries
from AD eyes was shown to be impaired compared to healthy controls [81]. However,
another study found no differences regarding retinal vasodilatation in AD eyes compared
to control counterparts [50]. In contrast to previous reports, retinal vascular caliber and
branching measurements remained unaltered in moderate AD cases [119]. In later stages of
AD, an overall reduced retinal vascular density and an enlarged FAZ area were discovered
compared to the control group [120]. Moreover, the authors also found a significant cor-
relation between MMSE scores and both vascular density and FAZ parameters. A recent
case report of severe AD revealed a significant loss of retinal vessels, as well as a larger
FAZ area [121].

Although reduced cerebral blood flow in brain areas particularly vulnerable to AD is
observed in healthy cognitive APOEε4 carriers compared to non-carriers [122], it seems
that studies in preclinical or clinical AD patients have not found a similar pattern so
far [109,111,116]. However, the number of studies assessing the impact of APOEε4 on
retinal vasculature is low; therefore, more investigations are needed to decipher whether
retinal scans can be useful for finding reduced/changed retinal vascular parameters related
to AD in APOEε4 carriers.

To summarize, there is controversy about the relationship between several vascular
changes and their correlation with AD development. Moreover, results do not yet point to
feasible vascular measurements to distinguish between MCI and healthy subjects. However,
some vascular changes from MCI to AD retinas are becoming clear. Therefore, more research
in preclinical AD patients is mandatory to refine the findings of new and more specific
vascular alterations linked to AD progression.

3.2. Tear Fluid

The analysis of different body fluids is a strategy to elucidate the pathophysiological
mechanisms underlying a wide variety of diseases. Remarkably, the rising incidence of
AD has highlighted the necessity to develop new screening and early-diagnosis techniques
using less invasive and cheaper methods. In this regard, tear fluid analysis has become a
promising non-invasive alternative in the search for biomarkers associated with AD.

Tear fluid consists of an aqueous–lipidic layer containing proteins, mucins, lipids,
water, and electrolytes (Figure 3). It covers and nourishes the ocular surface, playing a key
role in protection against external pathogens. Even though the volume of tear samples is
small, advances in proteomics and lipidomics have allowed for a better understanding
of tear components and their involvement in different diseases [123]. In this regard,
biotechnological tools are being developed to optimize the extraction of samples from
collection devices (such as Schirmer strips or capillaries) and to improve the detection of
markers, such as β-amyloid, in tears (using biosensors) [124]. Hopefully, these new tools
will help to overcome the limitations related to the small volume of tear samples. To date,
there are already numerous ocular (e.g., keratoconus, dry eye, and glaucoma) and systemic
conditions (such as diabetes mellitus, thyroid dysfunction, and neurological diseases) that
can be detected and evaluated by biomarkers at the lacrimal level [125,126].
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Modifications in total tear proteomic concentration, as well as abnormalities in flow
rate and tear function, have been reported in AD, suggesting a dysfunction in the auto-
nomic nervous system [127] (Table 1). Indeed, significantly decreased levels of lysozyme,
lipocalin-1, and lacritin, as well as increased levels of dermcidin, were found to be ex-
pressed in the tear fluid of AD patients [128] (Table 1). Remarkably, the combination of
all of these factors was demonstrated as a potential AD biomarker, as they showed a sen-
sitivity of 81% and a specificity of 77% for prediction of the disease [128]. Likewise, CSF
biomarkers were measured in tear samples to assess a new non-invasive tool to predict and
detect AD. Specifically, three Aβ peptides (Aβ38, Aβ40, and Aβ42), total tau (t-tau), and
phosphorylated tau (p-tau) were analyzed in patients diagnosed with clinical dementia,
MCI, and subjective cognitive decline (SCD), as well as in a control group [129] (Table 1).
Interestingly, the concentrations of all peptides were higher in tear samples of all patient
groups compared to healthy subjects; however, non-statistical differences were obtained.
In addition, t-tau levels were significantly higher in dementia, MCI, and SCD compared
to the control group [129]. Importantly, p-tau was also detected in all patient groups but
not in control subjects. Both t-tau and p-tau showed no differential expression among the
three patient groups [129]. Moreover, the association of tear amyloid and tau levels with
AD severity and neurodegeneration was also studied, highlighting the potential of tau
and Aβ proteins in tear fluid as markers of AD severity [130,131]. In this regard, a recent
study also suggested the potential of t-tau and Aβ42 markers at the lacrimal level for the
diagnosis/discrimination of AD [130,131] (Table 1). The authors determined a gradual
increase in both biomarkers in tears throughout cognitive decline [130,131]. Additionally,
Kenny and colleagues observed that the total tear concentration of microRNA-200b-5p was
highly upregulated in AD samples compared to the control group [132]. Interestingly, the
elongation initiation factor 4E (eIF4E), a polypeptide involved in some cellular processes
(e.g., protein synthesis, mRNA stability, and RNA nuclear export), was exclusively detected
in the tear samples from AD patients [132] (Table 1). Further studies are needed to elucidate
the biological relationship between AD and biomarkers microRNA-200b-5p and eIF4E. In
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summary, different studies have been pointed at the relationship between tears and CSF to
detect potential biomarkers; nonetheless, more studies should address this relationship.

Table 1. Studies observing changes in tear proteomic/molecular concentrations.

Publication Study Results

Kalló et al. [128]

Examination of changes in
tear protein composition from
patients with AD compared

to control

− Decreased levels of lysozyme,
lipocalin-1, and lacritin in
AD patients.

− Increased levels of dermcidin.
− Detecting all these alterations

together in preclinical AD
subjects might be used as a
biomarker to further explore
other typical AD measurements
(imaging, neuropsychological
testing, and CSF analyses.

Gijs et al. [129]
Examination of AD-specific

biomarkers in tear fluid from
SCD, MCI, and AD patients

− Increased levels of Aβ38, Aβ40,
Aβ42, t-tau and p-tau in all
conditions compared to controls.

− Only t-tau level changes were
significantly increased when
comparing each condition
to controls.

− The presence of Aβ peptides,
t-tau, and p-tau was shown in tear
fluid for the first time.

Gijs et al. [130]
Testing the diagnostic

potential of tears as a source
of AD biomarkers

− Levels of both t-tau and Aβ42 are
positively correlated with the
AD stage.

− Between disease conditions, t-tau
in tears of AD patients was
significantly higher than in those
of SCI and MCI patients.

Gijs et al. [131]
Observational study to
investigate AD-specific
biomarkers in tear fluid

− Elevated levels of Aβ40 and t-tau
in tear fluid from patients with
cognitive impairment associated
with disease severity.

− Correlated levels of AD
biomarkers in tear fluid and CSF
from AD patients.

Kenny et al. [132]

Examination of tear fluid to
discover disease-specific

protein and microRNA-based
biomarkers for AD

− eIF4E was present only in
AD samples.

− Higher abundance of total
microRNA in tears from AD
patients compared to controls.

− Interestingly, microRNA-200b-5p
could be used as a biomarker
for AD.

3.3. Cornea

The cornea is an avascular and complex tissue comprised of several layers, such as the
epithelium, epithelial basement membrane, Bowman’s layer, stroma, Descemet membrane,
and endothelium (Figure 4) [133,134]. It is well known that the cornea must maintain
transparency to benefit the eye’s refractive capacity.
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The cornea is considered the most sensitive structure in the human body because it
contains a higher number of nerve fibers [135]. Curiously, a density of 605.8 terminals/mm2

was observed in the suprabasal layer of the central corneal epithelium [136], with a corneal
innervation 400 times greater than skin innervation and 40 times greater than dental pulp
innervation [137]. Activation of the corneal nerves leads to reflex activation of blinking and
tearing and contributes to both the inflammatory response and the release of trophic factors.

The peripheral sensory terminals of the corneal nerves are densely integrated in
the epithelium and are responsible for the maintenance and preservation of the corneal
tissue and tear film [135]. Changes in the morphology and function of the corneal nerves
in response to disease, surgery, and aging have been well documented [16,138,139]. In
this regard, a wide variety of diseases, including AD, trigger negative ocular surface
changes that may be linked to the harmful effects of corneal nerve dysfunction [16,140].
Specifically, loss of corneal nerve fibers was observed in patients with Parkinson’s disease,
amyotrophic lateral sclerosis, multiple sclerosis, and MCI or dementia [26,138,139]. In AD,
the morphology of corneal nerves has been studied, evidencing corneal nerve degeneration.

Ponirakis and colleagues observed a progressive and significant reduction in corneal
nerve fiber density, branch density, and fiber length by corneal confocal microscopy in both
MCI and dementia patients compared to age-matched healthy controls [26]. Furthermore,
this study also showed that all these corneal nerve fiber measurements were positively
associated with cognitive function and functional independence in MCI and dementia
patients [26].

One of the weaknesses of studying corneal innervation in patients with AD is the
limited range of the techniques used to assess the progression of corneal neuropathy.
Corneal nerve morphology is evaluated by non-invasive ophthalmic confocal microscopy,
and function and sensitivity are mainly tested using aesthesiometers [141,142]. Moreover,
larger studies are needed to establish the diagnostic and prognostic utility of corneal
confocal microscopy in people with MCI and dementia. Currently, the use of these tools is
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mostly reserved for research, and their use in clinical practice is not widespread. Therefore,
it is urgent to develop better tools, as well as to refine current ones, in order to use loss of
corneal innervation as an early biomarker of AD [143].

On the other hand, molecular changes in corneal tissue could occur together with
the loss of corneal nerve fibers and neurological degeneration in AD. Aging-associated
imbalance in the homeostatic levels of neuronal-synapse neurotransmitters (such as glu-
tamate, GABA, and acetylcholine) is associated with the cognitive impairment of several
neurological pathologies [144]. In this line, reduced levels of acetylcholine at the brain
level have been found in AD, contributing to weakening synaptic plasticity [145]. Reduced
acetylcholine levels could be compensated by central anticholinesterase drugs that prevent
acetylcholine hydrolysis and increase its availability at the synapse. Regarding the cornea,
it contains one of the highest concentrations of acetylcholine [146]. In fact, this neuro-
transmitter is essential for corneal epithelium development and maintenance. As a result,
measuring acetylcholine in the cornea of AD patients could be critical; however, no data
exists to date. Currently, anticholinesterase drugs are considered the mainstay treatment
for AD, although their use is limited to treating symptomatic alterations associated with
memory deficiency [145].

Amyloid deposition in corneal tissue has been observed in some corneal diseases,
including hereditary reticular corneal dystrophy [147]. Regarding AD, there is still a scarcity
of information about the presence and concentration of amyloid and tau in the cornea.
Until now, studies carried out on this topic seem to have been focused on animal models. In
this line, transgenic mice showed a high cytoplasmic expression of APP and possibly Aβ in
the corneal epithelium compared to wild-type controls (using mice that express the human
mutation APPswe) [87]. Likewise, APP transcripts in human corneas and in corneas of
transgenic mice with AD appear to be longer and more damaging than those expressed in
the brain and retina [148].

Given the importance of Aβ deposition in AD, accounting for the role of APP, and
knowing that the cornea represents an interesting structure to analyze due to its easy
access, studies in humans are mandatory to evaluate predictive AD biomarkers that may
be present in AD corneas—not only Aβ, but also others, such as tau protein, nerve growth
factor (NGF), and acetylcholine.

3.4. Lens

The crystalline lens has been the focus of most research on the anterior eye and
AD [146], considered an ideal ocular structure for the detection of Aβ deposits. Expression
of APP and Aβ in cultured crystalline lenses has been found in animal studies, suggesting
that pathological mechanisms associated with AD may be linked to the development of age-
related cataracts [149]. The lens must be optically transparent to refract light on the retina,
so the accumulation of protein aggregates over time leads to vision loss and worsening
visual perception.

A study of Aβ40 and Aβ42 accumulation in human lenses found that both pro-
teins show concentrations comparable to those in the brain of people with and without
AD [150]. Furthermore, both Aβ40 and Aβ42 were accumulated in the cytoplasm of
supranuclear/deep cortical lens fiber cells of AD patients, suggesting that Aβmay promote
regionally specific lens protein aggregation and supranuclear cataracts [150]. Even though
supranuclear cataracts are more common in patients with AD, measuring cataract severity
by lens opacity seems a useless non-invasive test for determining the likelihood of devel-
oping AD [151]. Kerbage and colleagues carried out a promising in vivo study in a small
cohort of AD patients, which aimed to measure Aβ aggregates in the supranuclear region
of the lens by using a laser scanning device called a fluorescent-ligand eye-scanning system
(FLESS) [152]. The FLESS was designed to detect and measure the emitted fluorescence
signal of the fluorescent ligand bound to Aβ aggregates in the supranuclear region of the
lens, showing that lens measurements are correlated significantly with F18-PET amyloid
brain analysis [152]. Although the presence of Aβ in the lens is widely supported by
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proteomics [150,153,154], more research in preclinical AD patients is needed to confirm
whether Aβ accumulation could be used as a prognostic tool [155,156].

3.5. Aqueous and Vitreous Humor

Aqueous humor (AH) is an important ultrafiltered blood biological fluid produced
in the epithelium of the ciliary body. It is composed of proteins, electrolytes, solutes, and
growth factors. AH provides nutrition to the cornea and crystalline lens and removes their
excretory metabolic products [157]. It is essential for maintenance of normal intraocular
pressure and provides suitable eye shape and optical properties for the eye. Regarding
vitreous humor (VH), it is a gelatinous mass that fills the space between the retina and
the lens. It directly contacts and acts as an interface between the retina, the lens, and the
ciliary body, contributing to the diffusion of a wide variety of compounds [158]. Moreover,
proteomic analysis showed that the surrounding tissues influence the composition of
the different vitreous regions [158]. Importantly, there is compelling evidence of AD-
related ocular changes in both AH and VH levels of several biomarkers [150,156,159,160].
For example, Prakasam and colleagues observed that soluble APP (sAPP) concentration,
which is mainly secreted by the retina, was particularly high in VH in comparison with AH;
likewise, Aβ40 and Aβ42 concentrations were 50% lower in AH than in VH [160]. Goldstein
and colleagues also described that Aβ40 and Aβ42 levels were detectable and measurable in
AH, being comparable to those in CSF [150]. In addition, Aβ40 and Aβ42 concentrations in
VH were associated with lower cognitive function based on MMSE scores [161]. Regarding
t-tau, it was detected in VH and correlated with lower cognitive function, in agreement
with findings from studies carried out in CSF [161]. Finally, Aβ40, Aβ42, and t-tau in VH
were positively correlated with levels of neurofilament light chain (NfL), a neurofilament
subunit also identified in vitreous samples [162]. NfL proteins are found in the cytoplasm
of neurons and help to maintain structural stability, neuronal integrity, and impulse velocity.
NfL is persistently released at low levels in normal circumstances, but higher levels of NfL
were seen in both CSF and blood of AD patients [163]. Although NfL is not currently used
as a screening tool in clinical practice, it may be in the future.

4. Limitations

It is necessary to consider the significant limitations and controversial results that
we find in the majority of the current bibliography, preventing a feasible comparison
between studies. For example, some ocular events related to AD are also shared by other
ocular neurodegenerative pathologies, such as age-related macular degeneration (AMD) or
glaucoma [164]. In fact, some risk factors and pathophysiological mechanisms, as well as
aging and histopathological changes, are common features in all of these conditions. For
this reason, it would be mandatory to select precisely all the subjects undergoing these
types of studies in order to minimize the impact of those diseases on the pathological
ocular manifestations seen in the results. However, many studies do not consider some
of these aspects, including significant differences in the age of participants between each
condition; therefore, results are biased and not reliable for future clinical applications.
Another important unsolved question is to fully understand and define the etiology of AD.
Although MCI is considered the previous stage before AD development, it is a complex and
heterogeneous group that comprises subjects who may not progress to AD but develop non-
AD dementia or maintain MCI as part of the normal aging process. Moreover, many studies
define the MCI group as cognitively normal (e.g., MMSE scores similar to control scores),
whereas others include MCI subjects already showing impaired cognition (significantly
lower MMSE score than controls). This corrupts the results, as these MCI cases with altered
cognition already display early neuropathological changes of AD. Similarly, a standardized
protocol must be established regarding the neuropsychological tools used to assess the
grade of dementia in such studies. Each one study different scores and tests to define the
level of dementia within groups (e.g., AD and MCI patients), which makes it difficult to
compare results between studies. The well-defined guidelines from the National Institute
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of Aging and the Alzheimer’s Association could be established as the standard protocol to
classify individuals across different studies.

Although the examination of different structures of the eye is an interesting field for
the development of a non-invasive diagnostic tool, the available imaging tools should be
improved for both the analysis of the anterior segment and the study of histologic changes
in order to increase the accuracy of the results. Moreover, many measurements of the
ocular vasculature may be affected by unrelated AD variables, such as heart rate, arterial
pressure, and cardiac cycle. Unfortunately, data measurements from different imaging
devices (e.g., two different types of OCT devices) cannot be fully compared, as their settings
are not the same. All of this provokes the appearance of reproducibility issues, which
limits the comparison of results from different labs and conclusions concerning clinical
applications of the concepts.

Finally, protocols for the analysis of Aβ and tau retinal accumulation need major
revision and standardization. The controversial results seen in human samples are partially
due to a lack of a standard protocol for staining and tissue-mounting procedures. Thus,
differences in antibodies and their dilutions, studied histological regions and their section-
ing planes, and the postmortem interval influence the variability of results. Importantly,
the current animal models available for AD do not recapitulate the full pathology seen in
human patients. Furthermore, there is a variability in the strains of AD transgenic mice,
even between populations from the same original strain, as well as different phenotypes
depending on the sex of the animal (e.g., male 3xTg-AD mice develop a slower and milder
phenotype than female counterparts). That is why evidence from animal models should be
analyzed cautiously before drawing conclusions abouts its potential use in clinics.

5. Concluding Remarks and Future Directions

The main goal of this review was to highlight the role of ocular alterations and protein
levels of ocular fluids as potential biomarkers or therapeutic targets in AD. We compiled
the most recent studies about eye and ocular alterations during AD progression. Optical
examination in patients with neurodegenerative disorders is an emerging field that needs
more investigation. Most of the current bibliography in this field is focused on the study of
the posterior segment, which includes the retina and optic nerve. In contrast, the anterior
structures have received less attention. This is surprising, given several findings suggest
that the tear film, cornea, aqueous humor, and lens are also affected in AD and play a
prominent role in disease progression. However, many mechanisms and events are not
fully understood; therefore, more studies are needed to elucidate the underlying pathways.

Overall, despite controversy, ocular alterations associated with AD are undeniable at
both structural and fluid levels. Currently, the lack of protocol standardization and uniform
studies are preventing the clinical application of several interesting findings. However,
AD-associated ocular changes have an enormous potential to become a non-invasive tool
for early diagnosis of AD.
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