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Abstract: Silicon nanowires (SiNWs) prepared by metal-assisted chemical etching of crystalline
silicon wafers followed by deposition of plasmonic gold (Au) nanoparticles (NPs) were explored
as templates for surface-enhanced Raman scattering (SERS) from probe molecules of Methylene
blue and Rhodamine B. The filling factor by pores (porosity) of SiNW arrays was found to control
the SERS efficiency, and the maximal enhancement was observed for the samples with porosity of
55%, which corresponded to dense arrays of SiNWs. The obtained results are discussed in terms of
the electromagnetic enhancement of SERS related to the localized surface plasmon resonances in
Au-NPs on SiNW’s surfaces accompanied with light scattering in the SiNW arrays. The observed
SERS effect combined with the high stability of Au-NPs, scalability, and relatively simple preparation
method are promising for the application of SiNW:Au-NP hybrid nanostructures as templates in
molecular sensorics.

Keywords: surface-enhanced Raman scattering; plasmonics; gold; nanoparticles; silicon; nanostructures;
mesopores; nanowires; molecular sensorics

1. Introduction

The phenomenon of surface-enhanced Raman scattering (SERS) was first observed on
a rough silver electrode with a pyridine monolayer in 1974 [1], and it has been studied for
years (see, for example, Refs. [2,3]). Nowadays, the SERS effect is widely used for detecting
target molecules at low concentrations that are important for numerous applications, from
ecology [4] and chemistry [5] to biosensorics [6–8], including biomedical diagnostics [9–12].
The most convenient explanation of SERS considers two main mechanisms, i.e., (i) elec-
tromagnetic enhancement and (ii) chemical one [3]. While the contribution of the latter is
usually considered much smaller than electromagnetic enhancement [3], both mechanisms
are sensitive to the physical properties and morphology of SERS substrates [5,6]. Now, the
most prominent SERS-active substrates employ an effect of the enhanced electric field due
to localized surface plasmon resonance (LSPR) in what are called plasmonic metal nanopar-
ticles (NPs) [3,4]. Silver (Ag) and gold (Au) NPs with amazing plasmonic characteristics are
usually used to detect low concentrations of biomolecules by SERS [13–17]. While the SERS
signal promoted by individual plasmonic NPs is characterized by relatively low intensity
and poor reproducibility, which become a major obstacle for practical application and
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commercialization, the use of specifically designed nanostructured substrates as templates
for plasmonic NPs is the main direction for the development of SERS sensing systems for
different biomolecules [16], living cells [17], and biosystems [18–20].

In recent years, various types of semiconductor nanostructures such as silicon nanowires
(SiNWs), nanotubes, and porous films have attracted research interest as templates for
SERS-active plasmonic NPs because of the high surface-to-volume ratio, roughness, and
the tunability of pore sizes in the former [19–23]. For example, SiNWs [22] and amor-
phous/crystalline hybrid Si-based nanostructures [23] have opened a broad avenue for
developing new SERS substrates, which complement pure metallic nanostructures [2,3,6].
Also, electrochemically prepared porous silicon (por-Si) and por-Si based 1D photonic
crystals with deposited Ag-NPs have been explored as potential SERS templates with a
detection limit up to 10−12 M [24]. Prior to this, SiNWs with deposited Ag-NPs were used
for ultrasensitive detection of biomolecules [25].

Besides SERS application, SiNWs are extensively studied for their use in photo-
voltaics [26], photocatalysis [27], gas sensors [28], drug delivery [29], and biomedical
diagnostics [30]. Modern methods for the preparation of SiNWs consist of different phys-
ical and chemical approaches, i.e., reactive ion etching [31], thermal evaporation [25,32],
laser ablation [33], vapor–liquid–solid growth [34], plasma etching [35], molecular beam
epitaxy [36], and metal-assisted chemical etching (MACE) [37,38]. Among them, MACE is
very suitable because of the simplicity, low cost, and possibilities for tailoring the morphol-
ogy of SiNW arrays, e.g., their surface roughness, length, porosity, and spacing between
individual Si nanostructures [36,37]. Features of the spatial distribution of catalytic metal
NPs on the surface of c-Si substrate, such as uniformity, density, and thickness, will affect
the morphology of Si nanostructures formed during MACE [37]. When NPs of silver and
gold as catalysts are deposited onto the c-Si surface, the MACE-formed structures can be
changed from mesoporous Si layers to arrays of SiNWs with an increase in the spatial
density of metallic NPs [36–38].

As for SERS application, SiNW arrays are usually decorated with Ag or Au-NPs
by using chemical methods [39–42]. The advantages of chemical deposition include its
implementation and simplicity; self-induced deposition does not need vacuum technology
or a power supply [41]. Ag-NPs usually exhibit better plasmonic enhancement of SERS, but
they do not possess surface stability and biocompatibility in comparison with Au-NPs [42].
Moreover, by adjusting the size, shape, and concentration of Au-NPs on the surfaces of
semiconductor-based nanostructures, one can create new photonic materials with unique
properties for biosensing applications [8,43–46].

The performance of SERS-active surfaces is usually characterized by an enhancement
factor, which depends on the substrate morphology and physical properties of plasmonic
NPs [2,3]. Maximal SERS efficiency is often associated with the formation of a so-called
“hot spot” of the electric field related to plasmonic NPs [3,17,18]. The reproducibility and
stability of the SERS signal is an important metric for evaluating the effectiveness of SERS-
active surfaces, which means that the surface must be well controllable and stable for a
long time [45–47]. So, the search for a versatile and high-performance substrate for the
SERS of biomolecules is still ongoing, with well-known technologies being developed and
new fabrication technologies being proposed.

Here, we investigate Au-NP-decorated SiNWs prepared using the MACE method
followed by deposition of additional Au-NPs. The prepared samples, which represent
either highly porous Si layers or arrays of relatively well spatially separated bundles of
SiNWs, are tested as templates for the SERS detection of dye molecules of methylene blue
(MB) and Rhodamine B (RB) with molar concentration varying from 10−15 to 10−6 M. The
obtained results allow us to reveal an effect of the morphology of SiNWs on their activity
as potential SERS substrates for the highly sensitive detection of molecules.
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2. Results and Discussion

Figure 1 shows a schematic view of the preparation procedure of SiNWs:Au-NPs. The
whole process consisted of four stages. In the first stage (Figure 1a), c-Si substrates were
immersed in an aqueous solution of HAuCl4/HF to deposit Au-NPs, which were used to
catalyze the heterogeneous dissolution of c-Si in hydrofluoric acid, i.e., MACE [42]. Three
main series of the samples were prepared with Au-NP deposition times, tdep, which were
10, 20, and 30 s. The deposition of Au-NPs was carried out by immersing the c-Si substrate
into an aqueous solution of HAuCl4 (0.4 mM)/HF (5 M) for tdep. Different deposition times
of Au-NPs were used to prepare series of samples with different surface densities of pores,
i.e., low, medium, and high porosity. The resulting samples were washed with deionized
water and dried in air. Then, c-Si wafers with deposited Au-NPs were etched in a solution
of HF/H2O2 by using the MACE process (Figure 1b). The etching solution for MACE
was a mixture of an aqueous solution consisting of HF (5 M, 40%) and H2O2 (37%) with a
volume ratio of 2:10; the etching time was 30 min. Then, the samples were immersed in a
mixture of HCl/HNO3 = 3:1 to remove residual Au-NPs (Figure 1c). Finally, the samples
were immersed into the HAuCl4/HF solution to deposit Au-NPs on the SiNW’s surfaces
(Figure 1d).

Figure 1. Schematic illustration of the fabrication process of SiNWs:Au-NPs: (a) deposition of
catalytic Au-NPs on c- Si surface in HAuCl4/HF/H2O; (b) Au-NP-assisted etching with the HF/H2O2

solution; (c) removal of residual Au-NPs in HCl/HNO3 solution; (d) deposition of Au-NPs from
HAuCl4/HF/H2O into SiNW arrays.

Figure 2 shows typical top-view SEM images of Au-NPs deposited on the surface of
c-Si wafers for different deposition times. Au-NPs are randomly distributed on the surface,
and the size distribution can be described by the log-normal functions (insets of Figure 2)
with mean sizes of about 16, 32, and 35 nm for the deposition times of 10, 20, and 30 s,
respectively. These samples with different size distributions of Au-NPs were proceeded by
MACE to form SiNW arrays with different morphologies.
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Figure 2. SEM images of Au-NPs deposited on the surface of c-Si wafers for different deposition
times: (a) 10 s, (b) 20 s, and (c) 30 s. The corresponding size of distribution for Au-NPs (orange bars)
and their fits by log-normal functions (solid line) are shown in the insets.

Figure 3 shows typical top-view SEM images of SiNWs:Au-NP structures and upper
insets show the lateral view of the corresponding samples. The total thickness of the
SiNWs layer is about 34–35 µm for all samples, since it is controlled by the MACE duration.
However, the samples prepared with different tdep consist of SiNW arrays with different
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morphologies, and the mean spacing between neighboring NWs is controlled by the size
distribution of catalyzing Au-NPs deposited at the first preparation stage (Figure 1a).
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To quantify the volume fraction of pores, which are etched in the c-Si substrate due to
the MACE process by catalytic Au-NP, we used an analysis by the box-counting method [48]
of top-view SEM images of the prepared samples (Figure 3). According to this analysis
(Supplemental Figure S1 and Equation (S1)), the porosity, P, accounts for 55, 72, and 83%
for tdep = 10, 20, and 30 s, respectively. One can see that the sample with P = 55% can be
considered a porous layer with partially fused mesopores, which form a dense array of
SiNWs (Figure 3a). However, the sample with P = 72% looks like an array of relatively
well-defined SiNWs with mean cross-sectional sizes of the order of 100 nm (Figure 3b).
Furthermore, the sample with P = 83% represents an array of SiNWs with significantly
larger spacing between nanowires (Figure 3c).

The down insets of Figure 3 show SEM images of SiNW’s tips with deposited plas-
monic Au-NPs, which are seen as small black spots. The EDX analysis (Supplemental
Figures S2–S4) indicates that the total concentration of gold is 3.2, 3.8, and 3.0 weight % for
the samples with P = 55, 72, and 83%, respectively. Thus, the gold concentration is about
0.45 ± 0.05 at. %, and it is weakly dependent on the sample porosity.

Figure 4 shows TEM images of an individual SiNW with deposited Au-NPs. The
mean size of Au-NPs is about 10 nm, as shown in Figure 4b. This value is close to the
size of Au-NPs, which is determined by the same deposition time for the flat surfaces
of c-Si wafers, as shown in Figure 2. Besides isolated Au-NPs, there are many of their
aggregates attached to the side surfaces (Figure 4a) and tips (Figure 4b) of SiNWs. The
surface roughness of the latter promotes the tight binding between Au-NPs and SiNWs.

Figure 4. TEM images of (a) individual SiNW with deposited Au-NPs and (b) tip of such nanowire.
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Figure 5a shows that the total reflection for SiNWs and SiNWs:Au-NP samples in-
creases from about 4 to 26% in the spectral range from 400 to 1000 nm, while the samples
with tdep = 30 s exhibit significantly lower reflectance of about 6–11% (Figure 5c). In the
case of Au-NPs deposited on the c-Si surface for 20 s, the total reflection for SiNWs:Au-NPs
shows higher reflectivity than that for pure SiNW arrays of the same porosity (Figure 5b).
The low reflectivity of SiNW arrays is usually related to an effect of light localization,
which is caused by strong elastic light scattering accompanied with light absorption in
Si nanostructures [49]. The porosity of 55% for SiNW arrays likely promotes weaker
light localization, which seems to be a little stronger for the sample of SiNWs:Au-NPs, as
evidenced by the lower reflectance coefficient of the latter (Figure 5a).

Figure 5. Spectra of the total reflectance for SiNWs and SiNWs:Au-NPs with different tdep (a) 10 s;
(b) 20 s; (c) 30 s, respectively.

Figure 6a shows spectra of SiNWs:Au-NPs with adsorbed MB molecules. The spectra
consist of narrow peaks of the SERS from MB molecules together with a broad background
repeated to the photoluminescence (PL) of MB. The intensities of both SERS and PL decrease
with increasing sample porosity. At the same time, the Raman intensity of MB was very
weak for initial SiNWs without Au-NPs. The increase in the Raman signal for SiNWs
with deposited Au-NPs in comparison with the initial ones is obviously explained by the
SERS effect because of the LSPR-enhanced electric fields nearby Au-NPs. The difference
in the SERS enhancement for SiNW arrays with different porosity cannot be explained by
different concentrations of Au-NPs, which are approximately the same (0.4–0.5 at.%) for all
samples of SiNWs:Au-NPs (Supplemental Figures S2–S4 and Table S1).

Figure 6. (a) Raman and PL spectra measured for SiNWs:Au-NPs arrays with porosity P = 55% (black
line), 72% (red line), and 83% (blue line) after deposition of MB molecules (10−6 M); (b) the same
spectrum for the sample with porosity 55% (black line) and its deconvolution by SERS (red line) and
PL (dashed blue line) spectra.

To reveal the net Raman signal in SiNWs:Au-NPs structures, the PL background is
subtracted from the total signal, as shown in Figure 6b. The PL spectrum is interpolated
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by a polynomial function centered near 1300 cm−1, which corresponds to a wavelength
of 690 nm, in agreement with the well-known fluorescence spectrum of MB [50]. The
spectrum with the subtracted PL contribution allows us to evaluate the net SERS effect in
SiNWs:Au-NPs.

Figure 7 shows that besides the Raman line of MB molecules, a line at 520.5 cm−1 is
observed in the spectra of all investigated samples. This line is obviously related to the
one-phonon Raman scattering by the crystalline lattice of SiNWs [49]. While the intensity
of this line increases with decreasing total porosity of the samples, the SERS signal of MB
increases even more and reaches a maximal value for the sample with P = 55% (black curve
in Figure 7).

Figure 7. SERS spectra of SiNWs:Au-NPs samples with different porosity P after adsorption of 10−6

M of MB molecules.

The SERS spectra of MB consist of numerous peaks with frequencies at 450, 500,
595, 669, 769, 874, 949, 1035, 1181, 1301, 1392, 1444, and 1625 cm−1, which correspond
to different vibration modes of MB molecules [47]. The assignment of the Raman active
vibration modes of MB is given in Table 1.

Figure 8 shows SERS spectra of MB adsorbed with different concentrations on the
surfaces of SiNWs:Au-NPs. One can see that the MB concentration of the order of 10−15 M
can be easily detected for the samples with P = 55%, indicating the high efficiency of the
prepared SERS substrates. As for the MB concentration dependence of the SERS intensity,
it is weakly sensitive to the molecule concentration in the range from pico- to femtomolar.
This fact can be related to the certain amount of MB molecules adsorbed in the hottest
spots formed by neighboring Au-NPs on the surfaces of SiNWs, similar to the case of
dried colloidal Au-NPs drop casted on a glass slide [47]. It should be noted that in our
experiments, the SERS signal of MB adsorbed on flat c-Si substrates coved with Au-NPs
deposited for 10 s was well detectable only at a rather high concentration of about 1 µM
(Supplemental Figure S6) and it was nonreproducible at lower MB concentrations. The
maximal SERS signal of MB adsorbed on the c-Si wafer with deposited Au-NPs was at least
an order of magnitude lower than that for SiNWs:Au-NPs. This fact demonstrates that the
latter structures promote the SERS efficiency due to the high surface-to-volume ratio of Si
nanowires combined with the electromagnetic enhancement of the Raman scattering.
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Table 1. Enhancement factor for selected Raman lines of MB (10−6 M) in samples of SiNWs:Au-NPs
with different porosity, P. The assignment of the Raman lines is performed according to Ref. [47].

Frequency
(cm−1)

Assignment
Enhancement Factor (104)

P = 55% P = 72% P = 83%

450 α (C—N—C)AMG 5.33 3.10 0.86

500 α (C—N—C)AMG 2.92 1.45 0.50

595 α (C—N—C)AMG 1.52 0.89 0.32

669 α (C—C—C)Ring 1.01 0.45 0.21

769 ν (C—N)AMG
α (C—N—C)Ring

3.09 1.27 0.60

874 α (C—C—C)Ring 1.75 1.02 0.41

949 ρ (CH2); β (CH) 3.74 1.67 0.77

1035 β (CH); ν (C-S) 1.12 0.58 0.22

1181 ρ (CH3); β (CH) 2.06 0.78 0.34

1301 β (CH); ν (C—N)Ring 2.27 0.94 0.39

1392 ν(C9—N10); ν(C3—N2) 6.3 2.78 1.09

1444 α(N—C—H)AMG
ν(C—C)Ring/ν(C—C)Ring

16.68 7.96 2.89

1625 {ν(C—C)/ν(C—N)}Ring 6.13 2.58 1.09

Figure 8. SERS spectra of SiNWs:Au-NPs (P = 55%) with different concentrations of deposited
MB molecules.

We carried out additional experiments on the SERS efficiency of SiNWs:Au-NPs
where we increased the incubation time of Au-NPs from 10 to 80 s at the last stage of
preparation (Figure 1d). The experimental results showed that the SERS signal depended
nonmonotonically on the incubation time and that it could be possible to additionally
improve the SERS signal by about 1.5–2 times by using an incubation time of 80 s. However,
the SERS signal improvement was accompanied with an increase of the PL background
(Supplemental Figure S7). For shorter and longer incubation times, the SERS activity
decreases. The nonmonotonic dependence of the SERS efficiency on the incubation time
can be explained by an interplay between the creation of additional hot spots of the electric
field nearby Au-NPs and the light absorption related to stronger light localization in arrays
of SiNWs with deposited Au-NPs. Moreover, the SERS activity of SiNWs:Au-NPs samples
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prepared for longer incubation times can be influenced by aggregation of Au-NPs that will
change both their mean size and morphology.

To quantify the SERS efficiency of the investigated samples, we analyzed an enhance-
ment factor (EF), which can be expressed by the following equation [3]:

EF =
IS·Cre f

CS·Ire f
(1)

where IS and Iref are the Raman intensities of MB for the analyzed sample, i.e., SiNWs:Au-
NPs, and reference sample, respectively; CS and Cref are the MB concentrations in the
analyzed and reference samples, respectively. If initial SiNWs are used as the reference sam-
ple, it allows us to assume the similar surface distribution of MB molecules in the samples.

Using Equation (1), the EF factor for the Raman line of MB at 1625 cm−1 is estimated to
be 6.1 × 104, 2.6 × 104, and 1.1 × 104 for the samples with P = 55, 72, and 83%, respectively
(for details, see Figure S5). The maximal EF for SiNWs:Au-NPs with lower porosity can be
related to the optimal morphology SiNW arrays, which control partial light localization in
a combination with LSPR-enhanced electric fields nearby Au-NPs. The latter effect can also
be stronger for rough surfaces at the nanoscale [14].

Table 1 summarizes the EF values of SiNWs:Au-NPs to MB with a concentration of
10−6 M for different molecular vibration frequencies. One can see that the strongest EF
occurs for the band at 1444 cm−1, which can be assigned to the mixed vibrations coupled
with ν(C—C)/ν(C—N) stretching and in plane β(CH) bending vibrations of the fused
aromatic ring of the MB molecule [47]. The maximal EF for these vibration modes as well
the EF variations for different bands can be related to an effect of the chemical factor of
SERS [3], which influences the Raman polarizability of adsorbed dye molecules.

To further demonstrate the high sensitivity of our sensory platform, the SERS spectra
of RB molecules were measured in the range of molecule concentration from 10−15 to
10−6 M (Figure 9). Similar to the case of MB, the SERS signal of RB was weakly dependent
on the molecule concentrations varying from 10−6 to 10−9 M. This fact can indicate both
high sorption efficiency and tight binding of RB molecules at the hot spots between Au-NPs
on the SiNW’s surfaces. Such hot spots should be characterized by enhanced strength
of the electric field, which will additionally bind and polarize the dye molecule [3,47,51].
The same effect is probably responsible for the EF spreading, which is observed for MB
molecules, as shown in Table 1.

Figure 9. SERS spectra of SiNWs:Au-NPs with P = 55% after deposition of Rhodamine B with
different molar concentrations.
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3. Materials and Methods
3.1. Chemistry and Materials

Arrays of SiNWs were formed on optically polished 350 µm-thick (100)-oriented
c-Si wafers of p-type conductivity (boron-doped, specific resistivity of 1–10 Ohm×cm).
All chemicals, i.e., Chloroauric acid (HAuCl4·xH2O, CAS No. 27988-77-8), Methylene
blue (C16H18ClN3S·xH2O, CAS No. 122965-43-9), Rhodamine B (C28H31ClN2O3, CAS No.
81-88-9), Hydrofluoric acid (HF, 40%, CAS No. 7664-39-3), Hydrogen peroxide (H2O2, 30%,
CAS No. 7722-84-1), Acetone (CH3COCH3, 99.9%, CAS No. 67-64-1), Hydrochloric acid
(HCl, 37%, CAS No. 7647-01-0), and Sulfuric acid (H2SO4, 95–98%, CAS No. 7664-93-9)
were purchased from Sigma-Aldrich.

3.2. MACE Formation of SiNWs

Samples were fabricated by standard two-step MACE by using chemically deposited
Au-NPs as catalysts [36]. First, optically polished c-Si wafers were ultrasonically cleaned
for 7 min in acetone to remove surface organic contamination. Then, they were rinsed with
deionized water and subsequently cleaned with a piranha solution (containing 98% H2SO4
and 37% H2O2 with a volume ratio of 3:1) for 10 min, then washed in deionized water. The
Si wafers were then rinsed with 5% HF for 3 min to remove the natural SiO2 layer on the
surface of the samples and finally bathed again with deionized water.

3.3. Preparation of SiNW:Au-NP Structures

Plasmonic Au-NPs were deposited on the surfaces of SiNWs in a solution of HAuCl4
(0.4 mM)/HF (5 M) for 10 s. Then, the obtained SiNWs:Au-NP structures were washed
with deionized water and dried in air. All manufacturing processes were carried out at
room temperature.

3.4. Adsorption of Dye Molecules on SERS Substrates

The prepared samples of SiNWs and SiNWs:Au-NPs were immersed in aqueous
solutions of MB or RB with molecule concentrations varying from 10−15 to 10−6 M for
20 min to implement the molecule adsorption. Then, the samples were dried in air at
room temperature.

3.5. Measurement Techniques

The morphology and size of SiNWs were investigated by using a scanning electron
microscope (SEM), Zeiss Crossbeam 540. The same SEM apparatus was used to measure the
size of deposited Au-NPs on the surface of c-Si wafers. The size distribution of plasmonic
NPs was obtained from their SEM images using the image processing software ImageJ. The
porosity of SiNW arrays was estimated from the corresponding top-view SEM images using
the box-counting method (Supplemental Figure S1). Samples of SiNWs and SiNWs:Au-NPs
were also examined using a transmission electron microscope (JEOL JEM, 1400 Plus, Japan)
operating at 200 kV. Spectra of the total (both diffused and specular) optical reflectance
in the region from 400 to 1000 nm were measured with a Perkin Elmer Lambda 35 spec-
trometer (Perkin Elmer, USA). Raman scattering measurements were performed by using
a Raman microscope (Ntegra Spectra, NT-MDT, Russia) with 600 grooves/mm grating.
The laser beam of a HeNe laser (632.8 nm, 1 mW) was focused on the top of the sample
surface, and the laser spot diameter was about 10 µm, while the integration time for each
spectrum was 100 s. The characteristic Raman peak of c-Si wafer at 520.5 cm−1 was used
to calibrate the spectrograph for possible fluctuations in the Raman system. To check the
reproducibility of the SERS spectral signals of MB and RB adsorbed on the surfaces of
SiNWs and SiNWs:Au-NPs, we carried out measurements at different sample regions, and
almost identical intensities and positions of the Raman bands were obtained. The spectra
were recorded 10 times and then averaged. All measurements were conducted in air at
room temperature.
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4. Conclusions

To summarize, we prepared the SERS substrates based on the MACE-grown SiNWs
of controlled porosity followed by the deposition of plasmonic Au-NPs on the surfaces
of SiNWs. The prepared samples were explored as SERS templates for the sensitive
detection of adsorbed molecules of Methylene blue and Rhodamine B. Significantly, such
dye molecules could be easily detected at an extremely low concentration of the order
of 1 fM. Both the enhancement factor and minimal detectable concentration of analyte
can obviously be improved by further optimizing the morphology of SiNWs and the
concentration of deposited Au-NPs.

Our results demonstrate that SiNWs:Au-NPs structures with desired porosity possess
the optimal conditions for the Raman scattering, which is combined with surface plasmon
resonance, and that they substantially enhanced the SERS signal of adsorbed molecules.
The operationally simple and inexpensive applied synthesis method yielding dense arrays
of SiNWs with Au-NPs for the SERS detection of small target molecules can be useful in
the preparation of SERS templates for biosensing applications.
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