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Abstract: Dysregulation of mitochondrial quality control has been reported to be associated with
cancer and degenerative diseases. SPATA18 (spermatogenesis-associated 18, also known as Mieap)
encodes a p53-inducible protein that can induce lysosome-like organelles within mitochondria that
eliminate oxidized mitochondrial proteins and has tumor suppressor functions in mitochondrial
quality control. In the present study, 268 primary colorectal cancers (CRCs) were evaluated immuno-
histochemically for SPATA18 expression to assess its predictive utility and its association with cellular
proliferation activity. Furthermore, the association with p53 immunoreactivity, a surrogate marker
for TP53 mutation, was analyzed. Non-neoplastic colonic mucosa showed cytoplasmic SPATA18
expression. Seventy-two percent of the lesions (193/268) displayed high SPATA18 expression in
the cytoplasm of CRC cells. Univariate analyses revealed significant associations between SPATA18
expression and tumor size (p < 0.0001), histological differentiation (p = 0.0017), and lymph node
metastasis (p = 0.00039). The log-rank test revealed that patients with SPATA18-high CRCs had signif-
icantly better survival than SPATA18-low patients (p < 0.0001). Multivariate Cox hazards regression
analysis identified tubular-forming histology (hazard ratio [HR] = 0.25), age < 70 years (HR = 0.50),
and SPATA18-high (HR = 0.55) as potential favorable factors. Lymph node metastasis (HR = 1.98)
and peritoneal metastasis (HR = 5.45) were cited as potential independent risk factors. Cellular
proliferation activity was significantly higher in SPATA18-high tumors. However, no significant
correlation was detected between SPATA18 expression and p53 immunoreactivity or KRAS/BRAF
mutation status. On the basis of our observations, SPATA18 immunohistochemistry can be used in
the prognostication of CRC patients.

Keywords: colorectal cancer (CRC); immunohistochemistry; SPATA18; p53 immunoreactivity;
cellular proliferation

1. Introduction

Multiple biomarkers have been identified to assist in disease diagnosis and to predict
treatment efficacy and patient outcomes for cancers such as colorectal cancer (CRC) [1].
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Recently, our group established a tissue microarray-based cohort to explore prognostic
markers, successfully identifying several prognostic markers in CRC patients [2–6].

Mitochondria are maternally inherited, cytoplasmic organelles originating from sym-
biotic bacteria and are indispensable for bioenergy, biosynthesis, and signaling for stress-
sensing for adaptations to the environment [7,8]. Mitochondria quality control, which
prevents the accumulation of defective mitochondria, is indispensable for cell homeostasis.
Dysregulation of mitochondrial quality control has been reported to be associated with
cancer and degenerative diseases [7,8]. SPATA18 (spermatogenesis-associated 18, also
known as Mieap) encodes a p53-inducible protein that has been reported to be able to
induce lysosome-like organelles within mitochondria that eliminate oxidized mitochondrial
proteins and is considered to contribute as a tumor suppressor through mitochondrial
quality control. [9] On the basis of Spata18-deficient mice models, tumor suppressive effects
of SPATA18 were suggested; inactivation of SPATA18-regulated mitochondrial quality
control leads to accumulation of unhealthy mitochondria and increased mitochondrial ROS
(reactive oxygen species) generation, which probably promotes cancer development and
aggressiveness [9,10].

The tumor suppressor p53 was first identified in 1979 as an oncoprotein [11–13]. On
the basis of the evidence that TP53 is one of the most mutated genes in human cancers,
numerous studies including gene mutation analyses have been performed to clarify the
function of p53. The essential functions of p53 are considered to be as follows: (1) p53 is
a transcription factor that activates its target genes by binding to specific sequences [14];
and (2) p53 harbors tumor suppressive effects through cell cycle arrest, apoptosis, DNA
repair, and anti-angiogenesis [15]. However, based on murine models, it was considered
that cell cycle arrest and apoptosis are not required for tumor suppression [16,17]. (3) p53
is frequently mutated in a broad range of human cancers [18], and mutations in TP53
result in different isoforms with variable transcriptional activity, which leads to different
cancer phenotypes [19].

p53 immunohistochemistry is now considered as an accurate surrogate marker re-
flecting the underlying TP53 mutational status frequently used in tumor diagnostics [20].
It has long been recognized that nonsynonymous TP53 missense mutations result in nu-
clear accumulation of p53 protein, which can be detected as overexpression in the form
of diffuse strong nuclear positivity involving at least 80% of the tumor cells but usually
almost 100% [20]. To date, other abnormal p53 expression patterns, cytoplasmic expres-
sion [21] and complete loss [22], have been recognized as correlating with the presence of a
TP53 mutation.

The present study examined the expression status of SPATA18 in CRCs. The associa-
tions of SPATA18 expression with clinicopathological features and clinical outcomes were
analyzed to assess their potential for clinical use. In addition, the associations between
SPATA18 and cellular proliferation markers or p53 immunoreactivity were analyzed to
characterize SPATA18-expressing CRCs.

2. Results
2.1. Expression of SPATA18 in Non-Neoplastic Colonic Mucosa and CRCs

Representative images of CRC cases with or without SPATA18 expression are presented
in Figure 1. In non-neoplastic colonic mucosa, SPATA18 was weakly expressed in the
cytoplasm of colonic epithelial cells. In addition, SPATA18-positive inflammatory cells were
observed (Figure 1b,e). The cutoff value for SPATA18 immunohistochemistry was defined
as 10% from the ROC (Receiver Operating Characteristic) curves for patient survival at
5-years (Figure 2a). In total, 28% of the lesions (75/269) exhibited lower SPATA18 expression
in CRC cells (Table 1).

The clinical, pathological, and immunohistochemical features of the analyzed tumors
are summarized in Table 1 according to SPATA18 expression. SPATA18 expression was
associated with tumor size (p < 0.0001), histological differentiation (p = 0.0017), and lymph
node metastasis (p = 0.00039).
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Figure 1. Representative images of SPATA18 immunostaining. (a–c), Representative images of 
SPATA18-high CRC. SPATA18 was weakly and strongly expressed in the cytoplasm of non-neo-
plastic colonic epithelial cells (b) and CRC cells (c), respectively. (d–f), Representative images of 
SPATA18-low tumors. CRC cells exhibited lower levels of cytoplasmic SPATA18 expression (f) than 
non-neoplastic colonic epithelial cells (e). SPATA18-positive immune cells were present in both non-
neoplastic and neoplastic stroma. Bar, 200 μm. 

Figure 1. Representative images of SPATA18 immunostaining. (a–c), Representative images of
SPATA18-high CRC. SPATA18 was weakly and strongly expressed in the cytoplasm of non-neoplastic
colonic epithelial cells (b) and CRC cells (c), respectively. (d–f), Representative images of SPATA18-low
tumors. CRC cells exhibited lower levels of cytoplasmic SPATA18 expression (f) than non-neoplastic
colonic epithelial cells (e). SPATA18-positive immune cells were present in both non-neoplastic and
neoplastic stroma. Bar, 200 µm.

Table 1. Characteristics of colorectal carcinomas classified according to SPATA18 expression.

SPATA18

Total No. High Low p-Value

268 (100%) 193 (72%) 75 (28%)
Sex a

Male 143 [53%] 106 [55%] 37 [49%] 0.49
Female 125 [47%] 87 [45%] 38 [51%]

Age, years (mean ± S.D.) 68.6 ± 12.6 68.3 ± 12.3 69.1 ± 13.3 0.63 b
Size, cm (mean ± S.D.) 5.0 ± 2.6 4.62 ± 2.29 5.98 ± 2.96 <0.0001 b
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Table 1. Cont.

SPATA18

Total No. High Low p-Value

Tumor location a
Right-sided colon 123 [46%] 87 [45%] 36 [48%] 0.91
Left-sided colon 86 [32%] 63 [33%] 23 [31%]
Rectum 59 [22%] 43 [22%] 16 [21%]

pT stage c
pT2 36 [13%] 32 [17%] 4 [6%] 0.036
pT3 188 [70%] 136 [70%] 52 [69%]
pT4 44 [16%] 25 [13%] 19 [25%]

Histological differentiation a
Well to moderately 241 [90%] 181 [94%] 60 [80%] 0.0017
Poorly 27 [10%] 12 [6%] 15 [20%]

Mucus production d
Positive 14 [5%] 11 [6%] 3 [4%] 0.76
Negative 254 [95%] 182 [94%] 72 [96%]

Lymph node metastasis a
Positive 99 [39%] 77 [42%] 22 [32%] 0.00039
Negative 153 [61%] 106 [58%] 47 [68%]

Peritoneal metastasis a
Positive 50 [19%] 33 [17%] 17 [23%] 0.38
Negative 218 [81%] 160 [83%] 58 [77%]

Distant organ metastasis a
Positive 44 [16%] 30 [16%] 14 [19%] 0.66
Negative 224 [84%] 163 [84%] 61 [81%]

Operation status a
Complete resection 236 [88%] 175 [91%] 61 [81%] 0.057
Incomplete resection 32 [12%] 18 [9%] 14 [19%]

MMR system status a
Deficient 238 [88%] 173 [90%] 65 [87%] 0.63
Preserved 30 [12%] 20 [10%] 10 [13%]

a, p-values were calculated by the chi-squared test for SPATA18 expression. b, t-test, c, Cochran-Armitage trend,
or d, Fisher’s exact test was used to calculate p-values. The Bonferroni-corrected p-value for significance was
p ≈ 0.0042 (0.05/12).
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Figure 2. Overall survival of patients with colorectal cancer classified according to SPATA18 expres-
sion. (a), ROC curve for SPATA18 expression at the patient’s death. The cut-off value was defined 
from the closest point to the upper-left side. (b), Kaplan-Meier curves for patients classified by 
SPATA18 expression. 
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Figure 2. Overall survival of patients with colorectal cancer classified according to SPATA18 expres-
sion. (a), ROC curve for SPATA18 expression at the patient’s death. The cut-off value was defined
from the closest point to the upper-left side. (b), Kaplan-Meier curves for patients classified by
SPATA18 expression.
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2.2. Survival Analyses of Patients with CRC

The cut-off value for SPATA18 expression was determined at 10% by the ROC curve
for patient survival at 5 years and the area under curve (AUC) was 0.595 (95% confidence
interval [CI] = 0.50–0.69; Figure 2). Patients with SPATA18-low CRC had significantly worse
5-year survival (54.7% vs. 80.0%; p < 0.0001; Figure 2b). Analysis of data from TCGA (The
Cancer Genome Atlas) also revealed unfavorable survival in CRC patients with SPATA18-
low tumors (Supplementary Figure S1). Multivariate Cox hazards regression analysis
identified tubular-forming histology (hazard ratio [HR] = 0.25, 95% confidence interval
[CI] = 0.13–0.47, p < 0.0001), younger age (<70 years old, HR = 0.50, 95% CI = 0.29–0.86,
p = 0.012), and high tumor SPATA18 expression (HR = 0.55, 95% CI = 0.32–0.94, p = 0.029),
as potential favorable factors. The analysis also revealed the presence of lymph node
metastasis (HR = 1.98, 95% CI = 1.14–3.45, p = 0.015), and peritoneal metastasis (HR = 5.45;
95% CI = 3.05–9.73, p < 0.0001) as potential independent risk factors for patients with CRC
(Table 2).

Table 2. Multivariable Cox hazards analysis of colorectal cancer patients.

Hazard 95% CI

Ratio Min Max p-Value

Well to moderately differentiated histology 0.25 0.13 0.47 <0.0001
Age (<70) 0.50 0.29 0.86 0.012
SPATA18 high 0.55 0.32 0.94 0.029
Lymph node metastasis 1.98 1.14 3.45 0.015
Peritoneal metastasis 5.45 3.05 9.73 <0.0001

The multivariable Cox hazards analysis model initially included sex, age, primary tumor location, tumor size, pT
stage, operation status, tumor histology, mucus production, lymph node metastasis, distant organ metastasis,
peritoneal metastasis, mismatch repair system status, and immunohistochemistry for SPATA18. A backward
elimination with a threshold of p = 0.05 was used to select variables in the final model.

Among the analyzed tumors by using Kaplan-Meier Plotter pan-cancer RNA-seq
data, papillary renal cell carcinoma, thyroid carcinoma, endometrial carcinoma, clear cell
renal cell carcinoma, HER2 type breast cancer, basal type breast cancer, sarcoma, lung
adenocarcinoma, and head and neck squamous cell carcinoma showed lower risk in
SPATA18-expressing tumors (HR = 0.22–0.72; Table 3). In contrast, bladder carcinoma
showed higher risk in SPATA18-expressing tumors (HR = 1.43; Table 3).

Table 3. Survival analyses in Kaplan–Meier Plotter according to SPATA18 expression.

Patient Hazard 95% CI Log-Rank

No. Ratio Min Max p-Value

Papillary renal cell carcinoma 287 0.22 0.12 0.40 <0.0001
Thyroid carcinoma 502 0.29 0.10 0.79 0.01
Endometrial carcinoma 542 0.35 0.22 0.56 <0.0001
Clear cell renal cell carcinoma 530 0.36 0.26 0.48 <0.0001
HER2 type breast cancer 295 0.51 0.26 1.00 0.047
Basal type breast cancer 309 0.59 0.36 0.98 0.04
Sarcoma 259 0.63 0.42 0.94 0.022
Lung adenocarcinoma 504 0.67 0.50 0.91 0.0084
Head-neck squamous cell carcinoma 499 0.72 0.55 0.94 0.015
Bladder carcinoma 404 1.43 1.03 1.98 0.031

RNA-seq data were analyzed using the Kaplan-Meier Plotter program. Note that no significant difference was
detected in cervical squamous cell carcinoma, esophageal adenocarcinoma, esophageal squamous cell carcinoma,
hepatocellular carcinoma, luminal A and B type breast cancer, lung squamous cell carcinoma, normal type
breast cancer, ovarian cancer, pancreatic ductal adenocarcinoma, stomach adenocarcinoma, and testicular germ
cell tumor.
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2.3. SPATA18 Was Correlated with Cellular Proliferation Markers

Immunohistochemical staining analyses revealed that SPATA18-high tumors contained
a significantly higher number of PHH3 (phospho-histone H3)-positive cells (p = 0.0039;
Figure 3a). The CCNA (cyclin A) labeling index was significantly higher in SPATA18-high
tumors (p = 0.0033; Figure 3b). In contrast, no significant difference was detected between
SPATA18 expression and GMNN (geminin) or Ki-67 labeling indices.
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Figure 3. Cellular proliferation marker expression classified according to SPATA18 expression. (a),
SPATA18-high tumors contained a significantly higher number of PHH3-positive cells. (b), CCNA
labeling index was significantly higher in SPATA18-high tumors. (c,d), No significant difference was
detected in GMNN or Ki-67 labeling indices in SPATA18-high and -low tumors.

2.4. SPATA18 Showed No Correlation with p53 Immunoreactivity or KRAS/BRAF Mutations

Representative images of CRC cases with various p53 immunoreactivity patterns
are presented in Figure 4a–d. No significant correlation was detected between SPATA18
expression and p53 expression patterns (Figure 4e).
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Figure 4. Association of p53 immunoreactivity and SPATA18 expression. (a–d), Representative
images of p53 immunoreactivity. (a) Wild-type pattern, (b) overexpression, (c) complete loss, and
(d) cytoplasmic expression. Arrow heads indicate internal controls. (e), No significant correlation
was detected between SPATA18 expression and p53 expression patterns.

No correlation was found between SPATA expression and KRAS/BRAF mutations.
(Supplementary Figure S2).
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3. Discussion

Dysregulation of mitochondrial quality control has been reported to be associated
with cancer and degenerative diseases [7,8]. SPATA18, a p53-inducible protein, has been
reported to be involved in mitochondrial quality control [10]. When Spata18 knock out mice
were crossed with ApcMin/+ mice, which are known to develop multiple benign tumors
in the small intestine [23,24], Spata18-deficient ApcMin/+ mice showed a much shorter
lifespan with a higher number and size of intestinal tumors compared with Spata18-WT
ApcMin/+ mice [9]. Moreover, intestinal tumors in Spata18-deficient ApcMin/+ mice showed
more advanced grades of adenomas and adenocarcinomas than Spata18-WT ApcMin/+

mice [9]. These results suggested the tumor suppressive effects of Spata18 during intestinal
adenocarcinoma development; inactivation of Spata18-regulated mitochondrial quality
control leads to accumulation of unhealthy mitochondria and increased mitochondrial
ROS generation, which probably promotes cancer development and aggressiveness [9].
Furthermore, using web-based programs, lower hazard ratios were identified in carcinomas
arising in the kidney, thyroid, uterus, and breast (Table 3). In contrast, bladder carcinomas
indicated a higher risk in SPATA18-high tumors with unknown mechanisms.

Mitochondria are extremely dynamic, and dynamin-related protein-1 (Drp1)-regulated
balance of fission and fusion dictates their morphology. Altered mitochondrial dynamics
are a critical feature of KRAS-dependent cellular transformation; oncogenic KRAS stimu-
lates mitochondrial fragmentation via ERK1/2-mediated phosphorylation of Drp1 [25,26].
Additionally, remodeling of the mitochondrial network upon oncogenic KRAS expression
has been reported to affect increased ROS generation [26]. On the basis of these notions,
we analyzed the gene mutation status and SPATA18 expression in CRCs; however, no
correlation was detected (Supplementary Figure S2).

The prognostic impacts of cellular proliferation markers have been controversial in
CRC patients [27–32]. Recently, our group revealed that higher expression of PHH3, which
is expressed in late G2 and M phases, is associated with lower pT stage and favorable clinical
outcome in CRC patients [4]. These observations were partly explained by our additional
in vitro study in which PBK (also known as TOPK) was demonstrated to accelerate cellular
proliferation with direct phosphorylation of HH3 (histone H3) along with the suppression
CRC cell migration and invasion [33]. In the present study, SPATA18-high CRCs showed
higher PHH3 counts and CCNA labeling indexes than SPATA18-low tumors with favorable
clinical outcomes. These results are in line with our previous results that CRCs with
proliferating cells show favorable clinical outcomes [4].

SPATA18 has been reported as a p53-inducible protein; however, its expression has
been demonstrated to be regulated in part by gene promoter methylation [34]. In primary
CRCs, it was reported that the methylation of SPATA18 promoters was observed in only 5
out of 57 patients (9%) [34]. Furthermore, with frequent TP53 mutations in nearly 50% of
CRCs, we hypothesized that dysregulated p53 transcriptional activity leads to abnormal
expression of SPATA18. To assess this, we analyzed the association between SPATA18
expression and p53 immunoreactivity, an established surrogate marker for TP53 mutation;
however, no significant correlation was found. This may be because mutations in TP53
result in different isoforms with variable transcriptional activity, which leads to different
cancer phenotypes [19].

Serum carcinoembryonic antigen (CEA) is one of the established biomarkers for
diagnosis, monitoring the recurrence and metastasis and the evaluation of chemotherapy in
CRC [35,36]. Recently, the prognostic impacts of CEA have been evaluated by using ROC
curves and reported that post-operative CEA (AUC = 0.686, 95% CI = 0.657–0.714) was better
than pre-operative CEA (AUC = 0.621, 95% CI = 0.592–0.650) in stage II CRC [35]. In the
present study, the ROC curve revealed that AUC of SPATA18 was 0.595 (95% CI = 0.50–0.69;
Figure 2a). These differences may be due to the characteristics of the markers, evaluation
methods, and/or cohorts (e.g., patient number and stage): CEA is aberrantly expressed by
neoplastic cells and detected by serum chemiluminescent immunoassay; the decreased or
lost expression of SPATA18 in tumor cells was evaluated by immunohistochemistry.
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The present study immunohistochemically evaluated the expression of SPATA18
in CRCs. SPATA18-high status was identified as a potential favorable factor for CRC
patients. SPATA18-high tumors contained a significantly higher number of PHH3-positive
cells. However, no significant correlation was detected between SPATA18 expression and
p53 immunoreactivity or KRAS/BRAF mutation status. According to our observations,
SPATA18 immunohistochemistry can be used in the prognostication of CRC patients.
ROS inhibitors or anti-oxidants may be applied to cases with lower SPATA18 tumors or
oncogenic KRAS-positive CRCs.

4. Materials and Methods
4.1. Tissue Samples

The Institutional Ethical Review Board of Aichi Medical University Hospital approved
this project without the need for patient consent by giving them the opportunity to opt out.
Two hundred and sixty-nine formalin-fixed, paraffin-embedded (FFPE) samples of primary
colorectal tumors resected at Aichi Medical University Hospital from 2009 to 2012 were
collected depending on the availability of tissue samples and clinical information. After
surgery, patients were followed for up to 90 months. All tumors were diagnosed as invasive
and naïve to chemotherapy or radiotherapy according to TNM classification [37]. Tumors
with glandular formation (>50%) or mucus production (>50% of the area) were defined as
having a differentiated or mucus-producing histology. A single 4.5-mm core tumor tissue
sample derived from an FFPE specimen was assembled into multitumor blocks containing
up to 30 samples. All cores were obtained from invasive areas, and approximately 20% of
cores contained an invasive front. Non-neoplastic colonic mucosae adjacent to the tumor
were also immunohistochemically analyzed.

4.2. Immunohistochemistry

The antibodies used in the present study are summarized in Supplementary Table S1.
Immunohistochemistry was performed using a Leica Bond-Max (Leica Biosystems, Wetzlar,
Germany) or Ventana BenchMark XT automated immunostainer (Roche Diagnostics, Basel,
Switzerland). Signals were visualized using 3,3′-diaminobenzidine. SPATA18 expression
was independently evaluated by two researchers (AS-N and SI). The concordance rates of
the initial immunohistochemical evaluation are presented in Supplementary Table S2. The
results of discordant cases were confirmed via discussion.

The data for cellular proliferation markers were cited from our previous study [4]. In
brief, Ki-67, CCNA, and GMNN labeling indices were determined by counting >500 tumor
cells per case in a high-power field (×400). The number of PHH3-positive cells was counted
under the same magnification.

p53 immunoreactivity was classified as follows: wild-type, overexpression, complete
loss, and cytoplasmic expression [20]. In the evaluation of complete loss of p53 expression,
cases without internal controls such as fibroblasts and lymphoid cells were eliminated from
the study.

4.3. Statistical Analyses

Statistical analyses were performed using EZR software version 1.41 [38]. The cutoffs
for immunohistochemistry were defined as the value closest to the upper-left corner in the
ROC curves for patient survival at 5 years. The chi-squared test, Fisher’s exact test, Cochran–
Armitage trend test, Mann-Whitney U test, or the Kruskal-Wallis test was performed to
analyze the statistical correlation between categorical data. Simple Bonferroni correction
for multiple hypothesis testing was applied for adjustment at a two-sided alpha level of
0.0042 (=0.05/12).

For survival analyses, Kaplan–Meier survival estimates were calculated with the
log-rank test. Cox proportional hazards regression analysis was performed to analyze
the associations of survival with other factors. The initial model included the following
variables: sex (male vs female), age (<70 years old vs. ≥70 years old), tumor size (<5 cm
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vs. ≥5 cm), primary tumor location (right-sided colon vs left-sided colon vs rectum), pT
stage (pT2 vs. pT3 vs. pT4), tumor histology (moderate to well-differentiated vs. poorly
differentiated), mucus production (positive vs. negative), lymph node metastasis (posi-
tive vs. negative), peritoneal metastasis (positive vs. negative), distant organ metastasis
(positive vs negative), surgical status (complete vs. incomplete resection), mismatch repair
system status (preserved vs. deficient), and immunohistochemical data (SPATA18-high
vs. SPATA18-low). A backward elimination with a threshold of p < 0.05 was used to select
variables in the final model.

4.4. Survival Analyses Using Web Site Programs

Data from TCGA were analyzed using the UCSC Xena program (https://xena.ucsc.
edu/ (accessed on 31 January 2022)). The best cut-off values were automatically set by the
program for each tumor type.

Survival analyses were performed using Kaplan-Meier Plotter pan-cancer RNA-seq
data according to SPATA18 expression (https://kmplot.com/analysis/ (accessed on 31
January 2022)). The best cut-off values were automatically set by the program for each
tumor type.

4.5. Gene Mutation Analyses

KRAS mutation status was collected from the medical records. BRAF V600E mutation
analyses were performed by polymerase chain reaction (PCR)-direct sequencing using the
following primers: BRAF forward, tgc ttg ctc tga tag gaa aat g; BRAF reverse, cag ggc caa
aaa ttt aat cag t.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23052753/s1.
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