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Abstract: Pancreatic Ductal Adenocarcinoma (PDAC) constitutes a leading cause of cancer death
globally. Its mortality remains unaltered despite the considerable scientific progress made in the fields
of diagnostics and treatment. Exosomes comprise of small extracellular vesicles secreted by nearly all
cells; their cargo contains a vast array of biomolecules, such as proteins and microRNAs. It is currently
established that their role as messengers is central to a plethora of both physiologic and pathologic
processes. Accumulating data have shed light on their contributions to carcinogenesis, metastasis,
and immunological response. Meanwhile, the advancement of personalized targeted therapies into
everyday clinical practice necessitates the development of cost-efficient treatment approaches. The
role of exosomes is currently being extensively investigated towards this direction. This review
aims to summarize the current pre-clinical and clinical evidence regarding the effects of exosomal
applications in the timely diagnosis, prognosis, and therapeutic management of pancreatic cancer.
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1. Introduction
1.1. PDAC: Epidemiology, Pathogenesis and Current Therapeutic Management

Pancreatic cancer has long been a major public health issue and statistical figures
highlight the ever-growing severity of the problem. According to GLOBOCAN 2020,
495,773 new cases and 466,003 deaths were attributed to pancreatic cancer worldwide in
the year 2020 [1]. Currently, pancreatic cancer is the fourth cancer-related cause of death
in the United States with the outlook being rather grim, as it is projected to be elevated to
the position of second or the third place with respect to cancer mortality in Europe and
North America by the end of this decade [2,3]. Incidence and mortality rates are four or five
times higher in regions with a high Human Development Index such as Europe or North
America when compared with countries in Sub-Saharan Africa [1]. Nonetheless, disease
prognosis does not differ significantly between rich and poor countries, an observation
ascribed to the lack of an effective screening process, late diagnosis, and the limited success
of available treatment protocols [4]. The incidence of pancreatic cancer is slightly higher in
men than in women and predominantly affects people between 60 and 80 years old with the
cumulative lifetime risk of developing pancreatic cancer estimated to be around 1.5% [5,6].
It should be noted that these data are primarily derived from cases of pancreatic ductal
adenocarcinoma (PDAC), which is the most common histological type (>90%) and thus is
the focus of this manuscript [7]. Other less common varieties are acinar cell carcinoma or
cystadenocarcinoma, intraductal papillary mucinous neoplasm with an associated invasive
carcinoma intraductal tubulopapillary neoplasm with associated invasive carcinoma, mixed
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acinar/ductal /neuroendocrine carcinoma, pancreatoblastoma serous cystadenocarcinoma,
solid-pseudopapillary neoplasm, and neuroendocrine neoplasms [8].

Regardless of histology, our understanding concerning the etiology of this disease
is fundamentally lacking. As is the case with many malignancies, “modus vivendi” is a
major determinant of PDAC risk. Smoking, excess body weight, and diabetes mellitus are
all recognized risk factors [8-15]. Recent advances in molecular biology have served to
further illuminate the mechanics PDAC. While most cases are sporadic, 5-10% are related to
familial and inherited genetic disorders, such as Lynch Syndrome or Familial adenomatous
polyposis, which carry a higher risk for PDAC [15,16]. Delving deeper into the genetics,
mutations or deletion in genes such as PRSS1, KRAS, p16, p53, and BRCA?2 are linked to
an increased level of risk [17]. Of particular significance is the mutational activation of
the proto-oncogene KRAS, which is harbored in up to 90% of cases [18,19]. These KRAS
mutations concern mainly three hotspots, which most often are substitutions at G12 (84%).
There are six possible single-base missense mutations, namely, G12D, G12V, G12C, G12A,
G125, and G12R [20]. Beyond KRAS mutations, there are a considerable number of tumor
suppressors that are usually altered; some examples are CDKN2A (95%), TP53 (75%), and
DPC4/SMAD4 (55%) [21-24].

Undoubtedly, the pathogenesis of PDAC remains elusive. However, a more press-
ing matter and a source of great concern is its insidious nature and the lack of effective
treatment options. At diagnosis, PDAC is usually at least 2-4 ¢cm in diameter and has
in many occasions already infiltrated the surrounding structures and lymph nodes [8].
Unfortunately, just 10-15% of patients are candidates for surgery, which is associated with
a 5-year-survival rate of around 25% [24-26]. The chance of survival is significantly better
when surgery is combined with chemotherapy [27-29]. While the survival rates after
surgery are not impressive, they are considerably higher than those of patients who present
with metastases at diagnosis, which are no more than 2.7% [29]. For those who are not
candidates for surgery and who have an Eastern Cooperative Oncology Group (ECOG)
Performance Status (PS) between 0 and 1, the first treatment option is chemotherapy with
leucovorin, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) or gemcitabine plus
nab-paclitaxel. Patients with a PS of 2 generally receive gemcitabine alone, while treatment
for those with a PS of 3 is generally limited to the best supportive care. Further treatment
options are available for a limited number of patients with NTRK fusions, BRCA muta-
tions, or those who are mismatch repair deficient or whose disease has high microsatellite
instability [30]. Nevertheless, the available therapeutic strategies have limited efficacy
and the disease usually develops resistance to even the most active agents, such as gemc-
itabine [28,31]. Currently, the end result is disheartening: patient median survival time is
less than 6 months [32]. This state of affairs calls for a different approach to PDAC diagnosis
and management, and one of the novel strategies is the manipulation of exosomes [33-38].
This review provides a precis of exosome biology and its possible applications to the
therapeutics of PDAC.

1.2. Extracellular Vesicles: Characteristics and Roles in Physiology and Disease

Extracellular vesicles (EVs) are membrane-bound lipid particles secreted by all cells
and function as a means of communication between the parent and the recipient cell
through their biological cargo (proteins, nucleic acids, lipids, and metabolites). With
regard to their classification, the International Society of Extracellular Vesicles recom-
mends the division of EVs based on their size: medium/large EV (>150 nm) and small EV
(<150 nm) [39]. Nonetheless, there is no general consensus regarding the categorization
of EVs in the current literature due to the considerable overlap of vesicle sizes. However,
most researchers discern three major groups of EVs: small EVs or exosomes, microvesicles,
and apoptotic bodies.

Small EVs or Exosomes: Exosomes are nanoparticles with a diameter measurement in
the range of 30-150 nm. The first step in the biogenesis of exosomes is the inward budding
of the extracellular membrane, which forms the endosome. The endosome undergoes
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inward invaginations and thus encloses biological cargo, which produces the intraluminal
vesicles. The total number of intraluminal vesicles and the endosome in which they
are contained comprise a multivesicular body (MVB). Once formed, these MVBs can
either fuse with lysosomes and have their content degraded or release their content to the
extracellular matrix through the endosomal sorting complex required for the transport-
(ESCRT)-dependent or the ESCRT-independent pathway. Among exosomes, there are
several common features such as the tetraspanin family of surface proteins (CD9, CD63 and
CD81), integrins, heat shock proteins, ESCRT, actin and flotillins, while other molecules are
specific to the donor cell, such as type MHC Class I and II. The end result is the activation
of a variety of signaling cascades, which are determined by the interconnection between
exosome surface proteins and receptors on the recipient cells [39,40].

Microvesicles: The sizes of these vesicles range from 50 nm to 1um and are generated
by the outward budding of the cell membrane [41]. Their content is similar to that of
exosomes, and they are considered to be involved on tissue homeostasis (regeneration,
angiogenesis, cell cycle regulation, inflammation, etc.) [42,43].

Apoptotic Bodies: These vesicles comprise large fragments of a cell which has un-
dergone apoptosis. They are the largest subset of the EVs with a size of up to 2 pym and
therefore provide a substantial molecular pool for recipient cells [44]. Apoptotic bodies
are readily cleared by macrophages, which recognize phosphatidylserine on the surface
of the EV in question; the defects of this process are linked to auto-immune reactions [45].
Similarly to microvesicles, apoptotic bodies play a role in tissue homeostasis, such as bone
metabolism [46].

1.3. Exosomes

Classically, exosomes were considered as a means for the disposal of nonessential
cellular cargo. The first documentation of the term “exosome” in the literature was in a
publication delineating the maturation of reticulocytes [47]. The development of more
advanced cell culture techniques in conjunction with the improvement in exosomal isola-
tion capacity and immune-electron microscopy has led to a deepening in our perception
of the underlying biosynthetic and regulatory mechanisms of exosomes [48]. It is now
common knowledge that they are important mediators of intercellular communication
under both normal and diseased conditions [49]. In more detail, the mediation of exosomes
regulates a wide variety of physiologic processes: skin regeneration [50], bone remodel-
ing [51], placental formation [52], and organ crosstalk during exercise [53]. It also serves
as a diagnostic and predictive biomarker in inflammatory diseases such as rheumatoid
arthritis [54], systemic lupus erythematosus [55], and nephropathies [56].

Similarly, the participation of exosomes in cancer pathophysiology with applications
in diagnosis, prognosis, and treatment has been extensively studied [57-59].

Focusing on PDAC, exosomes have the potential to help determine treatment decisions.
One such application is the perspective given by liquid biopsy, as was hinted by Buscail
et al. who demonstrated that the level Glypican-1 positive exosomes circulating tumor
cells and CA19-9 are able to be used for diagnostic and prognostic purposes in patients
with resectable tumors [60,61]. Moreover, Nakamura et al. found that extracted exosomes
from pancreatic juice could be used to discriminate PDAC from chronic pancreatitis [62].
Furthermore, treatment adjustments could be made by monitoring exosomal miRs, known
to confer chemoresistance [63].

1.4. Artificial Exosomes: Engineering and Applications

Exosomes possess abilities and characteristics that render them a highly promising
drug delivery system. However, the utilization of natural exosomes comes across a variety
of technical issues such as difficulties in large-scale production, isolation, drug conjugation,
stability, and quality control. To compensate for these deficiencies, a considerable effort is
being made that aims to develop artificial exosomes by means of nanobiotechnology. With
respect to the production of these vesicles, many different approaches have been suggested,
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all of which can be summarized into three distinct filter categories, namely, “top-down”,
“bottom-up,” and “biohybrid” technologies [64].

The “top-down” strategy aims at the creation of nanovesicles through cell manipula-
tion. This can be achieved with multiple techniques such as forced passage through porous
membranes or microfluidic devices, nitrogen cavitation, cell membrane blebbing by virtue
of sulfhydryl-blocking, and exposure to alkaline solutions followed by sonication. The
major advantage of the “top-down” methodology is that the produced nanovesicles are
fully biological with similar features to natural exosomes. Unfortunately, their production
process also involves cell destruction, which limits its production sustainability and is
associated with the presence of various contaminants [65-68].

On the other hand, “bottom-up” methodologies produce exosome-mimetics by supr-
amolecular chemistry, which combines basic components such as lipids or proteins in a
progressive manner so as to form complex structures [64]. This approach offers a pure
product that is eligible for mass production, while its most substantial shortcoming is
attributed to the difficulties in the liposome modification necessary in order to accomplish
the sufficient mimicry of natural exosomes [69,70].

Finally, biohybrids, a form of exosome-mimetic, can be created through the merging
of synthetic nanoparticles with natural vesicles, which is achievable by freeze-thawing,
incubation, or co-extrusion [64]. This strategy might produce a carrier with higher efficiency
than liposomes and higher stability than natural exosomes. Regrettably, this methodology
is the most resource-intensive [71].

In summary, the products of nanobiotechnology are expected to comprise a major
drug delivery system in the near future and bring medicine closer to personalized therapy.
However, this field is still in its early stages of evolution. Therefore, further research is
needed to improve production protocols, devise characterization methods, and achieve a
meaningful outcome. The above-mentioned techniques are presented in Figure 1.
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Figure 1. The construction of artificial exosomes (A,B), the “top-down” strategy: forced passage

through porous membranes or microfluidic devices, nitrogen cavitation; cell membrane blebbing.
(C) The supramolecular construction of artificial exosomes with biohybrid technologies (D), the
“bottom-up” methodology: the supramolecular construction of complex structures from basic compo-
nents. Created with BioRender.com.
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2. PDAC Microenvironment: Role in Neoplasia

The PDAC’s microenvironment consists of a wide variety of heterogeneous cell pop-
ulations, namely, endothelial cells and pericytes comprising the vascular compartment,
extracellular matrix (ECM)-producing cells, neuroendocrine cells, and immune and inflam-
matory cells at various activation states. From a review of the preceding literature, it is
apparent that their contribution to tumorigenesis has long been underappreciated. This is
reflected by the utilization of nonspecific chemotherapeutic agents in PDAC’s therapy in
order to achieve cell-cycle arrest. With the broadening of our understanding of PDAC’s
initiation, proliferation, and metastatic potential as well as of the dynamic interconnection
between tumor cells and the cells of tumor microenvironment (TME), new target-specific
therapeutic approaches are under development. This complex network is interconnected
with physical interactions, immune suppression, and pleiotropic crosstalk mechanisms [72].
This interconnection is mediated through exosomal intercellular communication.

As far as a tumor’s physiology is concerned, the PDAC cells are crowded in an
intense stroma of fibrous tissue, which is characteristic of the disease [73]. The immune cell
infiltrates constitute nearly 50% of the tumor mass [74]. A glycosaminoglycan desmoplastic
reaction (analyzed below) is responsible for the notable increase in interstitial fluid pressure
(IFP) [75], which constricts the vascular inflow, creating an oxygen-deprived, nutrient-poor
environment [72]. Under hypoxic conditions, the pancreatic cancer cells generate and
secrete exosomes carrying miR-301a-3p, which polarize the stromal macrophages into a
M2 phenotype upregulating the PTEN /PI3K signaling pathway [76]. Moreover, Yang et al.
demonstrated that M2 macrophages had a positive correlation with the microvessel density
of human PDAC. M2 macrophage-derived exosomes were more enriched in miR-155-5p
and miR-221-5p compared to M0 macrophage-derived exosomes, which promoted the
angiogenic ability of endothelial cells in an E2F2-dependent manner [77]. Similarly, hypoxic
PDAC cell-derived exosomal miR-30b-5p was found to promote angiogenesis through the
inhibition of GJA1 in a mouse model. This observation holds the promise of becoming the
basis of the development of a new diagnostic marker, as patients with PDAC had higher
levels of total miR-30b-5p and exosomal miR-30b-5p in peripheral blood plasma than did
healthy subjects [78]. Hypoxia is also targeted by modern therapeutics. For example,
evofosfamide is reduced in hypoxic conditions, releasing its active metabolite bromo-
isophosphoramide (Br-IPM). Br-IPM exerts its cytotoxic effects preferentially in the hypoxic
areas of the tumor and potentiates the utilization of radiotherapy and chemotherapy as
adjunct therapeutic modalities [79]. However, the TME and the disease are not static, as the
transfer of miRNA in macrophage-derived exosomes induces drug resistance in PDAC [80].
Exosome-mediated intercellular communication is also central to disease progression. It
has been recently found that the liver metastatic niche is prepared in advance by the PDAC-
derived exosomes carrying the CD44v6/C1QBP complex, which causes hepatic fibrosis [81].
In this context, exosomal long noncoding RNA LINC01133 was demonstrated to promote
the proliferation, migration, invasion, and epithelial-mesenchymal transition of pancreatic
cancer cells [82].

Beyond mere description of disease pathogenesis, the exploration of exosome-mediated
communication might uncover a new basis for potential treatment. Based on this thesis,
Zhou et al. created an exosome-based dual delivery biosystem for enhancing PDAC im-
munotherapy and reversing the tumor immunosuppression of M2 macrophages through
the disruption of the galectin-9/dectin 1 axis [83]. TME was also targeted in a recent clinical
trial which tested the ibrutinib plus nab-paclitaxel/gemcitabine versus the placebo plus
nab-paclitaxel/gemcitabine. Unfortunately, no statistically significant increase in survival
was noted [84]. Alternation of the TME and immune system activation has also been
attempted via the use of a modified herpes simplex virus by Wang et al., while the same
aim was pursued by Jiang et al. through MEK and autophagy co-inhibition, coupled with
CD40 agonism [85,86].
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Taking all of this into consideration, PDAC TME is central to pathogenesis and the
physical history of the disease. These processes—mediated largely by exosomes—are
becoming ever more defined. Thus, the next step is to utilize the attributes of exosomes and
to manipulate them in such a way that they become clinically meaningful. A brief synopsis
of the above is presented in Figure 2.

PDAC Microenvironment

Activated fibroblasts

Hyaluronan fibers

Tumor cells occupy

ancreatic ducts
P Activated macrophages

Condensed vassels

Cancer

1 . cell

Tumor-associated Cancer -associated
* Macrophage * Eibroblast El;ﬁzlhelml
&

Figure 2. The PDAC microenvironment. Created with BioRender.com.

3. Therapeutic Applications of Exosomes in PDAC

The urgency regarding the generation of a more personalized approach to medical
diagnosis and treatment has placed exosome technology in the spotlight. The main applica-
tions that are under investigation concern the reduction of drug resistance, the utilization
of exosomes as drug-carries, the therapeutic modification of the immune tumor microen-
vironment, and the targeting of KRAS. The contributions of exosomes in the therapy of
PDAC will be presented below.

3.1. Chemoresistance in PDAC Treatment

Resistance to chemotherapy is an appreciable problem in the treatment of pancre-
atic cancer, and there is growing evidence that exosomes are crucially involved. The
underlying mechanisms for nontargeting drugs include the upregulation of multidrug
resistance proteins (MDR) which comprise several classes of drug efflux pumps such as
P-glycoproteins (P-gp), multidrug-resistant protein-1 (MRP-1), and ATP-binding cassette
sub-family A member 3(ABCA-3). They also include the enhancement of proliferating
and anti-apoptotic pathways, the downregulation of drug targets, and the mutational
alteration of drug targets. The latter also constitutes the leading cause of drug resistance
in targeted therapies [87]. Exosomes contribute to drug resistance either directly (by car-
rying the chemotherapeutic agents outside of the cancer cells [88]) or indirectly (through
their cargo-mediated effects); they derive from chemotherapy-resistant cancer cells and
the cells of TME and modulate the phenotype of chemotherapy-sensitive cancer cells [87].
In recent years, preclinical data on the role of exosomes in chemotherapy resistance have
increased remarkably.
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Radical oxygen species (ROS) generation is a well-documented precipitant of cell
death. Patel et al. documented that among the EVs, exosomes contribute the most to
gemcitabine (GEM) resistance by conveying superoxide dismutase 2 (SOD2) and catalase
(CAT) to detoxify ROS. In parallel, the exosomally transmitted miR-155 inhibits the
expression of deoxycytidine kinase (DCK), deescalating the phosphorylation of GEM
monophosphate to its active metabolite. The inhibition of mir-155 or the downregulation
of DCK counteracts the exosome-induced GEM resistance [89]. Mikamori et al. shed
more light on the effects of miR-155 on PDAC. They demonstrated that miR-155 enhances
the secretion of exosomes, modifies their cargo, increasing its excretion, and induces
GEM resistance through suppressing apoptosis by downregulating TP53INP. The in-
terception of RAB27B’s function mitigated drug resistance by enhancing the caspase
3/7-induced apoptosis [90]. These results indicate that miR-155 in exosomes could be
a potential therapeutic target. Taking a step further, survivin exerts its anti-apoptotic
effects by binding and deactivating caspase-9 through the phosphorylatable Thr. Since
the utilization of Survivin-T34A by adenoviral vectors showed moderate therapeutic
results [91], Aspe et al. treated MIA PaCa-2 cell lines with Survivin-T34A-enriched exo-
somes raised by engineered melanoma cells. They reported that the combination of GEM
and Survivin-T34A-enriched exosomes ameliorated nearly three times the apoptotic
process compared to GEM or exosomes alone [92]. Although the role of the EPH/ephrin
system on cancer has been thoroughly presented [93], we are obligated to indicate the
significant role of exosomal EPHA2 in GEM resistance. A comparative analysis of the
protein exosomal cargo indicated a 5-fold increase of EPHA2 in the GEM-resistant PANC-
1 cell line in comparison with the more GEM-sensitive MIA PaCa-2 and BxPC-3 lines.
The silencing of the EPHA2 in PANC-1 cells improved GEM resistance by approximately
25% [94]. In the complex TME, drug resistance can also be imposed by noncancerous
cell populations.

Excepting the metabolic support that Cancer-associated fibroblasts (CAF) provide
to the cancerous epithelial cells, Richards et al. documented that CAFs, when exposed to
GEM, tend to transmit their innate resistance to GEM with exosomes highly enriched in
miR-146a and Snail. Blocking the secretion of exosomes with GW4869 enhances PDAC
cell killing by GEM in co-cultures and shrinks the tumor volume [95]. Analogously,
miR-106b-enriched exosomes of CAF origin promote resistance upon GEM exposure,
combining with TP53INP. Those actions can be alleviated by miR-106b inhibitors [96].
Tumor-associated macrophages (TAMs) and cancer stem cells are also cell populations
which significantly contribute to GEM resistance. M2-derived exosomes carried circa
ten times more miR-365 in comparison to M1-originated exosomes, conferring a 2.6-fold
increase in the intracellular NTP pool. This stimulates the upregulation of cytidine
deaminase (CDA) in the PDAC cells, which in turn deactivates GEM while the elevated
dCTP concentration antagonizes dFdCTP. Genetically modified Rab27 a/b knockout
mice, which are unable to secrete exosomes, metabolize GEM better than the wild-type
mice, while the treatment of PDAC-carrying mice with miR-365 oppressors restored
sensitivity to GEM [80]. Exosomes derived from GEM-resistant cancer stem cells are
abundant in miR-MiR-210 and contribute to GEM resistance, potentiating the mTOR
signaling pathway [97]. All the above are summarized in Figure 3.
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Figure 3. The contribution of the PDAC microenvironment to the generation of drug resistance.
(A) GEM-treated PDAC cells secrete miR-155 through exosomes enhancing the antioxidant capacity
of cancer cells (through the downregulation of SOD2 and CAT), disrupting the activation of GEM
(through the downregulation of DCK) and cellular stress-sensing systems (by upregulating TP53INP1).
(B) GEM-treated CAFs exosomally secreted miR-106b, miR-146a, and Snail, all of which mediate
their intrinsic resistance to GEM. (C) The M2-derived exosomally excreted miR-365 increased the
intracellular NTP pool and the CDA. (D) GEM-resistant cancer stem cells secreted through exosomes
miR-210 induced drug resistance through mTOR signaling potentiation. (E) The knockdown of
EPHA? in drug-resistant cells decreased their efficiency in transmitting GEM resistance. Created
with BioRender.com.

3.2. Exosomes as Drug Carriers

The rationale for using exosomes as drug carriers in the treatment of pancreatic cancer
stems from the similarity of their cell membranes to those of human cells. This trait is
responsible for some advantageous properties, including favorable bioavailability and
biocompatibility, inconsequential immunogenicity, the enhancement of drug release stabil-
ity, the expansion of a drug’s half-life, and the ability to penetrate biological membranes.
The end result is the development of more effective drugs with improved profiles of side
effects [98].

As mentioned above, the administration of drugs to cell populations of mesenchy-
mal origin (e.g., adipose tissue, bone marrow) can trigger the generation and secretion
of exosomes. This feature is exploited in order to create a model where chemothera-
peutics are incorporated in mesenchymal tissues and secreted with exosomes. Another
technique utilizes modern nanotechnology to load or pulse drugs directly into exosomes.
Tables 1 and 2 summarize the preclinical data regarding the effects of certain chemothera-
peutics and of miRNA mimetics, respectively.
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Table 1. The effects of chemotherapeutics utilized against PDAC in in vivo and in vitro experiments.

Drug Origin of Cell Line/Animal Results References
Exosome
Paclitaxel Mesenchymal CFPAC-1 cells Less than 10% greater IC50 of PTX-MV vs. PTX [99]
BM-MSCsGCB-CM has 40% less V50 than
- 1
GEM Mesenchymal CFPAC-1 cells PMSCsGCB-CM [100]
At day 16 (after treatment): ExoGEM
- 10 mg/kg-50% lower tumor volume
GEM Autologous Panc-1 cells/ BALB /c g/kg-50% [101]
nude mice At day 16 (after treatment): GEM
50 mg/kg-2 fold increase in tumor volume
Survival:
Exo-GEMP-PTX group: 88 days
GEM and Bone MiaPaca-2 cells/nude Exo group: 42 days [102]
Paclitaxel Marrow-MSC mice GEM group: 60 days
Exo-GEM group: 63 days
GEMnab-PTX group: 73 days
PANC-1 cells at 72 h:
curcumin-positive exosomes 50% cell killing vs.
PANC-1 MIA curcumin-negative exosomes 0% cell killin
Curcumin Autologous P EC ) arllldl. & ° g [103]
al-a-c cell lines MIA PaCa-2 at 72 h: curcumin-positive
exosomes 60% cell killing vs.
curcumin-negative exosomes 0% cell killing
Table 2. The preclinical data regarding the impact of certain exosomal miRNAs in PDAC.
Drug Exosome Origin Cell Line/Animal Pathway/Function Outcomes References
EGFR, Cyclin E Downregulation
= - Wound healin Deterioration
miR-1231 mimics BM-MSCs BXP%iEgdCPANdC 1/.female 8 - [104]
/€ nude mice Invasion Deterioration
Tumor volume Deterioration
Prolifera.ation,.migration, Deterioration
mvasion
. L Apoptosis Increase
miR-126-3p mimics BM-MSCs PANC-1 cells [105]
ADAM9 Downregulation
Growth rhythm/Tumor Decrease
volume
_ _ SMAD3 Suppression
miR-145-5p mimics ~ Umbilical cord-MSCs Pl CFPAC-, BXPC3 and —— [106]
Panc-1 cell lines/nude mice Tumor proliferation Decrease
PDAC cell lines: H6¢7, SW1990, BTG2 Upregulation
. s . Capan-1, BxPc-3 and PANC-1 proliferation, migration, .
miR-27a inhibitors PC cell-derived and microvascular endothelial invasion, angiogenesis Suppression [107]
cell line: HMEC-1/nude mice -
Apoptosis Increase
Proliferation, migration Increase
GW4869 Pancreatic stellate cell PANC-1 and Suit-2 cell lines [108]
CXCL-1,-2 Increase
CD44v6kd non-cic, .
itiat Tspan8kd non-CIC Alterations
RTK inhibitors Cancer-initiating cell Capan-1, A818.4 cell lines [109]
(CIC) Survival Increase

Tumor cell invasion

Suppression
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Table 2. Cont.
Drug Exosome Origin Cell Line/Animal Pathway/Function Outcomes References

Tumor volume Suppression

mlR-501-$p M2 macrophages PANC-1, BxPC-3/ male BALB/c Metastatic burden Suppression [110]

antagomlR nude mice
TGFBR3 Increase

miR-125b-5p PC-1.0 derived PC-1. PC-1.0 cells STARD13 Downregulation (1]

inhibitor (greatly invasive) ’ Migration, invasion Suppression

3.3. Immune Microenvironment Modifications

The discovery of exosomes and the evolution of their isolation and processing tech-
nology has transformed the logic of cancer vaccination. The initial vaccine development
efforts aimed at stimulating antigen-presenting dendritic cells with cancer-specific antigens
in order to create vaccines that targeted distinct cancer cell populations [112]. An increasing
understanding of exosomal function improved the specificity of the vaccines and enabled
the co-administration of drugs while in parallel, expanding the scope of therapeutic inter-
ventions within the immune microenvironment of the tumor. This was accomplished by
the enhancement of immunotherapy; the utilization of modified exosomes as vectors in
photodynamic therapy and their contribution to the reprogramming of the TME. In recent
years, significant preclinical data have emerged in this direction.

Wang et al. demonstrated that under hypoxic conditions, PDAC cells are urged
in an HIF-la/2a-mediated manner to upregulate the expression of miR-301a-3p. The
secretion of miR-301a-3p-enriched exosomes inhibits PTEN expression and potentiates
the PI3K signaling pathway to polarize macrophages towards an M2 phenotype. The
end result is a statistically significant association of miR-301a-3p with a more aggressive
clinicopathological disease regarding the extent of tumor invasion, metastatic potential,
perineural infiltration, and TNM staging. The silencing of miR-301a-3p reverses those
effects [76] and could possibly be combined with antifibrotic treatments. The phenotype
switching of macrophages may have enormous therapeutic implications. Su et al. reported
that exosomes derived from miR-155 and miR-125b-2-transfected Panc-1 cells could shift
macrophages from an M2 towards the immune-stimulatory M1 phenotype [113]. While
Que et al. documented that PDAC cell-originated exosomes, in which the miRNA cargos
were lysed, could more effectively activate dendritic cells and cytokine-induced cell killer
populations [114], Xiao et al. incorporated all-trans-retinoic acid, GEM, and sunitinib
into pancreatic cancer-derived exosomes and into dendritic cells in a continuum. This
coalescence was able to target myeloid-derived suppressive cells (MDSCs) at a multi-
tude of developmental stages, exhibiting prolonged survival and an improved metastatic
profile [115].

These scientific efforts led to a more comprehensive theranostic approach. Yang et al.
modified MIA-PaCa-2 cell-derived exosomes loading Chlorin e6 (Ce6), a potent photosensi-
tizer. Ce6 can enhance the photoacoustic signals and trigger ROS generation upon exposure
to laser irradiation. Additionally, potentiating the local antigen-presenting cells releases a
cytokine reaction which generates an immune reaction by CD8 T cells. This combination of
image-guided photodynamic therapy and immunotherapy showed promising results in
mice with minimal side effects [116] and should enter into the stage of clinical trials. On the
other hand, Zhou et al. utilized exosomes derived from bone marrow mesenchymal stem
cells (BM-MSC) and, via electroporation, inserted galectin-9 siRNA and oxaliplatin. The
latter exerts its action directly on pancreatic cancer cells by causing apoptosis and indirectly
through causing immunogenic cell death. The enhancement of the immunological response
is also achieved by the silencing of galectin-9, which polarizes macrophages towards an M1
phenotype and contributes to the aggregate cytotoxic response [83].
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3.4. Targeting KRAS in PDAC

Despite the abovementioned fact that KRAS mutations drive carcinogenesis and are
existent from early adenomatous lesions to late metastatic disease, there were not until
recently any KRAS-targeting therapies. In fact, for decades, KRAS was considered “undrug-
gable” based on the immense affinity of Ras for the highly abundant GDP,GTP in the cell’s
cytoplasm [117]. Numerous approaches to downregulate the Ras signaling pathway were
engaged. These are reviewed in depth elsewhere [118], and we intend to introduce only
the fundamental pharmacologic mechanisms. Since the attempt at the allosteric inhibition
of KRAS encountered difficulties, research efforts have turned towards the displacement
of KRAS from the plasma membrane, the inhibition of downward signaling molecules,
and the percussion of the cancer cell’s metabolic repertoire [118]. Recently, Kesler et al.
discovered the druggable S I/II-pocket, a lipophilic cleft which could, upon pharmacologic
inhibition, arrest the GTPase-activating protein (GAP), guanine nucleotide exchange factors
(GEFs), and the downstream synergies of KRAS [119], potentially offering a pan-RAS
inhibitor, while the first switch II-pocket inhibitors have gone into clinical trials [120].
In parallel, significant progress has been made in the development of exosome-based
therapeutic applications.

The production of cutting-edge biotechnological therapeutic products often runs
into the inability to produce sufficient quantities to cover patients’ needs. Mendt et al.
generated siRNA-loaded exosomes to an extensive scale. The KrasG12D-silencing RNAs
were incorporated via electroporation into mesenchymal-derived exosomes inhibiting the
PDAC tumor growth in mouse xenografts. After intraperitoneal administration, iExosomes
were allocated preferentially in pancreatic tumor tissue in comparison to the neighboring
organs with a mechanism which remains unclarified [121]. The KRAS-driven enhancement
of micropinocytosis [122] might be a contributing mechanism. The prolongation of survival
is documented in several PDAC mouse models [121]. In the same direction, Kamerkar
et al. documented the superiority of CD47-anchored fibroblast-derived exosomes when
compared with liposomes. The “don’t eat me” signal conferred by CD47 enhanced the
exosome’s bioavailability, significantly limiting the side-effects profile. The incorporation
of KRASG12C-silencing RNAs significantly shrank the tumor volume in the mouse models
of orthotopic tumors [122]. These encouraging results led to a Phase I clinical trial. Patients
with Stage IV clinical disease will be subjected to the administration of KrasG12D siRNA-
carrying MSC-derived exosome at days one, four, ten, and every two weeks for three
courses. The results are expected to be released soon [123].

4. Conclusions—Future Perspectives

The use of exosomes in clinical practice has the potential to become an important
weapon in our therapeutic armory, capable of serving the demands imposed by personal-
ized precision medicine. Although the consolidation of evidence concerning the importance
of exosomes is relatively recent, a significant amount of preclinical data has begun to accu-
mulate into the literature and a modest fraction of this is directed into clinical trials in order
to test its diagnostic [124] or therapeutic capacity [123]. In parallel, the generation of a
PDAC organoid which accurately recreates a tumor’s ecosystem has the potential to notably
enrich the scientific community with data generated from the interactions among several
cell populations [125]. The exosomally delivered KrasG12D siRNA constitutes the first
KRAS-targeting therapy, and if it succeeds, it could transform the architecture of PDAC’s
treatment algorithms, while the favorable usage profile of exosomes with an extensive distri-
bution in body fluids and a minor triggering of immune responses [126] could render them
ideal carriers of the established chemotherapeutics paclitaxel [99,102], GEM [100,101], and
repurposed natural extracts such as curcumin [103]. Scientific advancements have given us
the means to engineer exosomes providing theranostics technological applications [83,116]
which combine diagnostic and radicalized treatment avenues such as the modification
of a tumor’s immune ecosystem in conjunction with photodynamic therapy (PDT) [116].
The continual delineating of drug-resistance mechanisms elucidates the principal role of
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exosomes in the process and could ideally offer new treatment-enhancing targets. Finally,
given the implications exosomes hold in the generation of the pre-metastatic niche [127,128],
the introduction of exosome inhibitors might revolutionize therapy for metastatic disease,
which is the main cause of death in cancer patients.
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