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Abstract: Here, we report a design strategy for constructing supramolecular organic frameworks
by introducing 1H-pyrazole groups to aromatic cores as non-coplanar molecules to form diverse
supramolecular assemblies through multiple 1H-pyrazole [N−H···N] hydrogen bonds as well as other
weak interactions. The new supramolecular organic frameworks displayed interesting crystallization-
induced emission (CIE) behavior.

Keywords: supramolecular assembly; hydrogen bonding; aromatic multi-1H-pyrazoles; crystallization-
induced emission (CIE)

1. Introduction

Making use of flexibility and reversibility of hydrogen bonding interactions and
upon meticulous design of building blocks with abilities in the form of supramolecules,
controllably supramolecular organic hydrogen assemblies with satisfying architectures and
interesting properties could be designed and constructed [1–3]. Therefore, supramolec-
ular complexes self-assembled through intermolecular hydrogen-bonding interactions,
named HOFs, have been proven to be a potentially tunable platform for constructing func-
tional materials [4–7]. So far, various supramolecular HOFs, made by employing organic
molecules, have been reported and employed in fields like sensing, capture, separation,
proton conductivity, catalysis, and so on [8–14].

However, establishment of a universal design strategy and creation of new function-
alities are still in demand. Structural determination helps to gain deep insight into the
structure−property relationships at the molecular level. The structures and properties of
HOFs can be tuned by changing the aromatic linkers and hydrogen bonds units. The hydro-
gen bonds units such as −COOH, pyrazole, −CN, pyridine, imidazole etc., and aromatic
linkers such as tetraphenylethylene, benzene, pyrene, anthracene, triphenylamine, etc.,
can control the configuration of HOFs, and then further display a great influence on prop-
erties [15,16]. Recently, the synthesis of stable HOFs with well-defined structure and
luminescence has drawn intense attention of researchers [9,17,18]. Intermolecular interac-
tions, such as hydrogen-bonding and π···π stacking, have a close relation to the lumines-
cence properties of π-conjugated molecules as building blocks to construct supramolecular
organic complexes [19–21].

Although the aromatic-rich linkers featuring multi-1H-pyrazole motifs as fundamen-
tal building blocks are promising in the construction of supramolecular assemblies as
hydrogen-bonded organic frameworks via hydrogen-bonding [N–H···N] interaction [22–24],
such HOFs based on the non-coplanar tetra-1H-pyrazoles remain unexplored despite
their interesting structures and optical properties [25]. We have prepared three tetra-1H-
pyrazolyl-substituted compounds named as 1–3 [H4TP-Be (1) H4TP-Py (2) H4TP-TPE (3),
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TP = tetrapyrazole Be = benzene Py = pyrene TPE = tetraphenylethylene] bearing four
1H-pyrazole binding sites as flexible arms (Scheme 1a and SI) with dramatically different
supramolecular self-assembly abilities from 1H-pyrazole units and photoluminescence
characteristics from benzene/pyrene/tetraphenylethylene cores [26].

Scheme 1. This is a figure. Schemes follow the same formatting. (a) Structures of compounds 1–3.
(b) The single crystal structures of compounds 1–3.

In this work, we decided to explore the hydrogen bonding and π···π stacking in-
duced self-assembly of non-planar aromatic molecules with interesting optical properties
that contain aromatic cores and multi-1H-pyrazole moieties, since 1H-pyrazole is a poor
metal-binding ligand that still participates very strongly in hydrogen bonding due to the
adjacent amine-and imine-like N atoms therein. And the aromatic cores benzene, pyrene,
and tetraphenylethylene were chose for comparison with each other in the solid structures
and photoluminescence properties.

2. Results and Discussion

We employed these tetra-1H-pyrazolyl-substituted compounds 1–3 (Scheme 1a) to
develop supramolecular organic porous frameworks HOF-1, HOF-2, and HOF-3 via
[N−H···N] hydrogen bonds between the terminal 1H-pyrazole rings, π···π stacking be-
tween the aromatic rings, and C−H···π weak intermolecular interactions. Different aro-
matic cores give various crystal packing models in the crystal state which control the
photofluorescence of these crystal materials from aggregation-induced emission (AIE) to
crystallization-induced emission (CIE). Finally, a promising generation of optical crystal
materials was developed by controlling the production of supramolecular organic porous
crystals via self-assembly of non-coplanar aromatic multi-1H-pyrazoles as CIE luminogens.

The single crystals of supramolecular structures as HOFs (HOF-1, HOF-2, and HOF-3)
are obtained by diffusion of isopropyl ether into compound’s solutions in DMA for several
weeks, and characterized by X-ray crystallography (Scheme 1b). The results show that the
three new aromatic linkers are not flat; the 1H-pyrazole moieties and the aromatic cores
are twisted. As shown in Scheme 1, the dihedral angles between the 1H-pyrazole groups
and the aromatic core are 39.68◦ (A1-B, A3-B) and 46.59◦ (A2-B, A4-B) for 1, 35.37◦ (A1-B1,
A3-B3) and 40.77◦ (A2-B2, A4-B4) for 2, 3.41◦ (A1-B1, A4-B4) and 5.93◦ (A2-B2, A3-B3) for
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3, respectively. And the dihedral angles between benzene rings (B1, B2, B3, B4) of 3 range
from 44.73 to 87.59◦.

Single-crystal X-ray diffraction indicates that aromatic tetra-1H-pyrazole linkers in the
structures HOF-1 and HOF-2 connect with four neighboring linkers through four single
hydrogen bond N−H···N from 1H-pyrazole units to form regular tetragonal honeycomb
hydrogen-bonded frameworks, which is the result of the symmetry of the ligands (Figure 1a,
Figure 2, and Figure 3a). The N···N distance and the N−H···N angle are 2.855 Å and 158.41◦

of HOF-1, and 2.890 Å and 157.83◦ of HOF-2, respectively, falling into strong hydrogen
bond range, according to literature at 2.49 to 3.15 Å [26]. Each 2D square layer interacts with
adjacent layers through π···π stacking interactions as shown in Figures 1d and 3f and with
an interlayer distance of 3.713 Å for HOF-1 and 3.708 Å for HOF-2 (Figure S7), stacking as
AA mode to form a one dimensional square channels of 13.267 × 8.179 Å for HOF-1 and
14.457 × 14.622 Å for HOF-2 (Figure 1e,f and Figure 3e). As shown in Figure 2, the surface
of the channel is very smooth in HOF-1. Notably, the channel surface of HOF-2 is relatively
undulated and the layers of HOF-2 are themselves simultaneously interwoven to form
extremely complicated two-dimensional (2D) layer structures with the result that the void
of the channel is occupied by H4TP-Py molecules through π···π stacking interactions as
shown in Figure 3f. Entanglement by interpenetration and polycatenation among square
layers stabilized the structures due to increasing molecular packing density and additional
intermolecular interactions.
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Figure 1. Crystal structure of HOF-1. (a) View of the structure and the connection of adjacent building
blocks. (b) Hydrogen-bond length and angle. (c) The stacking of 2D layers. (d) π···π interactions.
(e) One-dimensional (1D) channels. (f) Representation of the porous framework.
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Figure 2. View of the connection of adjacent building blocks in the Crystal structure of HOF-1 (a,c)
and HOF-2 (b,d).
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Figure 3. Crystal structures of HOF-1. (a) View of the structure and the connection of adjacent
building blocks. (b) Hydrogen-bond length and angle. (c) π···π interactions. (d) One-dimensional
(1D) channels. (e) Representation of the porous framework. (f) π···π interactions. (g) One-dimensional
(1D) channels.
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However, in the solid-state structure of HOF-3, the H4TP-TPE molecule has a distorted
tetrahedral configuration, which can be attributed to rotation of the C=C bond among
the four phenyl rings of the TPE moiety. H4TP-TPE exhibited a typical propeller-like
structure in the solid state. This propeller-like structure is beneficial to the RIR process in
the aggregated state and could effectively weaken the π···π stacking interaction to avoid
fluorescence quenching. Unlike in the structures of HOF-1 and HOF-2, the cross-shaped
dimer unit in the structure of HOF-3 is observed via C−H···π interacted between molecules
as seen in Figure 4a. Additionally, complicated 2D frameworks are formed in the stacking
structure (Figure 4b). Furthermore, the bulk crystallinity of HOF-1, HOF-2, and HOF-3
were confirmed by powder X-ray diffraction analysis (Figures S8–S10).
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Figure 4. Crystal structure of HOF-3. (a) View of the structure and the connection of adjacent building
blocks. (b) The stacking of 2D layers.

On the basis of the observations of photophysical properties of compounds 1–3 in
the dilute solution and aggregation state (Figures S11–13), we further investigated their
optical properties in the crystalline state as depicted in Figure 5. The photoluminescent
(PL) spectroscopic measurements revealed that the emission of HOF-1 is slightly enhanced
at 375 nm under excitation at 306 nm upon crystallization (photoluminescent quantum
yield (PLQY) = 0.059 in DMA solution; 0.063 in the microcrystal state). Although the
PL spectra revealed that compound 2 showed a strong emission in dilute DMA under
excitation at 450 nm (PLQY = 0.734), the microcrystals as HOF-2 showed a weak and broad
emission centered at 525 nm (PLQY = 0.049). Interestingly, the emission efficiency of HOF-3
displayed a sharply increase compared to the free compound 3 in dilute solution with
PLQY change from 0.330 to 0.030, which can be regarded as typical crystallization-induced
emission (CIE) behavior. The distinct difference in crystalline state PLQY suggested a
significant effect of molecular packing. Thus, the decrease in emission efficiency from
the HOF-2 results from the strong π···π stacking. In contrast, the propeller-like structure
without π···π stacking interactions in HOF-3 suggested that its CIE character originated
from the RIR process.
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Figure 5. Emission spectra of 1, 2, and 3 and HOF-1, HOF-2, and HOF-3. (a) PL spectra of 1 (black),
2 (red), and 3 (blue) in solution state (DMA). (b) PL spectra of HOF-1 (black), HOF-2 (red), and HOF-3
(blue) in crystalline state.

3. Materials and Methods

The syntheses and characterizations of compounds 1, 2, and 3 were found in SI accord-
ing to the literature [26]. Dimethylacetamide and diisopropyl ether were freshly distilled
before use. The hand-held UV lamp (Spectroline ENF260C/FC; wavelength: 320–400 nm,
peak at 365 nm) was used as the photoexcitation source—UV/Vis spectrophotometer.
Fluorescence spectra were recorded on a Hitachi-F7000 fluorescence spectrophotometer.
Absolute luminescence quantum yields were measured by Hamamatsu absolute PL quan-
tum yield spectrometer FLS-1000. Powder X-ray diffraction patterns (PXRD) were recorded
on a BRUKER D8-Focus Bragg-Brentano X-ray powder diffractometer equipped with a
Cu sealed tube (λ = 1.54178 Å) at room temperature. X-Ray diffraction data of the crys-
tals of compounds HOF-1–HOF-3 were collected at 293 K on a Bruker Apex CCD and
Bruker D8 QUEST area detector equipped with a graphite monochromated MoKα radia-
tion (λ = 0.71073 Å). The structure was solved by direct methods and refined employing
full-matrix least-squares on F2 by using SHELXTL (Sheldrick, 2014, Bruker, Germany)
program and expanded using Fourier techniques [27,28]. All non-H atoms of the complexes
were refined with anisotropic thermal parameters. The hydrogen atoms were included in
idealized positions. The molecules of HOF-1–HOF-3 form an H-bond framework. The final
residuals along with unit cell, space group, data collection, and refinement parameters are
presented in Supplementary Materials Table S1.

4. Conclusions

In summary, we synthesized and characterized three novel multi-1H-pyrazole-based
novel supramolecular hydrogen organic frameworks by self-assembly during crystalliza-
tion employing 1H-pyrazole-based [N−H···N] hydrogen bonding, C−H···π, and π···π
stacking weak interactions. The new supramolecular hydrogen framework based on
tetraphenylethene building blocks exhibit excellent crystallization-induced emission (CIE)
phenomenon. This prospect provides a strategy to the controllable synthesis of novel
supramolecular hydrogen organic networks and highlights the important role of aromatic
cores in the ligands with optical properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23084206/s1.
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