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Abstract: Background: Physical exercise has been shown to improve cognitive and motor functions,
promoting neurogenesis and demonstrating therapeutic benefits in neurodegenerative disorders.
Nonetheless, it is crucial to investigate the cellular and molecular mechanisms by which this occurs.
The study aimed to investigate and evaluate the effect of swimming exercise on the changes of
mitochondrial proteins in the brains of rats with hypoxic ischemic encephalopathy (HIE). Meth-
ods: the vertical pole and Morris water maze tests were used to assess the animals’ motor and
cognitive functions, and western blot and immunofluorescence of brain tissue were used to assess
the biomarkers of mitochondrial apoptosis and cristae stability in response to exercise training.
Four groups of rats were used: (1) sham sedentary group (SHAM, NT), (2) sham exercise training
group (SHAM, T) (3) hypoxic ischemic encephalopathy sedentary group (HIE, NT), and (4) hypoxic
ischemic encephalopathy exercise training group (HIE, T). Results: animals with HIE showed motor
and cognitive deficits, as well as increased apoptotic protein expression. Exercise, on the other hand,
improved motor and cognitive functions while also suppressing the expression of apoptotic proteins.
Conclusions: By stabilizing the mitochondrial cristae and suppressing the apoptotic cascade, physical
exercise provided neuroprotection in hypoxic ischemia-induced brain injury.

Keywords: exercise; apoptosis-inducing factor; mitochondria; hypoxia; ischemia

1. Introduction

Hypoxic-ischemic encephalopathy (HIE) is a type of serious central nervous system
damage in neonates caused by perinatal hypoxia. HIE is a primary cause of infant death in
both term and preterm neonates, as well as serious chronic problems, including cerebral
palsy, neurosensory abnormalities, and cognitive deficits [1,2]. HIE affects 1 to 8 out of
1000 live births in developed nations and up to 26 out of 1000 live births in developing
countries, accounting for up to 23% of all infant deaths worldwide [3,4].

Perinatal abnormalities, such as hypoxia, can cause brain damage, which is com-
monly followed by neurological disorders, such as cerebral palsy or mental retardation.
The processes driving newborn brain damage remain unclear; however, mitochondria play
a critical role, not only are they essential for metabolism, but they also contain several pro-
teins with apoptotic capabilities [5]. Exercise reduces brain injury-induced motor deficits
by suppressing apoptotic neuronal cell death in the motor cortex [6]. Moreover, it has
gained a reputation among pediatric physical therapists as an intervention of choice for
children with cerebral palsy [7]. With accruing evidence from animal and human studies
supporting the view that physical exercise enhances neuroplasticity and thus reduces the
risk of several neurodegenerative diseases [8–10]. While many studies [11–14] concur that
physical exercise improves brain function by promoting neuroplasticity and cognition, few
have sought to elucidate the response of mitochondrial proteins involved in apoptosis to
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physical exercise. With exercise being so important for maintaining good health when
done regularly, a better understanding of the molecular mechanisms by which exercise
affords beneficial effects to the body is fundamental to identifying more specific pathways
that can be manipulated to prevent or treat diseases [15]. Mitochondria play an important
role in neonatal neurodegeneration following hypoxia stress, and their dysfunction is
a critical stage in neurodegenerative progression, which is associated with subsequent
induction of cell death pathways that is a key hallmark of hypoxic-ischemic injury [16].
Mitochondria activate several apoptotic signaling pathways and protein interactions, in-
cluding; cytochrome c (Cyto.C), apoptosis-inducing factor (AIF), endonuclease G (Endo G),
and second mitochondria-derived activator of caspase (Smac), to discharge pro-apoptotic
proteins from the intermembranes, culminating in intrinsic apoptosis [17,18]. The mi-
tochondrial pathway, which signals cell death by apoptosis, is activated by a variety of
stressors, including hypoxic ischemia. The permeabilization of the outer mitochondrial
membrane, OMM [also referred to as mitochondrial outer membrane permeabilization
(MOMP)] is the primary event in mitochondrial mediated apoptosis, allowing different
mitochondrial proteins to relocate to the cytosol and enhancing procaspase activation [19].
Furthermore, [20] reported that exercise increases the copy number of mitochondrial DNA
(mtDNA) in the cortex and hippocampus, which is directly affected in HIE.

This study examined the effects of exercise on cognitive and motor performance
by highlighting the response of mitochondrial apoptotic proteins following hypoxic is-
chemic insult and exercise. We investigated the effects of swimming exercise on mito-
chondrial apoptosis in the hippocampus and cerebral cortex in HIE-induced motor and
cognitive impairment.

2. Results
2.1. Swimming Exercise Promotes Motor and Cognitive Performance

We conducted the vertical pole and Morris water maze (MWM) tests to determine
whether swimming exercise improves motor, learning, and spatial memory performance
in HIE rats. According to [21], the vertical pole test is used to assess motor performance,
and the results in Figure 1A showed that the motor performance of the HIE rats was
lower than that of the control rats (p < 0.05). Swimming exercise, on the other hand,
improved the motor performance of rats, though not statistically significantly at (p < 0.05).
The MWM is a spatial learning task that requires rats to locate a hidden platform in an
opaque pool of water using visual cues. Acquisition of spatial learning in both control
rats and HIE rats was observed as reduced latency to reach the hidden platform by day 6.
Rats that undertook swimming exercise significantly outperformed the control rats as
shown in Figure 1B. To evaluate the reference memory, we conducted a probing test 24 h
after the final training session (day 6), which was conducted without the hidden platform.
As expected, exercising rats demonstrated considerable memory enhancement, as shown
by the increased number of times they crossed the target quadrant (Figure 1E). During the
MWM sessions, the control and exercise training rats traveled varied distances and swam
at varying speeds (Figure 1C,D). These findings suggest that swimming exercise improves
motor and cognitive function. Taken together, our results support the concept that exercise
improves motor function, spatial learning, and memory retention.
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Figure 1. Effect of swimming on motor and cognitive performance. (A) Vertical pole test; exercise 

training animals (SHAM, T and HIE, T) spent longer time on the vertical pole than sedentary ani-

mals (SHAM, NT and HIE, NT), with HIE, NT showing a statistically significant decrease; findings 

are expressed as Mean ± SEM, * p < 0.05 (one-way ANOVA followed by Dunnett’s post-test). (B) 

Escape latency; swimming exercise enhanced learning and memory; exercising animals showed a 

significantly reduced escape latency, or the time (seconds) required to escape. (C) Distance covered; 

in the exercising groups, there was an obvious increase in distance covered, but it was not statisti-

cally significant at p < 0.05 (one-way ANOVA followed by Dunnett’s post-test). (D) Mean swimming 

speed; animal groups that were subjected to exercise showed a higher swimming speed compared 

to the sedentary groups indicating that their motor behavior was positively influenced by exercise. 

(E) Target crossing; this shows the number of times the animals crossed the site at which the plat-

form had been positioned which as expected improved with exercise. The results are expressed as 

Mean ± SEM. The number of animals used in each group is 7, but the difference was not statistically 

significant at p < 0.05 (one-way ANOVA followed by Dunnett’s post-test). 

2.2. Mitochondrial Proteins in the Cytoplasm of the Hippocampus 

The mitochondrial apoptosis indicators in the cytosolic portion; cytochrome c, apop-
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Figure 1. Effect of swimming on motor and cognitive performance. (A) Vertical pole test; exercise
training animals (SHAM, T and HIE, T) spent longer time on the vertical pole than sedentary animals
(SHAM, NT and HIE, NT), with HIE, NT showing a statistically significant decrease; findings are
expressed as Mean ± SEM, * p < 0.05 (one-way ANOVA followed by Dunnett’s post-test). (B) Escape
latency; swimming exercise enhanced learning and memory; exercising animals showed a signifi-
cantly reduced escape latency, or the time (seconds) required to escape. (C) Distance covered; in the
exercising groups, there was an obvious increase in distance covered, but it was not statistically
significant at p < 0.05 (one-way ANOVA followed by Dunnett’s post-test). (D) Mean swimming
speed; animal groups that were subjected to exercise showed a higher swimming speed compared
to the sedentary groups indicating that their motor behavior was positively influenced by exercise.
(E) Target crossing; this shows the number of times the animals crossed the site at which the plat-
form had been positioned which as expected improved with exercise. The results are expressed as
Mean ± SEM. The number of animals used in each group is 7, but the difference was not statistically
significant at p < 0.05 (one-way ANOVA followed by Dunnett’s post-test).

2.2. Mitochondrial Proteins in the Cytoplasm of the Hippocampus

The mitochondrial apoptosis indicators in the cytosolic portion; cytochrome c, apoptosis-
inducing factor (AIF), and cleaved caspase-3, as well as Smac/Diablo and OPA1, increased
appreciably in HIE, as demonstrated by Western blot semi-quantification (Figure 2). Cy-
tochrome c (Figure 2B), cleaved caspase-3 (Figure 2C), AIF (Figure 2A), and Smac/Diablo
(Figure 2D) were all expressed differently in HIE with and without exercising, but there was
no statistically significant difference when compared to SHAM, NT. Nevertheless, cytosolic
OPA1 showed a statistically significant difference in HIE, NT, Figure 2E.
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Figure 2. Protein changes in the cytoplasm of the hippocampus. Examples of Western blot bands 

normalized to GAPDH are presented (with the matching wells). Units are presented relative to 

GAPDH content. (A) AIF, apoptosis-inducing factor, (B) cytochrome c, (C) cleaved caspase-3, (D) 

Smac/Diablo, and (E) OPA1. Asterisks denote statistically significant differences between groups (*, 

vs. SHAM, NT). One asterisk (*) denotes p < 0.05 (**) denote p < 0.01. F-values after running one-way 

ANOVAs with Dunnett’s post hoc multiple comparison test were: F = 2.264 (AIF), F = 3.775 (cyto-

chrome c), F = 6.125 (cleaved caspase-3), F = 5.140 (Smac/Diablo) and F = 7.096 (OPA1). HIE, NT 

denotes animals with hypoxic ischemic encephalopathy that did not undergo exercise training; HIE, 

T denotes animals with hypoxic ischemic encephalopathy that received exercise training; SHAM, 

NT denotes normal animals that did not receive exercise training; and SHAM, T denotes normal 

animals that received exercise training. 

2.3. Mitochondrial Proteins in the Nuclei of the Hippocampus 

The mitochondrial apoptosis indicators in the nuclear portion, cytochrome c, apop-
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Figure 2. Protein changes in the cytoplasm of the hippocampus. Examples of Western blot bands nor-
malized to GAPDH are presented (with the matching wells). Units are presented relative to GAPDH
content. (A) AIF, apoptosis-inducing factor, (B) cytochrome c, (C) cleaved caspase-3, (D) Smac/Diablo,
and (E) OPA1. Asterisks denote statistically significant differences between groups (*, vs. SHAM, NT).
One asterisk (*) denotes p < 0.05 (**) denote p < 0.01. F-values after running one-way ANOVAs with
Dunnett’s post hoc multiple comparison test were: F = 2.264 (AIF), F = 3.775 (cytochrome c), F = 6.125
(cleaved caspase-3), F = 5.140 (Smac/Diablo) and F = 7.096 (OPA1). HIE, NT denotes animals with
hypoxic ischemic encephalopathy that did not undergo exercise training; HIE, T denotes animals
with hypoxic ischemic encephalopathy that received exercise training; SHAM, NT denotes normal
animals that did not receive exercise training; and SHAM, T denotes normal animals that received
exercise training.

2.3. Mitochondrial Proteins in the Nuclei of the Hippocampus

The mitochondrial apoptosis indicators in the nuclear portion, cytochrome c, apoptosis-
inducing factor (AIF), and cleaved caspase-3, as well as Smac/Diablo and OPA1, increased
significantly in HIE, as demonstrated by Western blot semi-quantification (Figure 3). Cy-
tochrome c (Figure 3B), cleaved caspase-3 (Figure 3C), and Smac/Diablo (Figure 3D) were
all expressed differently in HIE with and without exercise but there was no statistically
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significant difference when compared to SHAM, NT. Nonetheless, nuclear AIF and OPA1
(Figure 3A,E) showed statistically significant changes.
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Figure 3. Protein changes in the nuclei of the hippocampus. Examples of Western blot bands normal-
ized to histone 3 (H3) are presented (with the matching wells). Units are presented relative to H3
content. (A) AIF, apoptosis-inducing factor, (B) cytochrome c, (C) cleaved caspase-3, (D) Smac/Diablo,
and (E) OPA1. Asterisks denote statistically significant differences between groups (*, vs. SHAM,
NT). One asterisk (*) denotes p < 0.05, (**) denote p < 0.01 F values were; F = 32.870 (AIF), F = 3.510
(cytochrome c), F = 4.733 (cleaved caspase 3), F = 6.650 (Smac/Diablo) and F = 7.896 (OPA1). HIE, NT
denotes animals with hypoxic ischemic encephalopathy that did not undergo exercise training; HIE,
T denotes animals with hypoxic ischemic encephalopathy that were subjected to exercise training;
SHAM, NT denotes normal animals that did not receive exercise training, and SHAM, T denotes
normal animals that received exercise training.

2.4. Mitochondrial Proteins in the Cytoplasm of the Cerebral Cortex

The mitochondrial apoptosis indicators in the cytoplasmic portion, apoptosis-inducing
factor (AIF), cytochrome c, cleaved caspase-3, as well as Smac/Diablo and OPA1, increased
significantly in HIE, as demonstrated by Western blot semi-quantification (Figure 4). AIF
(Figure 4A), Cytochrome c (Figure 4B), and Smac/Diablo (Figure 4D) were all expressed
differently in HIE with and without exercise but there was no statistically significant
difference when compared to SHAM, NT. Despite this, cleaved caspase-3 (Figure 4C) and
OPA1 (Figure 4E) showed statistically significant changes.
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Figure 4. Protein changes in the cytoplasm of the cerebral cortex. Examples of Western blot bands nor-
malized to GAPDH are presented (with the matching wells). Units are presented relative to GAPDH
content. (A) AIF, apoptosis-inducing factor, (B) cytochrome c, (C) cleaved caspase-3, (D) Smac/Diablo,
and (E) OPA1. Asterisks denote statistically significant differences between groups (*, vs. SHAM,
NT). One asterisk (*) denotes p < 0.05, (**) denote p < 0.01.F values were; F = 0.6974 (AIF), F = 3.666
(cytochrome c), F = 8.992 (cleaved caspase 3), F = 5.643 (Smac/Diablo), and F = 8.257 (OPA1). HIE, NT
denotes animals with hypoxic ischemic encephalopathy that did not receive exercise training, HIE,
T denotes animals with hypoxic ischemic encephalopathy that received exercise training; SHAM,
NT denotes normal animals that did not undergo exercise training; and SHAM, T denotes normal
animals that received exercise training.

2.5. Mitochondrial Proteins in the Nuclei of the Cerebral Cortex

The mitochondrial apoptosis indicators in the nuclear portion, cytochrome c, apoptosis-
inducing factor (AIF), and cleaved caspase-3, as well as Smac/Diablo and OPA1, increased
significantly in HIE, as demonstrated by Western blot semi-quantification (Figure 5), AIF
(Figure 5A), Cytochrome c (Figure 5B), cleaved caspase-3 (Figure 5C), and OPA1 (Figure 5E)
were all expressed differently in HIE and exercise and were statistically significant com-
pared to SHAM, NT. Changes in nuclear Smac/Diablo (Figure 5D), on the other hand, were
not statistically significant.
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Figure 5. Protein changes in the nuclei of the cerebral cortex. Examples of Western blot bands
normalized to H3 are presented (with the matching wells). Units are presented relative to H3
content. (A) AIF, apoptosis-inducing factor, (B) cytochrome c, (C) cleaved caspase-3, (D) Smac/Diablo,
and (E) OPA1. Asterisks denote statistically significant differences between groups (*, vs. SHAM,
NT). One asterisk denotes p < 0.05, two asterisk (**) denote p < 0.01.F values were; F = 16.03 (AIF),
F = 6.991 (cytochrome c), F = 14.36 (cleaved caspase 3), F = 6.903 (Smac/Diablo) and F = 5.895 (OPA1).
HIE, NT denotes animals with hypoxic ischemic encephalopathy that did not undergo exercise
training; HIE, T denotes animals with hypoxic ischemic encephalopathy that underwent exercise
training; SHAM, NT denotes normal animals that did not undergo exercise training; and SHAM, T
denotes normal animals that received exercise training.

Taken together, these findings support the proposition that exercise improves mo-
tor function, learning, and memory recovery by suppressing hippocampal and cortical
mitochondrial apoptotic proteins expression in the brain of HIE rats.

2.6. Immunofluorescence Analysis of Proteins in the Motor Cortex

Figure 6 shows representative immunofluorescence images from the motor cortex of the
cerebral cortex region stained for AIF, Cytochrome C, Cleaved caspase-3, Smac, and OPA1.
The quantitative analysis of the mean fluorescent intensity (MFI) of the proteins is also
summarized in Figures 6 and 7. Swimming exercise caused a significant reduction in
the expression of the proteins. Images and the mean fluorescent intensity (MFI) graphs
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demonstrated significant changes in the expression of proteins in the motor cortex, which
has been shown to control motor learning and voluntary movement [22], and the proteins
showed a drastic significant reduction in exercising groups when compared to SHAM,
NT (Figure 6A–E). Moreover, HIE, T motor cortex had a significant decrease in protein
expression compared to HIE, NT (Figure 6A,B,E).
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compared with the SHAM, NT group); each group, n = 3. Scale bar, 100 µm. (D) Representative 

Figure 6. Immunofluorescence images and mean fluorescent intensities of the proteins in the motor
cortex. (A) Representative immunofluorescence images and MFI of AIF in the motor cortex of each
group. AIF molecules are green. AIF molecules were analyzed in the motor cortex. Results are
presented as the Mean ± SEM of 3 rats from each group. (** p < 0.001 and *** p < 0.0001) compared
with the SHAM, NT group; (## p < 0.001 compared with the HIE, NT group; each group, n = 3). Scale
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bar, 100 µm. (B) Representative immunofluorescence images and MFI of Cytochrome C in the motor
cortex of each group. Cytochrome C molecules (green) were analyzed in the motor cortex. Data are
presented as the Mean ± SEM of 3 rats from each group. (** p < 0.001 and *** p < 0.0001) compared
with the SHAM, NT group; (## p < 0.001 compared with the HIE, NT group); each group, n = 3. Scale
bar, 100 µm. (C) Representative immunofluorescence images and MFI of Cleaved caspase-3 in the
motor cortex of each group. Cleaved caspase-3 molecules (green) were analyzed in the motor cortex.
Results are presented as the Mean ± SEM of 3 rats from each group. (* p < 0.05 and *** p < 0.0001)
compared with the SHAM, NT group); each group, n = 3. Scale bar, 100 µm. (D) Representative
immunofluorescence images and MFI of SMAC in the motor cortex of each group. SMAC molecules
(green) were analyzed in the motor cortex. Results are presented as the Mean ± SEM of 3 rats of
each group. (** p < 0.001 and *** p < 0.0001) compared with the SHAM, NT group); each group, n = 3.
Scale bar, 100 µm. (E) Representative immunofluorescence images and MFI of OPA1 in the motor
cortex of each group. OPA1 molecules (green) were analyzed in the motor cortex. Individual data
are presented as the Mean ± SEM from 3 rats in each group. (*** p < 0.0001) compared with the
SHAM-NT group; (## p < 0.001 compared with the HIE, NT group); each group, n = 3. Scale bar,
100 µm.

Int. J. Mol. Sci. 2022, 23, 4235 9 of 15 
 

 

immunofluorescence images and MFI of SMAC in the motor cortex of each group. SMAC molecules 

(green) were analyzed in the motor cortex. Results are presented as the Mean ± SEM of 3 rats of each 

group. (** p < 0.001 and *** p < 0.0001) compared with the SHAM, NT group); each group, n = 3. Scale 

bar, 100 µm. (E) Representative immunofluorescence images and MFI of OPA1 in the motor cortex 

of each group. OPA1 molecules (green) were analyzed in the motor cortex. Individual data are pre-

sented as the Mean ± SEM from 3 rats in each group. (*** p < 0.0001) compared with the SHAM-NT 

group; (## p < 0.001 compared with the HIE, NT group); each group, n= 3. Scale bar, 100 µm. 

 

 

Figure 7. A schematic summary of the effect of exercise on mitochondrial proteins in the brain. Ex-

ercise downregulates the translocation of the proteins to the cytosol and nuclei of the hippocampus 

and cortex. This stabilizes the mitochondria and mediates exercise’s positive effects on learning, 

memory, and motor function. 

3. Discussion 

Due to the fact that mitochondria are essential for energy production within brain 

cells [23,24], we investigated the effect of swimming exercise on mitochondrial apoptotic 

and dynamic signals in HIE. To accomplish this, we used an exercise routine and assessed 

five mitochondrial function regulators (AIF, Cytochrome c, Cleaved caspase-3, Smac/Di-

ablo, and OPA1). Our results demonstrated that exercise training affects these proteins 

regardless of the health state (that is, in HIE rat models or sham groups). Swimming ex-

ercise lowered the expression of mitochondrial apoptosis-related proteins; AIF, cyto-

chrome c, and cleaved caspase-3 in the cytosol and nuclei of the hippocampus, and cortex, 

which is consistent with the statement made by Moore et al. [25] that physical activity 

impacts every aspect of the mitochondrion. Furthermore, the four weeks of exercise low-

ered the expression levels of the fission marker Smac/Diablo and the cristae remodeling 

protein OPA1, which was concomitant with enhanced motor performance, learning, and 

memory retention. 

In the hippocampus and cerebral cortex of HIE and sedentary rats, the levels of mi-

tochondrial apoptotic indicators; cytochrome c, AIF, and cleaved caspase-3 increased sig-

nificantly. In comparison to SHAM, NT rats, when HIE and normal rats were subjected to 

swimming exercise, the levels of AIF, cytochrome c, and cleaved caspase-3 decreased sig-

nificantly, an observation in tandem with [24,26] findings that exercise restores mitochon-

dria function in neurodegenerative disorders. With AIF pointed out as a major contributor 

to neuron loss in the immature brain following hypoxia-ischemia and a hypomorphic mu-

tation causing decreased AIF expression reported to protect against neonatal hypoxic is-

chemia [27], we observe here that swimming exercise has the same effect in the HIE rat 

Figure 7. A schematic summary of the effect of exercise on mitochondrial proteins in the brain.
Exercise downregulates the translocation of the proteins to the cytosol and nuclei of the hippocampus
and cortex. This stabilizes the mitochondria and mediates exercise’s positive effects on learning,
memory, and motor function.

3. Discussion

Due to the fact that mitochondria are essential for energy production within brain
cells [23,24], we investigated the effect of swimming exercise on mitochondrial apop-
totic and dynamic signals in HIE. To accomplish this, we used an exercise routine and
assessed five mitochondrial function regulators (AIF, Cytochrome c, Cleaved caspase-3,
Smac/Diablo, and OPA1). Our results demonstrated that exercise training affects these
proteins regardless of the health state (that is, in HIE rat models or sham groups). Swim-
ming exercise lowered the expression of mitochondrial apoptosis-related proteins; AIF, cy-
tochrome c, and cleaved caspase-3 in the cytosol and nuclei of the hippocampus, and cortex,
which is consistent with the statement made by Moore et al. [25] that physical activity
impacts every aspect of the mitochondrion. Furthermore, the four weeks of exercise
lowered the expression levels of the fission marker Smac/Diablo and the cristae remodel-
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ing protein OPA1, which was concomitant with enhanced motor performance, learning,
and memory retention.

In the hippocampus and cerebral cortex of HIE and sedentary rats, the levels of
mitochondrial apoptotic indicators; cytochrome c, AIF, and cleaved caspase-3 increased
significantly. In comparison to SHAM, NT rats, when HIE and normal rats were subjected
to swimming exercise, the levels of AIF, cytochrome c, and cleaved caspase-3 decreased
significantly, an observation in tandem with [24,26] findings that exercise restores mitochon-
dria function in neurodegenerative disorders. With AIF pointed out as a major contributor
to neuron loss in the immature brain following hypoxia-ischemia and a hypomorphic
mutation causing decreased AIF expression reported to protect against neonatal hypoxic
ischemia [27], we observe here that swimming exercise has the same effect in the HIE
rat brain by suppressing the protein’s cytosolic and nuclear translocation. The antiapop-
totic impact of exercise training corresponds to improvements in motor function, learning,
and memory, implying that exercise training circumvents mitochondrial malfunction and
apoptosis. This explains the neuronal protective mechanisms reported after exercise train-
ing that promotes neurogenesis and myelin repair in the penumbra following stroke [28],
as these are high energy demanding processes that necessitate stable functional mitochon-
dria. Given exercise’s ability to modulate mitochondrial protein stabilization, enhance
motor function, learning, and memory, it would be remarkable to determine whether the
exercise-related metabolite, lactate, that crosses the blood-brain barrier [29] contributes
significantly to exercise’s beneficial effects of suppressing apoptosis and promoting motor
function, learning, and memory in HIE.

Swimming exercise significantly improved motor activity, memory, and learning in
rats with HIE by reducing mitochondrial apoptosis through the Cyto.C/Cleaved Caspase-3
and AIF signaling pathways. Aside from that, swimming exercise intervention has been
shown to stabilize mitochondrial cristae and membrane potential in HIE rats, as evidenced
by Smac/Diablo and OPA1 reversal in these animals, which is consistent with [30,31]
findings emphasizing the importance of OPA1 in mitochondrial cristae stabilization. With
the underlying neurobiological mechanisms of exercise-induced neuroplasticity still mostly
elusive [8], our findings provide an intriguing and plausible platform for future research on
identifying additional molecular pathways that could be modulated to effectively manage
HIE and the resulting impairments.

4. Materials and Methods
4.1. Animals and Experimental Groups

Thirty-six Sprague-Dawley rats were used for this study. The animals were main-
tained at 22 ± 1 ◦C with light/dark cycles of 12 h and had free access to food and water.
Experimental procedures were conducted with the approval of the Ethical Institutional
Committee on Animal Care and Research of Zhengzhou University. Every effort was made
to reduce the number of animals and minimize animal suffering during the experiments.
Animals were randomly divided into four groups (Figure 8). (1) HIE, NT (hypoxia-ischemia
encephalopathy group without exercise training) consisted of animals that were modeled
for hypoxic-ischemic encephalopathy on postnatal day 7 by anesthetizing the pups with
isoflurane (5% induction, 1.5% maintenance). The left common carotid artery was then
permanently ligated, and the pups were put on a warm recovery couch for 30 min before
they were transferred to a hypoxic chamber with a continuous flow of the hypoxic gas
mixture of 92% N2 and 8% O2 for 90 min and then returned to the cages up to the 10th
week without subjecting them to swimming exercise. (2) HIE, T (hypoxia-ischemia en-
cephalopathy group with exercise training) was comprised of animals that were modeled
for hypoxic-ischemic encephalopathy as in (1) and returned to the cages up to the 6th week
of life and then subjected to 90 min of swimming exercise daily for five days with 2 days of
rest per week for 4 weeks, (3) SHAM, NT (control group) included animals that were not
subjected to any treatment but lived a normal life in the cages from postnatal day 1 to the
10th week without exercise training, and (4) SHAM, T consisted of animals not subjected to
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any treatment but lived a normal life in the cages from postnatal day1 up to 6 weeks, after
which they were subjected to swimming exercise for 4 weeks.

Int. J. Mol. Sci. 2022, 23, 4235 11 of 15 
 

 

 

Figure 8. Experimental design. 

The animal brains from the different groups were then harvested and prepared for 

western blotting (hippocampus and cerebral cortex) and immunofluorescence (motor cor-

tex). 

4.2. Exercise Paradigm 

Animals were housed with food and water ad libitum and maintained on a 12 h 

light/dark cycle. They were divided into two groups: sedentary animals (HIE, NT and 

SHAM, NT) and exercising animals (HIE, T and SHAM, T). The exercising animals were 

subjected to swimming exercise training after postnatal week 6 for 4 weeks; they were 

subjected to swimming exercise for 5 days a week with 2 days of rest. 

Each swimming session lasted for 90 min. The pool was filled to a depth of 50 cm to 

prevent the animals from touching the bottom of the tank. The animals were allowed to 

freely swim, without any extra load and were gently stimulated during swimming. 

The rats were carefully dried after the exercise and returned to the cages. 

4.3. Vertical Pole Motor Test 

The animals in each group were one by one placed face-up on a cloth tape-covered 

pole (3.0 cm diameter and 150 cm length), which was held in a horizontal position, then 

was gradually lifted to a vertical position, and the time the rat stayed on the pole was 

recorded for a maximum of 2 min (120 s). In this test, the animal with a deficit in motor 

coordination and balance falls off the pole. 

4.4. Morris Water Maze Test (MWM) 

Rats (10 weeks old) were subjected to MWM after undergoing 4 weeks of exercise 

training protocol (SHAM, T and HIE, T). All water maze data were recorded using the 

Panlab SMART video tracking system (Panlab Howo Biotechnology (Shanghai) Co., Ltd.). 

(Shanghai, China). The MWM was used as described by [32]. Briefly, rats used visual cues 

placed on the borders of a swimming pool to reach a hidden platform and escape from 

the water. Learning was assessed across 7 days. Before learning assessment, rats were in-

troduced into the pool that contained clear water and a visible platform. During the train-

ing, the rats were given trial swimming exercise to become familiar with the task. During 

the learning phase, rats were smeared with black dye for easy video tracking and the plat-

form was submerged. Each rat was subjected to four trials from different starting points 

(quadrants). Latency or the time required to reach the platform was recorded every day 

Figure 8. Experimental design.

After 10 weeks of life, the animals were subjected to the motor and cognitive tests
(vertical pole test and Morris water maze test).

The animal brains from the different groups were then harvested and prepared for
western blotting (hippocampus and cerebral cortex) and immunofluorescence (motor cortex).

4.2. Exercise Paradigm

Animals were housed with food and water ad libitum and maintained on a 12 h
light/dark cycle. They were divided into two groups: sedentary animals (HIE, NT and
SHAM, NT) and exercising animals (HIE, T and SHAM, T). The exercising animals were
subjected to swimming exercise training after postnatal week 6 for 4 weeks; they were
subjected to swimming exercise for 5 days a week with 2 days of rest.

Each swimming session lasted for 90 min. The pool was filled to a depth of 50 cm to
prevent the animals from touching the bottom of the tank. The animals were allowed to
freely swim, without any extra load and were gently stimulated during swimming.

The rats were carefully dried after the exercise and returned to the cages.

4.3. Vertical Pole Motor Test

The animals in each group were one by one placed face-up on a cloth tape-covered
pole (3.0 cm diameter and 150 cm length), which was held in a horizontal position, then
was gradually lifted to a vertical position, and the time the rat stayed on the pole was
recorded for a maximum of 2 min (120 s). In this test, the animal with a deficit in motor
coordination and balance falls off the pole.

4.4. Morris Water Maze Test (MWM)

Rats (10 weeks old) were subjected to MWM after undergoing 4 weeks of exercise
training protocol (SHAM, T and HIE, T). All water maze data were recorded using the
Panlab SMART video tracking system (Panlab Howo Biotechnology (Shanghai) Co., Ltd.).
(Shanghai, China). The MWM was used as described by [32]. Briefly, rats used visual
cues placed on the borders of a swimming pool to reach a hidden platform and escape
from the water. Learning was assessed across 7 days. Before learning assessment, rats
were introduced into the pool that contained clear water and a visible platform. During
the training, the rats were given trial swimming exercise to become familiar with the task.
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During the learning phase, rats were smeared with black dye for easy video tracking and
the platform was submerged. Each rat was subjected to four trials from different starting
points (quadrants). Latency or the time required to reach the platform was recorded every
day by the Panlab SMART Video Tracking System. On the last day of the experiment,
the platform was removed, and each rat was reintroduced into the water and the number
of times the animals crossed the site of the hidden platform in the quadrant that previously
contained the platform (target quadrant) was recorded.

4.5. Western Blotting

Six rats were randomly selected from each group for the protein level experiment. Pro-
teins were extracted from the hippocampus and cortex and homogenized in RIPA’s reagent
(CW2333S, CoWin Biosciences, Cambridge, MA, USA) and separated into cytoplasmic
and nuclear proteins. The protein concentrations were determined using the bicinchoninic
acid assay (BCA) (CW0014S, CoWin Biosciences, Cambridge, MA, USA), and a total of
20 g of protein was separated by electrophoresis on universal SDS-PAGE gels (CFAS Any
KD PAGE) # PE008, Zhonghui Hecai Bio-pharmaceutical Technology Co., Ltd., Shaanxi,
China. Proteins were then transferred onto polyvinylidene fluoride membranes, (PVDF)
(R1CB12934, Merck Millipore Ltd., (Burlington, MA, USA). The membranes were blocked
for 2 h with 5% bovine serum albumin (BSA) (#A8020, Solarbio Life Sciences, Beijing, China)
at room temperature and incubated with the following primary antibodies from Cell Signal-
ing Technology (Danvers, MA, USA): AIF (D39D2, 1:1000), Cytochrome C (136F3, 1:1000),
cleaved caspase-3 (Asp175, 1:1000), Smac/Diablo (D553R, 1:1000), and OPA1 (D7C1A,
1:1000). GAPDH from Servicebio, Wuhan, China (GB11002, 1:2000), and H3 from Pro-
teintech (17168-1-AP, 1:1000) at 4 ◦C overnight followed by HRP-conjugated secondary
antibody SA00001-2 from Proteintect (1:5000) incubation for 2 h at room temperature.
The protein bands were visualized with an enhanced chemiluminescence kit #KF005 from
Affinity Biosciences and imaged with the Bio-Image Analysis system (Zhengzhou Univer-
sity, Zhengzhou, China). The ratios of protein band intensities to GAPDH (cytoplasmic
proteins) and H3 (nuclear proteins) as internal references were determined using ImageJ.

4.6. Immunofluorescence

The 25-µm coronal slices of brain tissue were obtained using a freezing microtome (Le-
ica, Germany) for immunofluorescence. The slides were blocked for 2 h with PBS with 10%
fetal bovine serum, (#A8020, Solarbio Life Sciences, Beijing, China) and 0.3% Triton ×-100,
Amresco 0694, Biosharp, Estonia at room temperature and then incubated with primary
antibodies from Cell Signaling Technology (Danvers, MA, USA): anti-AIF, D39D2 (dilution
of 1:400), anti-Cytochrome C, 136F3 (dilution of 1:200), anti-cleaved caspase-3, Asp175
(dilution of 1:400), anti-Smac/Diablo, D553R (dilution of 1:200) and anti- OPA1, D7C1A
(dilution of 1:400) overnight at 4 ◦C. Then, the slides were washed 3 times each lasting
10 min in PBS and then incubated with secondary antibodies (ab150077 from Abcam,
Cambridge Biomedical Campus, Cambridge, UK) for 2 h at room temperature in the dark.
DAPI,#C0065 from Solarbio Life Sciences, Beijing, China (1:100PBS) was added for 5 min
and poured off, washed in PBS for 3 times each lasting 5 min, dried, the anti-quenching
agent was added(#P0126, Beyotime Biotechnology, Shanghai, China), glass slips were fixed
on the slides, and samples were stored at −20 ◦C for 2 h and taken for microscopic imaging.
The tissue images were captured using a confocal fluorescence microscope (Ni-U942877,
Nikon, Tokyo, Japan), and the images representing the proteins in the motor cortex were
then quantified using FIJI-ImageJ as described in [33].

4.7. Statistical Analysis

GraphPad Prism version 8.0.0 for windows (GraphPad Software, San Diego, CA, USA)
was used for all analyses. One-way ANOVA followed by Dunnett’s post hoc tests, respec-
tively, were used to measure statistical significance. Results are presented as mean ± SEM,
and p < 0.05 was considered statistically significant.
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5. Conclusions

This study demonstrates that swimming exercise ameliorated motor activity, mem-
ory, and learning associated with HIE by suppressing mitochondrial apoptosis via the
Cyto.C/cleaved caspase-3 and AIF signaling pathways. Additionally, swimming exercise
intervention has been shown to stabilize the mitochondrial cristae and membrane potential
as depicted by the reversal of Smac/Diablo and OPA1 in rats with HIE. As a result, this
is an attractive and viable foundation for additional research to decipher more molecular
pathways that could be manipulated to effectively manage HIE and the resultant deficits.

While this study successfully demonstrated the role of exercise in reversing the struc-
tural and functional deficits in the mitochondria caused by HIE, it did not exhaust all
the possible methods for establishing how the mitochondrial cristae are stabilized; this is
critical for future research on this subject.
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Abbreviations

AIF Apoptosis-inducing factor
Cyto. C Cytochrome C
Endo G Endonuclease G
HIE Hypoxic ischemic encephalopathy
HIE, NT Hypoxia ischemic encephalopathy with no exercise training
HIE, T Hypoxia ischemic encephalopathy with exercise training
MFI Mean fluorescence intensity
MWM MWM Morris water maze
SHAM, NT Sham group with no exercise training
SHAM, T Sham group with exercise training
Smac Second mitochondria-derived activator of caspase
OMM Outer mitochondrial membrane
OPA1 Optic atrophy-1
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