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3 Institut za Fiziku, Bijenička 46, 10000 Zagreb, Croatia; jjakovac@ifs.hr (J.J.); vito@phy.hr (V.D.)
4 Department of Applied Mathematics and Waterloo Institute for Nanotechnology, University of Waterloo,

Waterloo, ON N2L 3G1, Canada; zmiskovi@uwaterloo.ca
5 Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain
* Correspondence: lmarusic@unizd.hr

Abstract: Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ)
crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the
Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of
these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the
mechanism of their formation in alkali-doped graphenes is still not completely understood. We
shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different
plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports
a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not,
as previously believed, just a consequence of the interplay of the π and σ intraband transitions,
but a very subtle interplay between these transitions and the background screening, caused by the
out-of-plane interband C(π)→ A(σ) transitions.

Keywords: plasmon; acoustic plasmon; graphene; graphene intercalation compounds; EELS

1. Introduction

Studying acoustic plasmons (APs) in single-layer [1–5], double-layer [3,6–9] and multi-
layer [10–13] graphene or in metal/dielectric/graphene superstructures [14] is a very active
field of research. Recently, an AP was detected in a graphene–dielectric–metal structure
using near-field scattering microscopy [2]. That experiment demonstrated a very robust
character of the AP with small propagation loss, which enables its efficient coupling to
the electromagnetic field at infra-red frequencies. The graphene/graphene-nanoribbon
superstructure also supports a strong AP which can be excited by light and provide strong
field enhancement inside the nano-gap, allowing efficient biosensing [6]. In this work, we
focus on the AP in graphene doped by alkali metals.

As alkali atoms are added to graphene deposited on various substrates, they intercalate
between the graphene layer and the substrate and metalize, i.e., they arrange in a two-
dimensional (2D) crystal lattice, which supports a partially filled parabolic band [15–21].
The alkali atoms then usually donate electrons to the graphene π band, lifting the Fermi
level above the Dirac point and transforming the graphene from a gapless semiconductor
into a metal. Therefore, the alkali adlayer results in the formation of two thin, i.e., quasi
two-dimensional (q2D), plasmas able to support a variety of different plasmonic modes,
which do not exist in pristine or electrostatically doped graphene. Our previous theoretical
research of electronic excitations in graphene doped by alkali atoms (ACx) showed that this
system supports two kinds of intraband or 2D plasmons: the Dirac plasmon (DP) and the
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acoustic plasmon (AP). The intensity of these modes depends on the type of the dielectric
substrate, as well as on electrostatic or natural doping [22–25]. Moreover, these theoretical
studies suggest the possibility of simple manipulation of the DP and AP intensities (they
can be switched ‘on’ and ‘off’ in a controlled way) [25], thereby opening new possibilities
for their application in various fields, such as plasmonics, photonics, transformation optics,
optoelectronics, light emitters, detectors and photovoltaic devices [26–36]. Additionally,
these ‘tunable’ 2D plasmons could be very useful in the area of chemical or biological
sensing [27,37–40].

In this paper, we focus on the AP, firstly because of its linear dispersion, but also
because of the still rather unclear mechanism of its occurrence in the ACx. The mechanism
of formation of the AP on a metal surface was resolved a long time ago [41–43]. In that case,
a partially filled surface state supports a 2D plasmon, which hybridizes with the ordinary
surface plasmon, resulting in the transformation of the usual 2D plasmon with square-root
2D dispersion into a linear AP [41]. However, our previous studies of plasmons in ACx
systems show that the AP is very sensitive and strongly dependent on several parameters:
the type of the alkali metal atom (A), the coverage (x) and the electrostatic doping. In other
words, it is substantially unstable, and the aim of this research is to explore the mechanism
of the (in)stability of the AP in the ACx.

In order to do that, we investigate two model systems of doped graphene, KC8 and
CsC8, which are isostructural, but the first system does support the AP, while the second
one does not. Moreover, the DP in the KC8 is very sharp, while in the CsC8 it is quite broad,
even though the occupancies of the graphene π band and the alkali atom σ band in these
two systems are almost identical. We shall show that the AP in the ACx is not, as previously
believed, just a consequence of the hybridization between the intraband 2D plasmons in
the π and σ bands, but rather a very subtle interplay between these plasmons and the
background screening caused by the interlayer interband C(π) → A(σ) transitions. We
shall also demonstrate that the electronic screening coming from the high-energy interband
transitions significantly reduces the intensity of the AP in both systems.

We study electronic excitations in the ACx using two complementary methods: the
ab initio random phase approximation (RPA) approach [24] and a reduced model. In the
reduced model, the electrons in the alkali atom layer are approximated by a parabolic
band with parameters (the effective mass mσ and the Fermi energy EFσ) taken from the
ab initio calculations. We refer to this approximation as the “massive” 2D electron gas
(m2DEG). The graphene band structure is approximated by the conical π bands with
the occupation corresponding to the occupation of the π band (Fermi energy EFπ) in
the ab initio AC8 sample. This approximation is also known as the ’massless’ Dirac
fermion (MDF) approximation [44,45]. The polarization effects coming from the high-
energy interband transitions are included through the polarizability parameters αm and αg
deduced from the ab initio calculations.

The paper is organized as follows. In Section 2, we present the geometry of the system,
a derivation of the ab initio ground state and the RPA spectra of the electronic excitations
S(Q, ω) in the ACx deposited on a dielectric substrate. We also present a theoretical
formulation of the reduced model. In Section 3, we show the band structures of the KC8
and CsC8, as well as the intensities of the electronic excitations in these systems. After that,
using a detailed analysis, which combines the ab initio RPA method and the reduced model,
we resolve the mechanism of the AP instability. The conclusions are presented in Section 4.

2. Theoretical Formulation

In this section, we derive the spectral function of the electronic excitations in the
self-standing KC8 and CsC8. However, to demonstrate the robustness of these electronic
excitations, we show how a dielectric substrate can be included in our expressions for the
spectral function, to enable the calculation of the electronic excitation spectra for systems
consisting of crystals (CsC8 and KC8) deposited on Al2O3 substrate described by a local
dielectric function εS(ω). Additionally, we make use of the plausible assumption [25] that
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the Al2O3 substrate does not affect the ground state electronic structure (Kohn–Sham (KS)
wave functions and energies) of the AC8 crystal, but it can influence its dielectric properties.

Figure 1 shows the geometry of the studied system. The coordinates are oriented so
that the AC8 crystal is positioned in the x− y plane, the z direction is perpendicular to the
crystal plane, the graphene layer occupies the z = 0 plane, the alkali atom layer occupies
the z = −d plane and the dielectric substrate occupies the z < −h half-space.

  

Figure 1. Schematic representation of the AC8 crystal deposited on a dielectric substrate described by
a local dielectric function εS(ω). The substrate (blue) occupies the region z < −h, the graphene layer
(yellow) is in the z = 0 plane and the alkali atom (turquoise) layer is in the z = −d plane.

2.1. Calculation of the Surface Electronic Excitations Spectra

We shall briefly describe the method of calculation of the surface electronic excitation
spectra at the arbitrary position z > 0, previously used in several studies of electronic
excitations in 2D crystals [22,23,46–50].

We start from the 3D Fourier transform of the noninteracting (free) electron response
function

χ0
GG′(Q, ω) =

2
Ω ∑

K∈SBZ
∑
n,m

fn(K)− fm(K + Q)

ω + iη + En(K)− Em(K + Q)

(1)

×ρnK,mK+Q(G) ρ∗nK,mK+Q(G′),

where Ω = S × L is the normalization volume and fnK = [e(EnK−EF)/kT + 1]−1 is the
Fermi–Dirac distribution at temperature T. The matrix elements (or the charge vertices) are

ρnK,mK+Q(G) =
〈

ΦnK

∣∣∣e−i(Q+G)·r
∣∣∣ΦnK+Q

〉
V

, (2)

where K = (Kx, Ky) is the 2D wave vector, Q is the momentum transfer vector parallel to
the x− y plane, G = (G‖, Gz) are the 3D reciprocal lattice vectors and r = (ρ, z) is the 3D
position vector. The integration is performed over the normalization volume Ω. The plane
wave expansion of the wave function has the form

ΦnK(ρ, z) =
1√
Ω

eiK·ρ ∑
G

CnK(G)eiG·r,

where the coefficients CnK are obtained by solving the KS equations within the local density
approximation (LDA) self-consistently.
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The Fourier expansion of the free electron response function in the z and z′ coordi-
nates is:

χ0
G‖G

′
‖
(Q, ω, z, z′) =

1
L ∑

GzG′z

χ0
GG′(Q, ω)eiGzz−iG′zz′ , (3)

where we assume that our system is periodical in the z and z′ direction as well, i.e., that
it repeats periodically from supercell to supercell, and the supercells are q2D crystals
separated by the distance L. We now need to determine the screened response function
χ0

G‖G
′
‖
(Q, ω, z, z′) of one supercell without including the polarization of the surrounding

supercells. This spurious interaction with the replicas of the q2D crystal can be eliminated
easily, by using the RPA Dyson equation

χG‖G
′
‖
(Q, ω, z, z′) = χ0

G‖G
′
‖
(Q, ω, z, z′) + ∑

G‖1G‖2

∫ L/2

−L/2
dz1dz2 (4)

×χ0
G‖G‖1

(Q, ω, z, z1) v2D
G‖1G‖2

(Q, z1, z2)χG‖2,G′‖
(Q, ω, z2, z′),

where the matrix of the bare Coulomb interaction is

v2D
G‖1G‖2

(Q, z, z′) = v2D
G‖1

(Q, z, z′)δG‖1G‖2 , (5)

and the 2D Fourier transform of the bare Coulomb interaction is

v2D
G‖1

(Q, z, z′) =
2π

|Q + G‖1|
e−|Q+G‖1||z−z′ |. (6)

Since the integrations in (4) are performed from −L/2 to L/2, the interaction between
the density fluctuations, via the Coulomb propagator v2D

G‖1G‖2
(Q, z, z′), is limited to one

supercell located at −L/2 < z < L/2. After inserting the Fourier expansion (3), and a
similar one for χ, in RPA Dyson Equation (4), it again becomes a matrix equation

χGG′(Q, ω) = χ0
GG′(Q, ω) + ∑

G1G2

χ0
GG1

(Q, ω) v2D
G1G2

(Q)χG2G′(Q, ω), (7)

where the matrix of the bare Coulomb interaction is

v2D
G1G2

(Q) = v3D
G1G2

(Q)− pGz1 pGz2
4π(1−e

−|Q+G‖1|L)
|Q+G‖1|L

× |Q+G‖1|2−Gz1Gz2

(|Q+G‖1|2+G2
z1)(|Q+G‖1|2+G2

z2)
δG‖1G‖2 ,

(8)

with v3D
G1G2

(Q) = 4π

|Q+G1|2
δG1G2 , Gz =

2πk
L , pGz = (−1)k, and k ∈ Z.

The solution of Equation (7) has the form

χGG′(Q, ω) = ∑
G1

E−1
GG1

(Q, ω)χ0
G1G′(Q, ω), (9)

where the dielectric matrix is

EGG′(Q, ω) = δGG′ −∑
G1

V2D
GG1

(Q)χ0
G1G′(Q, ω). (10)

After solving Equation (7), the nonlocal screened response function in the z and z′

direction becomes:

χG‖G
′
‖
(Q, ω, z, z′) =

1
L ∑

GzG′z

χGG′(Q, ω)eiGzz−iG′zz′ . (11)
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The propagator of the induced dynamically screened Coulomb interaction can be
calculated from the response function (9) as [50]

Wind
G‖

(Q, ω, z, z′) =
∫ L/2

−L/2
dz1dz2v2D

G‖
(Q, z, z1)χG‖0(Q, ω, z1, z2) v2D

0 (Q, z2, z′), (12)

where the index zero means that G′‖ = 0. After using the expansion (11) and Equation (6),
the integrations over z1 and z2 can be performed analytically, and the induced dynamically
screened interaction at z, z′ > 0 can be written as

Wind
G‖

(Q, ω, z, z′) = e−|Q+G‖ |z−Qz′DG‖(Q, ω) (13)

where the propagator of the surface excitations is

DG‖(Q, ω) = ∑
Gz1Gz2

χG‖ ,0,Gz1,Gz2(Q, ω)FGz1(Q + G‖)F∗Gz2
(Q), (14)

and the form factors F are

FGz(Q) =
4πpGz

Q
√

L

sinh(QL
2 )

Q + iGz
. (15)

The spectral function, which defines the intensity of the energy loss by an external
perturbation to the excitation of the (Q, ω) modes, can now be calculated as

S(Q, ω) = −ImDG‖=0(Q, ω). (16)

Up to this point, we derived the expressions for the self-standing q2D systems, but in-
cluding a dielectric substrate polarization is now straightforward. It is obtained simply by
replacing the bare Coulomb interaction (6) with the Coulomb interaction screened by the
substrate

v2D
G‖

(Q, z, z′) → ṽ2D
G‖

(Q, ω, z, z′) = v2D
G‖

(Q, z, z′) +
2π

|Q + G‖|
DS(ω)e−|Q+G‖ |(2h+z+z′), (17)

where the dielectric surface response function is

DS(ω) =
1− εS(ω)

1 + εS(ω)
.

This also means that the matrix (8) used in matrix Dyson Equation (7) should be
modified as

v2D
G1G2

(Q) → ṽ2D
G1G2

(Q, ω) =

v2D
G1G2

(Q) +
|Q+G‖1|

2π e−2|Q+G‖1|hDS(ω) FGz1(|Q + G‖1|)F∗Gz2
(|Q + G‖1|)δG‖1G‖2 .

(18)

2.2. Calculation of the 2D Dynamical Polarizability Function α(ω)

In the long-wavelength or optical limit (Q→ 0), the in-plane dielectric function of a
2D crystal can be approximated as

ε(Q, ω) = 1 + 2πQα(ω). (19)

The 2D polarizability α can be divided into intraband and interband contributions

α(ω) = αintra(ω) + αinter(ω), (20)

where
αintra/inter(ω) = iσintra/inter

µ (ω)/ω, (21)
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and µ = x or y. The intraband optical conductivity is [51]

σintra
µ (ω) = i

e2

m
nµ

ω + iηintra
, (22)

where the effective number of charge carriers is

nµ = − m
Se2 ∑

n
∑

K∈1.SBZ

∂ fnK

∂EnK

∣∣∣jµ
nK,nK

∣∣∣2. (23)

The interband optical conductivity is determined from the optical limit of the nonlocal
interband conductivity

σinter
µ (ω) = Lσinter

µ (ω, Q→ 0).

The nonlocal interband conductivity is [51]

σinter
µ (Q, ω) = − ih̄

Ω ∑
n 6=m

∑
K∈1.SBZ

∣∣∣jµ
nK,mK+Q

∣∣∣2
EnK − EmK+Q

fnK − fmK+Q

h̄ω + iηinter + EnK − EmK+Q
, (24)

where the current vertices are

jµ
nK,mK+Q =

∫
Ω

dre−iQ·r jµnK,mK+Q(r), (25)

and the current produced by the transitions between the Bloch states φ∗nK → φmK+Q is
defined as

jµ
nK,mK+Q(r) =

eh̄
2im

{
φ∗nK(r)∂µφmK+Q(r)− [∂µφ∗nK(r)]φmK+Q(r)

}
.

Figure 2 shows the interband contribution to the dynamical polarizability αinter(ω) in
the KC8 (black), CsC8 (orange) and doped graphene (red dashed). The graphene is doped
so that the Fermi level is 1eV above the Dirac point, which corresponds to the doping of
the π bands in the KC8 and CsC8. All three systems show qualitatively equal behavior; the
peak at about ω = 2 eV, indicating the onset for the π → π∗ interband transitions, and the
dip at ω ≈ 4 eV is a consequence of the high density of the π → π∗ interband transitions
at the M point of the Brillouin zone. Even though the π bands in all three systems are
almost equally doped, we can see a substantial difference in the KC8 and CsC8 statical
polarizabilities which are αinter(ω = 0) = 2.2 Å and αinter(ω = 0) = 3.05 Å, respectively.
This difference probably comes from the difference in the intensities of the C(π)→ A(σ)
interlayer (interband) excitations in the two systems. These excitations are manifested as
the peak at ω ≈ 0.25 eV for the CsC8, which does not exist for the KC8. Finally, we can see
that the agreement between the dynamical polarizabilities in the KC8 and the equivalently
doped graphene is almost perfect. As we shall demonstrate later, this small deviation in
the low-energy part of the dynamical polarizability is responsible for the disappearance
of the AP in the CsC8, but only if we take into account that these transitions represent a
perpendicular polarization.
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Figure 2. The interband contribution to the dynamical polarizability αinter(ω) for the KC8 (black),
CsC8 (orange) and doped graphene (red dashed). The graphene is doped so that the Fermi energy is
1eV above Dirac point, which corresponds to the doping of the π bands in the KC8 and CsC8.

2.3. Calculation of the Substrate Dielectric Function

We assume that the dielectric media is vacuum (i.e., ε0 = 1), and that the substrate is
aluminium oxide Al2O3 described by the macroscopic dielectric function εs(ω). To calculate
the εs(ω), we start from the 3D Fourier transform of the independent electron response
function

χ0
GG′(q, ω) =

2
Ω ∑

k∈1.BZ
∑
n,m

fn(k)− fm(k + q)
ω + iη + En(k)− Em(k + q)

ρnk,mk+q(G) ρ∗nk,mk+q(G
′), (26)

where k ∈ 1.BZ indicates that the summation is performed within the first Brillouin zone.
The charge vertices are defined as

ρnk,mk+q(G) =
∫

Ω
dr φ∗nk(r)e

−i(q+G)·rφmk+q(r), (27)

where k = (kx, ky, kz), q = (qx, qy, qz) and G = (Gx, Gy, Gz) are the 3D wave vector,
the transfer wave vector and the reciprocal lattice vector, respectively. The integration is
performed over the normalization volume Ω. We use the response matrix (26) to determine
the dielectric matrix as

EGG′(q, ω) = δGG′ −∑
G1

vGG1(q)χ
0
G1G′(q, ω), (28)

where the bare Coulomb interaction is vGG′(q) = 4π
|q+G|2 δGG′ . Finally, the macroscopic

dielectric function is determined by inverting the dielectric matrix

εs(ω) = ε1(ω) + iε2(ω) = 1/E−1
G=0G′=0(q ≈ 0, ω). (29)

2.4. Reduced Model

Analytical modeling of the energy loss spectra is achieved by representing each of
the systems, CsC8 and KC8, by a two-layer structure consisting of a single sheet of doped
graphene and an m2DEG, placed in vacuum at a distance d apart, as shown in Figure 3.
In the reduced model, the substrate is neglected, i.e., we assume εS(ω) = 1, and the energy
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loss function −={1/ε(Q, ω)} is then obtained from the effective 2D dielectric permittivity
for this two-layer structure, in the RPA given by [44,52]

ε(Q, ω) =
1
2

[
1 + coth(Qd)− 2vQχ0

g

]
− 1

2
cosech2(Qd)

1 + coth(Qd)− 2vQχ0
m

, (30)

where vQ = 2π/Q is the Coulomb interaction, while χ0
g(Q, ω) and χ0

m(Q, ω) are the
response functions of the noninteracting electrons in the graphene and the m2DEG layers,
respectively.

ε  (ω)s

z

xz=0

m2DEG

graphene

ε = 1

z=  h

z=  d

Figure 3. Schematic representation of the reduced model. The alkali atom layer is approximated by
‘massive’ 2D electron gas (parabolic σ band), and the graphene layer is described by the ‘massless’
Dirac fermion (MDF) approximation (conical π band).

For the doped graphene, we follow the method proposed by Gjerding et al. [53],
and write the response function as χ0

g(Q, ω) = χDirac(Q, ω)− αgQ2, where χDirac is the
response function given in Refs. [54,55], which describes both intraband and low-energy
interband electron transitions within the π electron bands approximated by the Dirac cones
with the Fermi energy EFπ , while αg is the phenomenological parameter providing the
correction due to the high-energy interband transitions. For the m2DEG, we similarly
write χ0

m(Q, ω) = χ2DEG(Q, ω)− αmQ2, where χ2DEG is the polarization function given
in Ref. [56], describing the intraband transitions in the 2DEG which occupies a single
parabolic energy band with the effective mass mσ and the Fermi energy EFσ, while αm is
a phenomenological parameter taking into account interband transitions in the m2DEG.
The expressions used for both response functions, χ0

g(Q, ω) and χ0
m(Q, ω), are formulated

for zero temperature, but they are corrected by the Mermin procedure to take into account a
finite damping parameter η in both graphene and m2DEG layers [53]. We use η = 40 meV
as in the ab initio calculations, as well as η = 65 meV to take into account the additional
smearing at room temperature.

We note that the relevant parameters for the KC8 (d = 2.92 Å, EFπ = 1.01 eV,
EFσ = 0.9 eV, mσ = 0.92) and CsC8 (d = 3.13 Å, EFπ = 1.03 eV, EFσ = 1.03 eV, mσ = 0.72)
are obtained from the electronic band structure calculation for these two systems, shown
in Figure 4a,b, respectively. The parameters α are obtained from the static limit (ω → 0)
of the ab initio results for the corresponding dynamic polarizability functions αinter(ω) in
the optical limit. In particular, the value αg ≈ 1.3 Å for high-energy interband transitions
is deduced from the data for the intrinsic graphene [53], and by adding the value for the
low-energy π → π∗ interband transitions, estimated from the Dirac model in the optical
limit at zero temperature [57] as

(
4πEFg

)−1 ≈ 1.15 Å, we obtain that the total contribution
of the interband transitions in the doped graphene is around 2.45 Å. This is close to the
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result αinter(ω = 0) = 2.2 Å shown in Figure 2 for the KC8, which indicates that αm ≈ 0
for that system. On the other hand, the result αinter(ω = 0) = 3.05 Å shown in Figure 2 for
CsC8 indicates that αm ≈ 0.6 Å for that system.
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(K
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]

Γ MK Γ

E
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(a)

π      σ
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e
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Γ K ΓM

(b)

m
σ
=0.72E

Fσ
=1.03eV E

Fπ
=1.03eV

π     σ
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Figure 4. The electronic band structure in (a) KC8 and in (b) CsC8. The magenta line denotes the
lowest unoccupied band (LUCB). The blue circles represent the parabolic fit E(K) = EFσ + h̄2K2
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the alkali atom σ band.

2.5. Computational Details

The KC8, CsC8 and graphene KS wave functions φnK and energies EnK are determined
using the plane-wave self-consistent field DFT code (PWSCF) within the QUANTUM
ESPRESSO (QE) package [58]. The core–electron interaction is approximated by the norm-
conserving pseudopotentials [59,60]. For the KC8 and CsC8, the exchange correlation (XC)
potential is approximated by the Perdew–Burke–Ernzerhof (PBE) generalized gradient
approximation (GGA) functional [61]. The ground state electronic densities are calculated
using the 8× 8× 1 Monkhorst–Pack K-mesh [62] and the plane-wave cut-off energy is 60Ry.
For both AC8 crystals, we used the hexagonal Bravais lattice, where a = 4.922 Å and the
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separation between the AC8 layers is L = 2.5a. The atomic and the unit cell relaxations
were performed until maximum force below 0.001 Ry/a.u. was obtained. After performing
the structural optimization, the obtained separations between the K and Cs layers and the
graphene layer are d = 2.92 Å and d = 3.13 Å respectively. The graphene XC potential is
approximated by the Perdew–Zunger (PZ) LDA [63]. The ground state electronic density
is determined using 21 × 21 × 1 K-point mesh, and for the plane-wave cut-off energy
we choose 50 Ry. For the graphene unit-cell constant we use the experimental value
ag = 2.45 Å [64], while for the superlattice unit-cell constant we take L = 5ag.

The AC8 response functions (1) and conductivities (22)–(25) are evaluated from the
wave functions ΦnK(r) and energies En(K) calculated for the 201× 201× 1 Monkhorst–
Pack K-point mesh. The band summation (n, m) is performed over 60 bands, the damping
parameters are η = ηintra = ηinter = 10 meV and the temperature is T = 25 meV. Due to
the large spatial dispersivity of the dielectric response in the perpendicular (z) direction,
the crystal local field effects are taken into account only in the z direction and neglected in
the x− y plane, i.e., we set the G‖ to zero. To calculate the matrix χGz ,G′z we set the energy
cut-off to 10Ry, which corresponds to a 23× 23 matrix. Graphene conductivity (22)–(25) is
calculated by performing the summation over 601× 601× 1 K-point mesh, the band sum-
mations (n, m) are performed over 20 bands, the damping parameters are ηintra = 10 meV
and ηinter = 25 meV and the temperature is T = 25 meV. The conductivity of the doped
graphene is calculated using the rigid band approximation, i.e., the occupation parameter
(the Fermi energy relative to the Dirac point) is adjusted a posteriori.

The ground state electronic density of the bulk Al2O3 is calculated using 9× 9× 3
K-mesh, the plane-wave cut-off energy is 50Ry and the Bravais lattice is hexagonal (12 Al
and 18 O atoms in the unit cell) with the lattice constants a = 4.76 Å and c = 12.99 Å.
The response function (26) of the Al2O3 is calculated using the 21× 21× 7 k-point mesh
and the band summations (n, m) are performed over 120 bands. The damping parameter
is η = 100 meV and the temperature is T = 10 meV. For the optically small wave vectors
q ≈ 0, the crystal local field effects are negligible, so the crystal local field effect cut-off
energy is set to zero. Using this approach, the Al2O3 dielectric function is estimated to be
εS(ω) ≈ εS(ω = 0) = 2.9 for ω < 2 eV, which is in good agreement with the experimental
value 3.4 [65]. However, in the calculations we used the full dynamical εS(ω).

3. Results and Discussion

Figure 4 shows (a) KC8 and (b) CsC8 band structures, respectively, along the high
symmetry Γ → K → M → Γ directions. The blue circles represent the parabolic fit
E(K) = EFσ + h̄2K2

2mσ
for the alkali atom σ bands. In both figures, we can see that the

graphene π band and the alkali atom σ band are significantly doped by the electrons, so
the Fermi level is around 1eV above the Dirac point and the σ band bottom. It is also
evident that the σ bands behave almost as an ideal 2D free electron gas. They are parabolic
(described by effective masses mσ = 0.916 and mσ = 0.72, respectively) up to the Fermi
energy, especially in Figure 4a where the σ band is parabolic almost through the entire
Brillouin zone. Finally, the most important feature is the obvious similarity between the
two band structures, which both fulfill conditions for the occurrence of the AP (two bands
of different effective masses crossing the Fermi energy) [22,41]. However, as we shall see,
the spectra of the low-energy electronic excitations in these two systems are quite different.
In both systems, we can identify the lowest band that remains above the Fermi lever for all
wave-vectors, and we call it the lowest unoccupied band (LUCB), even though for some
wave-vectors there is another unoccupied band below that one, since this one turns out to
be of particular importance, as explained below.

Figure 5 shows the intensities of the electronic excitations in the (a) KC8 and (b) CsC8
deposited on the dielectric Al2O3 surface. Since the graphene π bands are abundantly
doped by the electrons, both systems support a strong DP. However, although the occu-
pancies of both π bands are almost identical (EFπ = 1.01 eV for the KC8 and 1.03 eV for
the CsC8), the intensities of the DP are quite different. We can see that the DP in the CsC8
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is broader and much more efficiently damped by the interband π → π∗ electron hole
excitations than the DP in the KC8. Moreover, we can see that the DP in the KC8 is very
sharp and it extends deep into the interband π → π∗ continuum while the DP in the CsC8
decays immediately upon entering the interband π → π∗ continuum. The most interesting
difference between the two systems is that, even though the occupancies of their σ bands
are very similar (EFσ = 0.9 eV in the KC8 and 1.03 eV in the CsC8), the KC8 does support
the AP while the CsC8 does not. Moreover, we can see that the π plasmon (denoted by the
blue symbol π) in the KC8 is well defined, and it appears to be a very intensive optically
active plasmon (its intensity does not vanish for Q→ 0), while the π plasmon in the CsC8
is less intensive, more diffuse and not in optically active mode. It is very interesting that
these two very similar band structures lead to very different excitation spectra.

To demonstrate that these effects are not driven by the dielectric substrate, in Figure 5
we also show the intensities of the electronic excitations in the self-standing (c) KC8 and
(d) CsC8. The magenta dots in Figure 5a,b denote the DP and AP dispersion relations in
the self-standing samples, for comparison. It is worth noting that the insulator surface
does not change the qualitative behavior of the electronic modes. The only quantitative
differences are: the dielectric screening slightly reduces the DP energy and slightly reduces
the intensities of the AP and π plasmons. However, the AP in the KC8 is still clearly visible.
Since the substrate does not affect the qualitative behavior of the excitation spectra, it will
be omitted from further consideration. Therefore, the fact that one system does and the
other does not support the AP, even though the bands crossing the Fermi energy in the
two systems are almost identical, suggests that the mechanism responsible for this AP
instability is probably in the screening coming from the interband excitations beyond the
Fermi energy.

Figure 5. The ab initio spectra of the electronic excitations S(Q, ω) in the (a) KC8 and (b) CsC8

deposited on dielectric Al2O3 surface with h = 5.92 Å and h = 6.13 Å respectively (i.e., the separation
between the dielectric surface and the alkali atom layer is chosen to be 3 Å ). The ab initio spectra
of the electronic excitations in the self-standing (c) KC8 and (d) CsC8. The magenta dots in (a,b)
denote the DP and AP dispersion relations in the self-standing samples, i.e., the DP and AP in (c,d).
The energy loss function −={1/ε(Q, ω)} in the self-standing (e) KC8 and (f) CsC8 was obtained
using the reduced model.
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To investigate this mechanism, we take advantage of the reduced model which clearly
distinguishes between the different interband contributions to the dynamical response in
the two systems. As discussed in Section 2.4, the statical polarizabilities due to the high-
energy interband excitations in the metallic subsystem (characterized by the parameter αm)
are αm ≈ 0 in the KC8 and 0.6 in the CsC8. This difference suggests that this polarization
mechanism may be responsible for suppressing the AP. Figure 5e,f show the energy loss
function −={1/ε(Q, ω)} in the self-standing KC8 and CsC8, respectively, obtained using
the reduced model. We can see that the agreement between the ab initio and the reduced
model intensities for the KC8 for ω < 3 eV and Q < 0.14 a.u. is almost perfect. Beyond these
values, the plasmons in the reduced model appear at higher energies, which is reasonable
since the reduced model neglects the dynamical effects of the high-energy interband
transitions. For example, one can notice the absence of the π plasmon in the reduced
model. In the case of the CsC8, the agreement is no longer so good, and the most important
difference is that the reduced model (at this level of approximation) is obviously not able
to reproduce the disappearance of the AP. The stronger metallic interband screening in
the CsC8 is still not sufficient to suppress the AP. Moreover, even the implementation of
the ab initio dynamic polarizability αinter(ω) in the reduced model (taking into account
that the low-energy interband excitations in the χDirac and χ2DEG need to be extracted)
fails to cause the disappearance of the AP. This means that the mechanism of the AP
disappearance is more complex and obviously the explanation requires more accurate
treatment of the spatial dispersivity of the interband dynamical response, beyond the 2D
model. Therefore, we shall again exploit the ab initio method, which incorporates the
effects of the local crystal field (the spatial dispersivity of the dynamical response in the
z direction), where the interband screening will be modified by changing the number of
valence bands participating in the interband screening.

Resolving the Mechanism of the AP Instability

To explore how the screening coming from the interband excitations beyond the Fermi
energy influences the AP, we omit one or more unoccupied bands from the calculation,
to determine exactly how each band influences the excitation spectra. As we can see
from the band structures shown in Figure 4a,b, in both systems, CsC8 and KC8, there is
one band crossing the Fermi level, i.e., for some wave-vectors that band is the highest
occupied valence band (HOVB), while for other wave-vectors that same band is the lowest
unoccupied band. Therefore, to avoid confusion, we use the expression lowest unoccupied
band for the next one, i.e., the first band above the Fermi level at the Γ point (magenta line
in Figure 4a,b), since that one remains above the Fermi level for all wave-vectors. That
particular band is the one that has to be omitted from the calculation to achieve a qualitative
difference with respect to the complete calculation (the one taking into account all bands).
However, the difference becomes much more significant if we omit more bands. To keep
track of the bands omitted from the calculation, we introduce the integer n which denotes
the number of omitted bands. For example, n = 0 denotes that no bands are omitted, n = 1
denotes that only the lowest unoccupied band is omitted, n = 2 denotes that the first two
unoccupied bands are omitted, etc.

Figure 6a,b show how the AP peak changes as we omit the unoccupied bands from the
calculation, for Q = 0.1 a.u. and for the CsC8 and KC8, respectively. The thick black lines
show the actual spectra, i.e., the ones obtained without omitting any bands (n = 0), and we
can see that for the selected wave-vector the AP in the KC8 is clearly present (though not
very strong), while in the CsC8 it does not exist. On the other hand, the red line shows that
the AP peak exists in both systems if we omit the LUCB from the calculation (n = 1). In the
CsC8, that peak is very weak but it exists, while in the KC8 it is, surprisingly, lower than
the actual (n = 0) peak. The other lines show that the intensity of the peak increases as we
omit more and more bands, in both systems, and it is the strongest when all the unoccupied
bands are omitted (n = ∞). The same can be seen in Figure 6c, which shows how the
intensity of the peak changes with n. It is important to point out that we also attempted
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to keep the lowest unoccupied band in the calculation while omitting any number of
the other unoccupied bands, above that one, and that did not lead to the occurrence of
the AP in the CsC8. This means that omitting the lowest unoccupied band (n = 1) is
crucial for the occurrence of the AP, while omitting the higher bands as well (n > 1) only
enhances its intensity. This leads to the conclusion that the mechanism responsible for the
disappearance of the AP in the CsC8 is the small difference in the ‘out-of-plane’ polarization
coming from the interband (interlayer) transitions between the graphene π band and the
lowest unoccupied alkali atom σ band (denoted by red arrows in Figure 4). This difference
is also manifested as the small peak at ω ≈ 0.25 eV in the CsC8 dynamical polarizability
αinter(ω) shown in Figure 2, which is missing for the KC8. However, even if we include this
difference in the dynamical polarizability in the reduced model, that still fails to reproduce
the disappearance of the AP. This is because the reduced model is inherently a 2D model,
i.e., it allows only the ‘in-plane’ polarization, while the π → σ transitions induce the
‘out-of-plane’ polarization.

0.6 0.8 1 ω [eV]
0

50

S(Q,ω)

n=0
n=1
n=2
n=3
n=4
n=5
n=10
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n=20
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0
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(a)CsC8
(b)KC8

(c)

AP
AP

Figure 6. AP peak for Q = 0.1a.u. when various numbers of the unoccupied bands are omitted from
the calculation (n) for the (a) CsC8 and (b) KC8. (c) Intensity of the AP peak as a function of n for the
CsC8 (black line) and KC8 (red line).

Another interesting point is that the difference in the intensities of the π → σ transi-
tions is obviously correlated with the strength of the hybridization of the π and σ bands
at the crossing point. We can see that the π and σ bands in the KC8 intersect without any
distortion while in the CsC8 we notice a significant avoided crossing. In other words, the π
and σ in the CsC8 hybridize significantly while this is not the case in the KC8. This leads to
one very unusual conclusion; the intensity of the AP, which was to date believed to be a
consequence of various long-range screening mechanisms, can be significantly affected by
the short-range electronic correlations occurring between the atomic orbitals (i.e., by the
chemical bonding between the alkaline atoms and graphene).



Int. J. Mol. Sci. 2022, 23, 4770 14 of 16

4. Conclusions

We analyzed the origin of AP instability in graphene doped by alkali metals on two
prototype systems, KC8 and CsC8. Even though the band structures of these systems
are almost identical, we proved that the hybridization between the C(π) and the K(σ)
or Cs(σ) bands at the crossing point causes a significant modification of the dynamic
polarizability in the perpendicular direction, which has a substantial influence on the low-
energy excitation spectra in these systems. We demonstrated that the net perpendicular
screening in the CsC8 causes the disappearance of the AP and significant weakening of
the DP. We also demonstrated that the electronic screening coming from the high-energy
interband transitions (beyond the HOVB–LUCB interval) significantly reduces the intensity
of the AP in both systems, KC8 and CsC8. This illustrates the importance of the nature of
the chemical bonding between the alkaline atoms and graphene, as well as the importance
of perpendicular dispersivity of the dynamical response in theoretical simulations of
technologically interesting low-energy plasmons in chemically doped graphenes.
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