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S1. Surface modification of silica particles 

 

Figure S1. Schematic illustration for the surface modification mechanism during silanization 

reaction.  

 

 

Table S1. The zeta potential values of silica particles before and after 3- aminopropyl-

trimethoxysilane (APS) silane modification 

[a] These values are acquired by zeta potential analyzer (Zetasizer Nano-ZS, Malvern) 
 

  

Sample 
Temperature Zeta potential Mobility Conductivity 

(°C) (mV) (μmcm/Vs) (mS/cm) 

Before 

modification 
25 ‒ 4.03 ‒ 0.08145 0.0107 

After 

modification 
25 + 6.17 0.1246 0.00178 
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S2. EDS elemental analysis data 

 

Figure S2. EDS spectrum of the PB@PCM 

 

Table S2. Elemental analysis results of the PB and PB@PCM 

 
 

Sample 
Atomic ratio [a] (%) 

C N O Fe Cl 

PB 37.93 32.91 13.18 15.55 0.24 

PB@PCM 41.15 35.26 13.31 9.6 0.13 
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S3. Pore characterizations  

 

Figure S3. Pore characterization of the PCM and the PB@PCM. The BET surface areas and 

nitrogen adsorption–desorption isotherms were measured at 78 K using BELSORP-mini II 

analysis program. 
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S4. Comparison of adsorption capacities 

 

Figure S4. Comparison of adsorption capacities of the PCM (black color), bulk PB (blue 

color) and PB@PCM (red color) for removal of 133Cs. Adsorption test were performed at pH 

7.0 and 20.0°C for 24 h, and initial 133Cs ion concentration is 100 ppm. 
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S5. A compilation of different investigations using various PB-based 

adsorbents  

Table S3. Adsorption capacities of various PB-based adsorbents for cesium ion removal from 

solution 

Adsorbent Adsorption parameters qmax (mg/g) Ref. 

COP-PAC-PB 

Adsorbent amount: 0.01-5 g. Initial 

concentration: 50 mL of 10 ppm Cs solution. 

Contact time: 24 h. Temperature: RT 

19.0 [1] 

PB/Fe3O4/GO 

Adsorbent amount: 50 mg. Initial 

concentration: 30 mL of 50-300 ppm Cs 

solution. Contact time: 24 h. Temperature: 

25
°
C. pH: 7.0 

55.6 [2] 

PB-coated MNP 

Adsorbent amount: 25 mg. Initial 

concentration: 4 mL of 50-2,780 ppm Cs 

solution. Contact time: 24 h.  

96.0 [3] 

PB/RGOF 

Adsorbent amount: 10 mg. Initial 

concentration: 4 mL of 1-500 ppm Cs 

solution. Contact time: 12 h.  

18.7 [4] 

PB-MCs 

Adsorbent amount: 30 mg. Initial 

concentration: 50 mL of 5-60 ppm Cs 

solution. Contact time: 4 h. Temperature: 

20
°
C. pH: 5.5 

4.8 [5] 

PB/PAN 

Initial concentration: 50 mL of 2-100 ppm Cs 

solution. Contact time: 24 h. Temperature: 

25
°
C. pH: 7.0 

93.4 [6] 

PB@PCM 

Adsorbent amount: 100 mg. Initial 

concentration: 100 mL of 100 ppm Cs 

solution. Contact time: 24 h. Temperature: 

20
°
C. pH: 7.0 

98.5 This work 
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S6. Atomic properties of radionuclides  

Table S4. Atomic properties of various radioactive materials 

[a] Several elements were selected as representative radionuclides. 

  

Element[a] Electro-
negativity 

Ionization energy (kJ/mol) Atomic 
radious 

Covalent 
radius 

1st 2nd 3rd (pm) (pm) 

Cesium (Cs) 0.79 375.7 2234.3 3400.0 265 244 ± 11 

Rubidium (Rb) 0.82 403.0 2632.1 3859.4 248 220 ± 9 

Barium (Ba) 0.89 502.9 965.2 3600.0 222 215 ± 11 

Strontium (Sr) 0.95 549.5 1064.2 4138.0 215 195 ± 10 

Cerium (Ce) 1.12 534.4 1050.0 1949.0 181 204 ± 9 

Thallium (Tl) 1.62 589.4 1971.0 2878.0 170 145 ± 7 
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