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Abstract: It is generally recognized that the root uptake capacity of grafted plants strongly depends on
the rootstocks’ well-developed root system. However, we found that grafted plants showed different
nitrate uptake capacities when different varieties of oriental melon scion were grafted onto the same
squash rootstock, suggesting that the scion regulated the nitrate uptake capacity of the rootstock root.
In this study, we estimated the nitrate uptake capacity of grafted plants with the different oriental
melon varieties’ seedlings grafted onto the same squash rootstocks. The results indicated a significant
difference in the nitrate uptake rate and activity of two heterologous grafting plants. We also showed
a significant difference in CmoNRT2.1 expression in the roots of two grafting combinations and
verified the positive regulation of nitrate uptake by CmoNRT2.1 expression. In addition, the two
varieties of oriental melon scion had highly significant differences in CmHY5 expression, which was
transported to the rootstock and positively induced CmoHY5-1 and CmoHY5-2 expression in the
rootstock roots. Meanwhile, CmHY5 could positively regulate CmoNRT2.1 expression in the rootstock
roots. Furthermore, CmoHY5-1 and CmoHY5-2 also positively regulated CmoNRT2.1 expression,
respectively, and CmoHY5-1 dominated the positive regulation of CmoNRT2.1, while CmHY5 could
interact with CmoHY5-1 and CmoHY5-2, respectively, to jointly regulate CmoNRT2.1 expression. The
oriental melon scion regulated the nitrate uptake capacity of the melon/squash grafting plant roots,
and the higher expression of CmHY5 in the oriental melon scion leaves, the more substantial the
nitrate uptake capacity of squash rootstock roots.

Keywords: rootstock-scion interaction; graft; mobile mRNA; ELONGATED HYPOCOTYL 5 (HY5);
nitrate transporter; nitrate uptake

1. Introduction

The grafting technique is widely used in plant production to overcome continuous
cropping obstacles and soil-borne diseases, increase crop yield, and improve resistance
to adversity [1–6]. In addition, grafting could effectively improve the plant’s ability to
absorb water and nutrients. Studies have shown that grafted tomatoes, apples, and other
plants have a more robust nutrient absorption capacity than own-root plants [1,7–10].
Using squash or gourd as the rootstock, grafting watermelon plants had a more substantial
absorption capacity of nitrogen, potassium, calcium, magnesium, iron, and manganese [11].
However, the physiological and molecular mechanism of grafts regulating plant growth,
development, and morphogenesis becomes more complicated due to the genomes of two
or more species in grafted plants.
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The various small molecules (small RNA, messenger RNA) involved in the interaction
of the genome of grafted plants [12–21] caused a large number of new gene modifications
and expression changes in rootstocks and scions, as well as changes in the phenotype
and function of grafted plants [22,23]. Small RNAs such as miRNA and siRNA, the
long-distance messengers, move systematically and play an essential role in chromatin
modification, mRNA stability, and the downstream regulation of translation [24]. miRNA
and siRNA could move from cell to cell through vasculature [16], induce gene silencing,
inhibit gene expression [25–27], and participate in epigenetic modifications in plants [28,29].
mRNAs’ movement in phloem regulated the plant growth and development and defense
responses. However, not all mobile mRNAs performed their functions. The mRNAs as
regulators of scion–rootstock interaction could be translated into proteins at the transport
location. Moreover, mRNAs transported only occurred in specific transcripts [30]. Many
mobile mRNAs have been identified using RNA-Seq in multiple species. mRNAs might be
transported from stems and leaves to roots and in reverse [31]. The 138 mobile mRNAs
were identified in the heterograft combination of arabidopsis and tobacco [32], and a
large number of mobile mRNAs were also detected in grafted grapes by transcriptome
detection [33]. In the homograft arabidopsis, proteins in the cells associated with the new
buds were transported to the root and participated in the regulation of root growth [34]. It
was found that transcription factor SlCyp1 could be transported from scion to rootstock in
grafted tomato plants and regulate the root–shoot ratio [35].

ELONGATED HYPOCOTYL5 (HY5) is a long-distance transport transcription factor
that regulates the expression of genes containing cis-acting elements G-BOX or Z-BOX and
miRNAs [36–40]. Notably, the long-distance transport transcription factor HY5 is essential
in regulating plant nutrient uptake and accumulation. HY5 could regulate the expression
of sulfite reductase genes, which play an essential role in plant sulfate assimilation [41].
HY5 also interacted with copper signal transcription factor SPL7 and affected copper signal
allocation by regulating miRNA408 expression [42]. HY5 was also involved in regulating
the expression of nitrite reductase genes and ammonium transporter protein genes to affect
nitrogen uptake and utilization in plants [43]. HY5 affected nitrate uptake in plants by
regulating the expression of nitrate transporter NRT2.1 [44]. Moreover, in the homograft
experiments, HY5 could transport long distances from the scion to the root system, playing
an essential role in scion–rootstock interaction [44]. However, how long-distance transcrip-
tion factor HY5 regulates the nitrate uptake capacity of the heterograft plant, such as the
grafted plant of melon scion grafted onto the squash rootstock, is even unclear.

In the protected cultivation of melons and watermelon, the squash and pumpkin are
often taken as the rootstock. Grafted melons and watermelons not only improve disease
and cold resistance but also enhance the absorption capacity of their root system [2,45].
The increased root absorption capacity of grafted melon and watermelon plants is often
thought to be due to the rootstock’s well-developed and vigorous roots. However, our
team recently found a significant difference in the root absorption capacity of different
melon scions grafted onto the same squash rootstocks, but the underlying mechanism
has not yet been reported. Therefore, it is theoretically worth clarifying the underlying
molecular mechanism of the differences in nitrate uptake of grafted melon plants and
further optimizing the selection of rootstocks and scions for grafting cultivation of melon
in practice.

2. Results
2.1. Melon Scions Affect CmoNRT2.1 Expression of Squash Rootstocks to Modulate the Nitrate
Uptake Capacity of Grafted Plants

We grafted two different scions of oriental melon (JS-1408 and JS-1429) onto the same
squash rootstock (ZM-1507) and obtained two heterologous grafting plants (JS-1408/ZM-1507
and JS-1429/ZM-1507). When the grafted seedlings were grown up with five leaves,
we used the 15N stable isotope tracer technique to measure and analyze the difference
in the nitrate uptake rate and activity between JS-1408/ZM-1507 and JS-1429/ZM-1507.
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The nitrate uptake rate and activity of JS-1408/ZM1507 were 1.57 and 1.19 times that of
JS-1429/ZM1507, respectively (Figure 1A,B). The results showed a significant difference
(p < 0.001), so we suggested that the significant difference in the nitrate uptake capacity of
grafted seedlings was due to the different varieties of oriental melon scions.
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rootstocks during the five leaves growth stage. CmoNRT2.1 transiently silenced plants: TRV-
CmoNRT2.1; Control plants: TRV-CK. Values are means ± SD, n = 3 (biological replicates). Asterisks 
indicate statistically significant differences (*** p < 0.001, Student’s t-test). (A,B). Nitrate uptake effi-
ciency and nitrate uptake activity by 15N stable isotope tracing assay. (C). Quantitative real-time 
(qRT) PCR analysis of CmoNRT2.1 expression. (D). Analysis of the silencing efficiency of transient 
silenced CmoNRT2.1 in the grafted plants. (E,F). Analysis of nitrate uptake rate and uptake activity 
in the grafted plants’ roots system of transient silenced CmoNRT2.1. 
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Figure 1. Analysis of differences in nitrate uptake capacity and CmoNRT2.1 expression of grafted
melon plants with two different varieties of oriental melon scions grafted onto the same squash root-
stocks during the five leaves growth stage. CmoNRT2.1 transiently silenced plants: TRV-CmoNRT2.1;
Control plants: TRV-CK. Values are means ± SD, n = 3 (biological replicates). Asterisks indicate
statistically significant differences (*** p < 0.001, Student’s t-test). (A,B). Nitrate uptake efficiency
and nitrate uptake activity by 15N stable isotope tracing assay. (C). Quantitative real-time (qRT)
PCR analysis of CmoNRT2.1 expression. (D). Analysis of the silencing efficiency of transient silenced
CmoNRT2.1 in the grafted plants. (E,F). Analysis of nitrate uptake rate and uptake activity in the
grafted plants’ roots system of transient silenced CmoNRT2.1.

The nitrate transporter gene (NRT) mainly regulates nitrogen uptake and utilization in
plants. The molecular mechanism of nitrate uptake in arabidopsis, rice, tomato, barley, and
other crops has been well studied. Plants absorb nitrate from the soil through high-affinity
and low-affinity systems, and NRT2.1, a member of the nitrate transporter gene families in
the high-affinity absorption system, plays an essential role in the absorption of nitrate by
roots. Our studies found a significant difference (p < 0.01) by measuring the CmoNRT2.1
expression level in rootstock roots of JS-1408/ZM-1507 and JS-1429/ZM-1507 (Figure 1C).
In addition, JS-1408/ZM-1507, with a higher nitrate uptake capacity, also had a higher
CmoNRT2.1 expression level than JS-1408/ZM-1507. Therefore, we hypothesized that the
oriental melon scion regulates the expression of CmoNRT2.1 in the rootstock to control
the nitrate uptake capacity of the grafting seedlings. In order to intensely figure it out,
we performed a transient silencing assay of CmoNRT2.1 in the grafted plant roots and
measured the nitrate uptake rate and activity using the 15N stable isotope tracer technique.
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The results of the silencing efficiency assay showed that the CmoNRT2.1 expression of
the transient silenced plants was significantly lower than that of the control (Figure 1D).
Moreover, the transient silenced plants’ nitrate uptake rate (Figure 1E) and uptake activity
(Figure 1F) were significantly lower than those of the control. The results indicated that
the oriental melon scion could control the nitrate capacity of the squash rootstocks by
regulating CmoNRT2.1 expression in the grafted plants.

2.2. Melon Scion CmHY5 mRNA Undergoes Long-Distance Transport to the Rootstock and
Modulates the Nitrate Uptake by Regulating CmoNRT2.1 Expression of Squash Rootstock Roots

Plant roots’ nitrate uptake capacity is closely related to nitric acid transporters (NRTs)
and is also affected by light. It has been found that HY5, a long-distance transcription factor,
plays an essential regulatory role in plant nitrogen absorption and assimilation [44,46].
HY5 is a bZIP transcription factor that can sense light signals and transmit light signals to
photoreceptors, thus regulating plant growth and development [47,48]. In order to clarify
whether the different oriental melon scions had a significant effect on the nitrate uptake
capacity of grafted plants, we compared the expression level of CmHY5 in the leaves of
own-root grafted seedlings (JS-1408 and JS-1429) using the TaqMan technique and found
that the expression level of CmHY5 in the leaves of JS-1408 was more than two times that of
JS-1429 (Figure 2A). Then, we determined the expression level in the scion leaves, scion
stems, rootstock stems, and rootstock roots of two kinds of grafted plants (JS-1429/ZM-1507
and JS-1408/ZM-1507). The results showed that CmHY5 mRNA could be transported over
long distances into rootstocks, and the expression level of CmHY5 in four different parts of
JS-1408/ZM-1507 was significantly higher than that of JS-1429/ZM-1507 (Figure 2B–E).

Interestingly, the grafted plants, JS-1408/ZM-1507, with high CmoNRT2.1 expression
levels and a strong nitrate uptake capacity, also had high CmHY5 expression levels. To
examine whether CmHY5 mRNA was translated and transported into the rootstocks,
transient expressions of CmHY5-GFP in melon scion leaves were conducted. We found
that the GFP signal could be detected in the phloem of the scion, rootstock stems, and
rootstock roots after 72 h (Figure 2F,G). These results suggested that CmHY5 mRNA in
melon scion transported into the squash rootstocks might significantly promote nitrate
uptake by up-regulating CmoNRT2.1 expression in grafted plants.

In order to further explore the relationship between transcription factor CmHY5 and
the nitrate uptake capacity of grafted melon plants, we used the VIGS technique to transient
silence CmHY5 in melon scions and measured the transient silencing efficiency (Figure 2H).
The results showed that the CmHY5 expression level was significantly reduced in grafted
plants’ rootstock stems and roots (Figure 2I,J), and the relative expression level of CmoNRT2.1,
the nitrate uptake rate, and the nitrate uptake activity as well (Figure 2K–M). Therefore, it
was evidence that transcription factor CmHY5 was transported into the rootstock from the
scions to regulate the nitrate uptake of grafted melon plants.

However, the underlying molecular mechanism of the long-distance transcription
factor CmHY5 regulating nitrate uptake in the oriental melon scion grafted onto the squash
rootstock remains unclear. We analyzed the promoter of CmoNRT2.1 and found it contained
the two cis-acting elements G-box that CmHY5 could bind (Figure 2N). Then, we conducted
a yeast single hybridization test between CmHY5 and the CmoNRT2.1 promoter. The results
showed that CmHY5 could bind to the promoter of CmoNRT2.1 (Figure 2O). Since the
two binding elements are the same, we designed the hot probe, cold competitive probe,
and mutation cold competitive probe using the G-box element and carried out in vitro
EMSA, further proving that CmHY5 could bind to the G-box element on the promoter
of CmoNRT2.1 (Figure 2P). We also performed a GUS reporter gene test in tobacco, and
the infected leaves were punched and stained (Figure 2Q). Meanwhile, the activity of the
GUS protein was also measured (Figure 2R), indicating that CmHY5 could be bound to the
promoter of CmoNRT2.1 and positively regulate its expression (p < 0.05). We speculated
that the transcription factor CmHY5 might positively regulate the significantly increased
expression of CmoNRT2.1 through the other molecular mechanisms.
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Figure 2. CmHY5 in the oriental melon scion positively modulates the nitrate uptake of squash
rootstock roots by regulating CmoNRT2.1 expression. Values are means ± SD, n = 3 (biological
replicates). Asterisks indicate statistically significant differences (*** p < 0.001, ** p < 0.01, * p < 0.05,
Student’s t-test). (A). TaqMan analysis of CmHY5 expression in the leaves of two different own-grafted
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melon plants. (B). TaqMan analysis of CmHY5 expression in the scion leaves of grafted plants with
two different varieties of oriental melon scions grafted onto the same squash rootstock. (C). TaqMan
analysis of CmHY5 expression in the scion stems of grafted plants with two different varieties
of oriental melon scions grafted onto the same squash rootstock. (D). TaqMan analysis of CmHY5
expression in the rootstock stems of grafted plants with two different varieties of oriental melon scions
grafted onto the same squash rootstock. (E). TaqMan analysis of CmHY5 expression in the rootstock
roots of grafted plants with two different varieties of oriental melon scions grafted onto the same
squash rootstock. (F). Analysis of GFP-CmHY5 transport in the grafted plants. (G). Analysis of GFP-
Control transport in the grafted plants. (H). qRT-PCR analysis of the relative expression of CmHY5 in
the oriental melon scion leaves of grafted plants with transient silenced CmHY5. (I). TaqMan analysis
of CmHY5 expression in the squash rootstock stems of grafted plants with transient silenced CmHY5.
(J). TaqMan analysis for detecting CmHY5 expression in the squash rootstock roots of grafted plants
with transient silenced CmHY5. (K). qRT-PCR analysis of the relative expression of CmoNRT2.1 in
the squash rootstocks of grafted plants with transient silenced CmHY5. (L,M). The nitrogen uptake
rate and uptake activity assay of grafted plants with transient silenced CmHY5. (N). Analysis of the
cis-acting element of the CmoNRT2.1 promoter. (O). Yeast one-hybrid assay to detect CmHY5 binding
to the CmoNRT2.1 promoter. (P). EMSA assay to detect CmHY5 binding to the CmoNRT2.1 promoter.
(Q,R). GUS staining and GUS activity assay in N. benthamiana leaves after transient co-expression of
35S::CmHY5 with proCmoNRT2.1::GUS and co-expression with pBI101:GUS as a control.

2.3. CmoHY5 in Rootstocks Modulates the Nitrate Uptake by Regulating CmoNRT2.1 Expression
of Squash Rootstock Roots

The above experiments demonstrated that CmHY5 could bind to the CmoNRT2.1
promoter and positively regulate its expression. However, CmoHY5 was present in squash
rootstocks in the heterograft plants of oriental melon scion grafted onto squash rootstock,
so we suggest that CmoHY5 of squash rootstocks might affect the CmoNRT2.1 expression,
and we were uncertain of CmoHY5 like CmHY5 to long-distance transport. Therefore, we
measured the expression of CmoHY5-1 and CmoHY5-2 in different parts of JS-1429/ZM-1507
and JS-1408/ZM-1507 (scion leaf, scion stem, rootstock stem, and rootstock root). The
results indicated that CmoHY5-1 and CmoHY5-2 expressions were not detected in the
melon scion leaves and stems, while CmoHY5-1 and CmoHY5-2 expressions could be
detected in the squash rootstock stems and roots of JS-1429/ZM-1507 and JS-1408/ZM-1507
(Figure 3A,B). Remarkably, the expression of CmoHY5-1 and CmoHY5-2 in the stems and
roots of JS-1408/ZM-1507 was significantly higher than those of JS-1429/ZM-1507. In
addition, the expression of CmoHY5-1 was significantly higher than that of CmoHY5-2
in JS-1429/ZM-1507 and JS-1408/ZM-1507. According to the nitrate uptake capacity of
JS-1429/ZM-1507 and JS-1408/ZM-1507 (Figure 1A,B), we concluded that the expression of
CmoHY5-1 and CmoHY5-2 in the squash rootstocks was also positively correlated with the
nitrate uptake rate and uptake activity of the grafted melon plant.

Therefore, we speculate that CmoHY5-1 and CmoHY5-2 also regulated the expression
of CmoNRT2.1. Then, the yeast one-hybrid assay demonstrated that both CmoHY5-1
and CmoHY5-2 could bind to the promoter of CmoNRT2.1 (Figure 3C). The EMSA assay
also showed that CmoHY5-1 and CmoHY5-2 could bind to the G-BOX on the CmoNRT2.1
promoter (Figure 3D,E). In addition, we also performed the tobacco GUS reporter gene assay
and stained the infested leaves by punching, and GUS protein activity was measured. The
results indicated that both CmoHY5-1 and CmoHY5-2 positively regulated the expression
of CmoNRT2.1. However, the promoter activity of CmoHY5-2 on CmoNRT2.1 was weak
compared to the promoter activity of CmoHY5-1 on CmoNRT2.1(Figure 3F–I). Thus, during
this process, CmoHY5-1 has a significant regulatory role in the expression of CmoNRT2.1.
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with the higher expression of CmHY5 owned the higher expression of CmoHY5-1 and 
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Figure 3. CmoHY5 regulates the expression of CmoNRT2.1 in the squash rootstock roots. Values
are means ± SD, n = 3 (biological replicates). Asterisks indicate statistically significant differences
(*** p < 0.001, ** p < 0.01, Student’s t-test). (A). TaqMan analysis of CmoHY5 expression in the squash
rootstock stems of grafted plants with two different varieties of oriental melon scions grafted onto the
same squash rootstock. (B). TaqMan analysis of CmoHY5 expression in the rootstock roots of grafted
plants with two different varieties of oriental melon scions grafted onto the same squash rootstock.
(C). Yeast one-hybrid assay detecting CmoHY5 binding to the CmoNRT2.1 promoter. (D). EMSA
assay to detect CmoHY5-1 binding to the CmoNRT2.1 promoter. (E). EMSA assay to detect CmoHY5-2
binding to the CmoNRT2.1 promoter. (F,G). GUS staining and GUS activity assay in N. benthamiana
leaves after transient co-expression of 35S::CmoHY5-1 with proCmoNRT2.1::GUS and co-expression
with pBI101:GUS as a control. (H,I). GUS staining and GUS activity assay in N. benthamiana leaves
after transient co-expression of 35S::CmoHY5-2 with proCmoNRT2.1::GUS and co-expression with
pBI101:GUS as a control.

2.4. CmHY5 in Melon Scion Positively Regulates CmoHY5 Expression in Squash Rootstock

Given the experimental results, CmHY5, CmoHY5-1, and CmoHY5-2 all positively
regulated the expression of CmoNRT2.1. In addition, there were also highly significant
differences in the expression of CmoHY5-1 and CmoHY5-2 in rootstock stems and the roots
of the grafted plants with two different melon scions grafted onto one type of squash
rootstock (JS-1429/ZM-1507, JS-1408/ZM-1507) (Figure 3A,B). Furthermore, the grafted
plants with the higher expression of CmHY5 owned the higher expression of CmoHY5-1
and CmoHY5-2. However, the direct promotion of CmoNRT2.1 expression by CmHY5
was insignificant, so we speculated that CmoHY5 mediated the regulation of the squash
rootstock CmoNRT2.1 by the melon scion CmHY5. To confirm the relationship between
CmHY5 and CmoHY5, we first measured the expression of CmoHY5-1 and CmoHY5-2 in
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the rootstock stems and roots of grafted melon plants with transient silenced CmHY5 in
melon scions and found that grafted plants with a lower expression of CmHY5 had a lower
expression of CmoHY5-1 and CmoHY5-2 in the rootstock stems and roots (Figure 4A–D).
Moreover, we analyzed the promoters of CmoHY5-1 and CmoHY5-2 and found that they
both contained the CmHY5 binding element G-BOX in their promoters (Figure 4E). A yeast
one-hybrid assay was performed using CmHY5 with the promoters of CmoHY5-1 and
CmoHY5-2, respectively. The results showed that CmHY5 could bind to the promoters
of CmoHY5-1 and CmoHY5-2, respectively (Figure 4F). An EMSA assay was also carried
out with these two components, and the results showed that CmHY5 could bind to both
components (Figure 4G,H). In addition, we carried out a tobacco GUS reporter gene assay,
in which GUS staining and GUS protein activity were measured on infested tobacco leaves.
The results demonstrated that CmHY5 positively regulated the expression of CmoHY5-1 and
CmoHY5-2, and the expression of CmoHY5-1 was more effectively promoted (Figure 4I–L).
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squash rootstock stems of grafted melon plants with transient silenced CmHY5 in the oriental melon
scions. (C). TaqMan analysis of CmoHY5-1 expression in the squash rootstock roots of grafted
oriental melon plants with transient silenced CmHY5 in the oriental melon scions. (D). TaqMan
analysis of CmoHY5-2 expression in the squash rootstock roots of grafted plants with transient
silenced CmHY5 in the oriental melon scions. (E). Analysis of the promoter cis-acting elements of
CmoHY5-1 and CmoHY5-2. (F). Yeast one-hybrid assay to detect CmHY5 binding to the promoters
of CmoHY5-1 and CmoHY5-2, respectively. (G). EMSA assay to detect promoter binding of CmHY5
to CmoHY5-1. (H). EMSA assay to detect promoter binding of CmHY5 to CmoHY5-2. (I,J). GUS
staining and GUS activity assay in N. benthamiana leaves after transient co-expression of 35S::CmHY5
with proCmoHY5-1::GUS and co-expression with pBI101:GUS as a control. (K,L). GUS staining
and GUS activity assay in N. benthamiana leaves after transient co-expression of 35S::CmHY5 with
proCmoHY5-2::GUS and co-expression with pBI101:GUS as a control.

2.5. CmHY5 Protein of Melon Scion Interacts with CmoHY5 Protein of Squash Rootstock

Previous studies have shown that transcription factor HY5 not only forms dimers
on its own to function but also binds to its promoter to accelerate its expression under
light [49,50]. Therefore, we suggested that the CmHY5 protein of melon scion might interact
with the CmoHY5 protein of squash rootstock. On the one hand, the yeast two-hybrid assay
showed that CmHY5 protein could interact with CmoHY5-1 and CmoHY5-2, respectively
(Figure 5A). We carried out further fluorophore complementation assays and bimolecular
fluorescence complementation assays, which also showed the same results (Figure 5B,C).
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complementation assay analysis of CmHY5 interacting with CmoHY5-1 and CmoHY5-2 proteins,
respectively. (C). Bimolecular fluorescence complementation assay analysis of CmHY5 interacting
with CmoHY5-1 and CmoHY5-2 proteins, respectively.

3. Discussion

Grafting uses the rootstock root to replace the scion root, thus improving the grafting
plants’ resistance and nutrient uptake. Many studies have shown that grafting could
improve the uptake of mineral nutrition such as nitrogen, potassium, calcium, magnesium,
iron, and manganese [7,9–11,45,51,52]. In the grafted plant, exchanging information be-
tween rootstock and scion is a mutual process. It has been shown that the rootstock controls
the accumulation and distribution of salt ions in the scion [53,54], and scion growth and
yield are also regulated by the rootstock [55]. In addition, the rootstock affects the biomass
of the scion, while the scion also affects the biomass of the rootstock [56–58]. However,
our studies found that two grafting combinations of the two different varieties of oriental
melon scion grafted onto the same squash rootstock showed highly significant differences
in nitrate uptake rate and activity (Figure 1A,B). In further investigation, we found that
CmoNRT2.1 regulated the nitrate uptake capacity of squash rootstock roots and the higher
the expression of CmoNRT2.1, the better the nitrate uptake capacity of the grafted plants
(Figure 1C–F). We therefore suggested that the oriental melon scion would have a regula-
tory effect on the nitrate uptake of the squash rootstock, a process involving long-distance
transport and regulation of signaling substances in the grafted plant.

The regulation of scion to rootstock in grafted plants is regulated by various long-
distance transport signals such as hormones, RNA, DNA, and proteins [24,59–63]. Studies
in apples have shown that more growth hormone is transported downwards when multi-
branched apple scions are grafted on the same rootstock compared to controls, resulting in
higher growth hormone and cytokinin levels in the roots and suppressed root growth [64].
In addition, gibberellins and cytokinins are mobile and transported in grafted plants and
are involved in regulating graft healing and plant growth and development [65,66]. Besides
the plant hormones, long-distance transport of RNA, DNA, and proteins occurs in plants,
with relatively few processes involving proteins and DNA compared to RNA, and various
studies have shown that proteins can accompany mRNA transport [59,67,68]. It can also be
long-distance transported to the rootstock in grafted tomato plants. SlCyp1 was transported
from the scion to the rootstock and involved in regulating the root-to-shoot ratio [35]. In the
arabidopsis homologous grafting combination, proteins from the companion cells of the
new shoot can be transported to the root and regulate root growth [34]. DNA interchange
provides the basis for graft-induced genetic variation, and grafting provides a channel
for forming asexual species [69,70]. In the grafting complex, RNA has a critical role in
substances that are transported over long distances, including various types of small RNAs
as well as mRNAs [61,62,71–73]. It has been shown that mRNA transport is involved in
stress signaling and response and fruit quality regulation [74,75], and mobile mRNA CAX3
regulates iron and zinc uptake [76]. It has also been shown that the transport of non-cell
autonomous mRNAs is regulated by specific RNA mobile elements and is also related
to the structure of the RNA [30]. Therefore, studying the role of mRNAs in rootstock is
essential for the future regulation of growth and development, morphogenesis, and fruit
quality in grafted plants. In this study, we examined CmHY5 mRNA in all tissues (oriental
melon scion leaves and stems, squash rootstock stems and roots) and found that RNA was
detected in all tissues, but the mRNA content of CmHY5 was lower in the rootstock stems
and roots compared to the scion leaves and stems, especially in the rootstock root system,
which was 58–89 times lower compared to the scion leaves. The results indicated that
CmHY5 mRNA could be transported as mRNA (Figure 2A–E). In addition, we attached
CmHY5 to GFP fluorescence and then infiltrated the leaves of oriental melon scion in grafted
plants (Figure 2F,G). After 72 h, GFP signals were detected in the oriental melon scion
stem, squash rootstock stem, and root, further indicating that CmHY5 of the oriental melon
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scion could be transported to the squash rootstock, either in the form of protein or possibly
translated after transport to function. Several studies have been conducted on HY5 as
a signaling substance for long-distance transport. HY5 can function through branches
sensing FR light to the root system to regulate root growth [77] and transported from leaves
to roots to activate the expression of FER transcription factors and regulate iron uptake
in plants [78]. In addition, HY5 can be transported from the silique to the root system to
regulate lateral root growth and orientation [77,79–81]. We also measured the CmoHY5
expression in various tissues and showed that no expression of CmoHY5-1 and CmoHY5-2
was detected in the oriental melon scions and that expression was higher in both the stems
and roots of the squash rootstock, indicating that CmoHY5 produced by the rootstock is
not transported upwards. Furthermore, it has been shown that HY5 can form dimers on
its own to function and bind its promoter to promote its expression in the light [49,50].
Therefore, we hypothesized that CmHY5 produced by the scion would promote CmoHY5
expression in the rootstock, so we next demonstrated that CmHY5 produced by the oriental
melon scion would indeed positively regulate both CmoHY5-1 and CmoHY5-2 in the squash
rootstock using a Y1H assay, an EMSA assay, a tobacco GUS reporter gene assay, and a
VIGS transient silencing assay (Figure 4). Among them, the promotion of CmoHY5-1 was
highly significant, whereas the promotion of CmoHY5-2 was insignificant, and our results
demonstrated that inter-binding of HY5 could also occur in different species (Figure 5).
Moreover, they all positively regulated the CmoNRT2.1 expression to modulate the nitrate
uptake capacity of the grafted plants (Figures 2 and 3).

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Oriental melon ‘JS-1408’ and ‘JS-1429’ cultivars (Cucumis melo var. makuwa Makino)
were, respectively, grafted onto squash, ShengZhen No.1 cultivar (C. moschata), with the one-
cotyledon graft method [82]. Grafted seedlings were transplanted into the nutritional bowl
(12 cm × 12 cm) in the glasshouse at Shenyang Agriculture University, Liaoning, China
(41◦49′ N 123◦32′ E). When the grafted plants, JS-1408/ZM-1507 and JS-1429/ZM-1507,
grow to five leaves, we took the samples for subsequent qRT-PCR analysis, TaqMan analysis,
and 15N stable isotope tracer test.

4.2. 15N Stable Isotope Tracing Assay

When the grafted seedlings grew to five leaves and one heart, each grafted seedling
was fed with 20 mL (5 mM) K15NO3 solution (abundance 10.16%), and the grafted seedlings
were divided into aerial parts from the grafting interface until the 48th hour of tracing.
Take samples from the underground part, fix the green at 105 ◦C for 30 min, bake in an
oven at 70 ◦C for 3–5 days to entirely remove moisture, then grind the sample and pass it
through a 100-mesh sieve: ratiometric mass spectrometer (Iso Prime100 Isotope Ratio Mass
Spectrometer, Germany) determination, three biological replicates. The δ15N in the samples
was determined by the elementary analysis–isotope ratio mass spectrometers (EA-IRMS)
method [83]. The calculation formula for 15N absorption rate and absorption activity is
as follows:

15N absorption rate = (SN + RN) × (15N feeding amount)−1 × 100%;
15N absorption activity = (SN + RN) × (DWR × h)−1.
(Note: SN, 15N content in rootstock roots; RN, 15N content in scion shoots; DWR, dry

rootstock root weight; h, hours.)

4.3. RNA Extraction and Reverse Transcription

TRIzol RNA isolation reagent (Kangwei Century, Taizhou, China) extracted scion leaves
and stems and rootstock stems and roots of two grafting combinations (JS-1408/ZM-1507
and JS-1429/ZM-1507), as well as transiently silenced plants and silenced control plants
total RNA from roots. The cDNA was obtained using a reverse transcription kit (TaKaRa,
Beijing, China).
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4.4. qRT-PCR

qRT-PCR was used to detect the silencing efficiency of the transient silencing test and
to determine the relative expression of CmoNRT2.1 in squash rootstock roots. qRT-PCR
was performed with a PCR machine (Bio-Rad, CFX96) using the Pro Taq HS SYBR Green
premix qPCR kit (AG) in a 20 µL reaction system (2× SYBR Green Pro Taq HS Premix 10 µL,
cDNA 2 µL, forward and reverse primer 0.4 µL each, ddH2O 7.2µL) was used for qRT-PCR
analysis, with thermal cycling as follows: 95 ◦C for 2 min, 40 cycles for 10 s at 95 ◦C, and
30 s at 60 ◦C.

4.5. TaqMan

TaqMan was used to detect the expression levels of CmHY5, CmoHY5-1, and CmoHY5-2
in various tissues. It was performed with a PCR machine (Bio-Rad, CFX96) using SuperReal
fluorescence quantitative premix reagent (probe method) kit (TIANGEN) in a 20 µL reaction
system (2× Super Real Premix (Probe) 10 µL, cDNA 2 µL, forward and reverse 0.6 µL each,
primer 0.4 µL, ddH2O 6.4 µL)) for TaqMan analysis, with thermal cycling as follows: 95 ◦C
for 15 min, 40 cycles for 3 s at 95 ◦C, and 25 s at 60 ◦C. The probe was modified by 5’-FAM.
The Ct values obtained by the analysis were substituted into the standard curves of the
three genes to calculate the absolute expression levels. The standard curves were made as
follows: the mRNA sequences of CmHY5, CmoHY5-1, and CmoHY5-2 were connected to the
TA cloning vector, and the recombinant plasmid was amplified by 10-fold gradient dilution.
The diluted plasmid was used as a standard using the above system and method. TaqMan
assay was performed, and a standard curve was drawn based on the natural logarithm of
the Ct values and the plasmid concentrations. The standard curves of CmHY5, CmoHY5-1,
and CmoHY5-2 were prepared, respectively.

4.6. Virus-Induced Gene Silencing (VIGS)

The transient silencing test mediated by tobacco ringspot virus was used [84], the
coding sequence (CDS) sequence of CmHY5 (477 bp) was inserted into the SnaBI restriction
site of the pTRSV2 RNA2S vector. Then, the pTRSV2-CmHY5, P19, pTRSV RNA1, and
pTRSV2-CuPDS were transformed into Agrobacterium-competent EHA105. P19, pTRSV
RNA1, and pTRSV2-CmHY5were suspended to OD600 = 1.0 and injected into N. benthamiana
leaves at a ratio of 1:1:1. pTRSV RNA1+ pTRSV2-CuPDS+P19 was used as positive disease
control, and pTRSV RNA1+ pTRSV2+P19 was used as a silent control. After the diseased
tobacco leaves were collected, the diseased leaves were collected for friction inoculation
of fully healed thin-skinned muskmelon/Chinese pumpkin grafted scion leaves. Ten to
fifteen days for sampling and 15N stable isotope tracer assay.

4.7. Subcellular Localization of CmHY5, CmoHY5-1, CmoHY5-2, and CmoNRT2.1

Full-length CDs of CmHY5, CmoHY5-1, CmoHY5-2, and CmoNRT2.1 were cloned
into the 35S::GFP vector. Subsequently, the recombinant vectors were transformed into
Agrobacterium-competent EHA105 and injected into N. benthamiana leaves. The leaves
were stained with DAPI for 5 min to clarify CmHY5, CmoHY5-1, and CmoHY5-2 subcellular
localization. As previously described [85], confocal imaging was performed with an FV3000
microscope (Olympus).

4.8. Y1H Assay

Full-length CDs of CmHY5, CmoHY5-1, and CmoHY5-2 were cloned into the pGADT7
vector to generate prey. The full-length promoter of CmoNRT2.1 and four promoter frag-
ments, Pro1 (291 bp with two G-box), Pro2 (228 bp with a G-box), Pro3 (217 bp with a
G-box), and Pro4 (111 bp with a G-box) of CmoHY5-1 and CmoHY5-2 were amplified and
cloned into the pAbAi vector, producing five baits. All bait vectors require linearization
and purification before transforming yeast Y1H-Gold. The bait vector was transformed into
yeast Y1H-Gold separately and plated on SD/-Ura +50/100/150/200/300 ng/mL Aureoba-
sidin A (AbA) medium and incubated at 30 ◦C for 3 days to screen AbA concentration. The
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prey vector pGADT7-CmHY5 was transformed into yeast with baits vector pAbAi-Pro1,
pAbAi-Pro2, pAbAi-Pro3, and pAbAi-Pro4, separately. The prey vectors pGADT7-CmHY5,
pGADT7-CmoHY5-1, and pGADT7-CmoHY5-2 were transformed into yeast with baits
vector pAbAi-ProCmoNRT2.1, separately, along with positive (pGAD-p53+p53-AbAi) and
negative (pGADT7-AD+bait-pAbAi) controls, were plated on SD /-Leu+150 ng/mL AbA
and incubated at 30 ◦C for 3 days.

4.9. Electrophoretic Mobility Shift Assay (EMSA)

Full-length CDs of CmHY5, CmoHY5-1, and CmoHY5-2 were cloned into the pD2P_1.06eTM
vector. Standard Mini Kit(Kangmaxin Intelligent Technology Co., Ltd. Shanghai, China)
was used for protein induction following the manufacturer’s instructions. EMSA was
performed using the Light Shift Chemiluminescent EMSA Kit (Beyotime, Shanghai, China),
following the manufacturer’s instructions. Probes synthesized from yeast one-hybrid re-
sults. Two oligonucleotide probes with G-box were synthesized based on the sequences
of the CmoHY5-1 promoter and CmoHY5-2 promoter, and one oligonucleotide probe with
G-box was synthesized based on the sequences of the promoter of CmoNRT2.1 and biotin-
labeled by Saibaisheng (Beijing, China). The unlabeled probes were used as competition
probes. The unlabeled mutant probe was used as a mutant cold competition probe. The
fusion protein was incubated at 25 ◦C with the probes, with or without the competition
probe and mutant probe, in a total reaction volume of 10 µL. Protein–DNA complexes
were separated on a 6% polyacrylamide gel and electroblotted onto a Hybondnylon mem-
brane (Biosharp, Shanghai, China), which was then subjected to UV crosslinking and
chemiluminescence detection.

4.10. GUS Assay

Full-length CDs of CmHY5, CmoHY5-1, and CmoHY5-2 were cloned into the pRI101
vector to generate an effector vector. Promoter fragments with G-box of CmoNRT2.1,
CmoHY5-1, and CmoHY5-2 were amplified and cloned into the pBI101 vector to generate the
reporter vector. The recombinant vectors were transformed into Agrobacterium-competent
EHA105. The reporter and effector co-infect N. benthamiana leaves, and GUS activity and
staining measurements were performed as previously described [64,86], along with the
negative (pRI101+ reporter) controls.

4.11. Y2H Assay

Full-length CDs of CmHY5 were cloned into the pGBKT7 vector to generate bait.
Full-length CDs of CmoHY5-1 and CmoHY5-2 were cloned into the pGBKT7 vector to
generate prey. Recombinant plasmids were introduced into yeast strain Y2H-Gold, and the
transformed yeast cells were plated on SD/-Trp/-Leu medium and incubated at 30 ◦C for
3 days. Then, the colonies were transferred to SD/-Trp/-Leu/-Ade/-His/AbA150/X-α-Gal
medium incubated at 30 ◦C for 3 days.

4.12. Luciferase Complementation (LCA) Assay

Full-length CDs of CmHY5 were cloned into the NLuc vector. Full-length CDs of
CmoHY5-1 and CmoHY5-2 were cloned into the CLuc vector. Recombinant plasmids were
introduced into Agrobacterium-competent EHA105 (pSoup) and expressed in tobacco
leaves. Fluorescence was observed using an imaging system (Berthold, Lb985, Bad Wild-
bad, Germany).

4.13. Bimolecular Fluorescence Complementation (BiFC) Assay

Full-length CDs of CmHY5 were cloned into the pCAMBIA1300-35s-N-YFPC vector. Full-
length CDs of CmoHY5-1 and CmoHY5-2 were cloned into the pCAMBIA1300-35s-C-YFPC
vector. Recombinant plasmids were introduced into Agrobacterium-competent EHA105
(pSoup) and expressed in tobacco leaves. The leaves were stained with DAPI for 5 min,
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and confocal imaging was performed with an FV3000 microscope (Olympus) as previously
described [85].

5. Conclusions

In conclusion, the CmHY5 expression level of the scion played a vital role in the nitrate
uptake capacity of oriental melon scion grafted on squash rootstock. The scion-to-rootstock
mobile transcription factor CmHY5 induced the CmoHY5-1 and CmoHY5-2 expression of
squash rootstock and interacted with each other. Moreover, they positively regulated
CmoNRT2.1 expression jointly and individually to modulate the nitrate uptake of grafted
plants (Figure 6). The grafted plants with the higher CmHY5 mRNA level of the oriental
melon scion possessed a stronger nitrate uptake capacity.
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