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Aging is a complex and multifactorial process resulting, at least partly, from the
generation and accrual of damage in the setting of reduced resilience [1]. A plethora of
environmental and endogenous factors (i.e., exposomes) contribute to the mismatch be-
tween cellular damage and reparative capacity. Exposome constituents and their biological
targets are only partially known. Nevertheless, core biological mechanisms, collectively
known as the hallmarks of aging, have been identified and are actively investigated to
develop therapeutics against chronic degenerative conditions [2].

Inflamm-aging refers to a chronic state of sterile, low-grade inflammation that accom-
panies aging, chronic diseases (e.g., cancer, diabetes, cardiovascular disease, neurodegen-
eration), and functional decline [3]. Inflamm-aging has been proposed as the fil rouge
connecting the aging process with the pathophysiology of age-associated conditions [4].
Defective cellular quality control systems are among the candidate mechanisms underlying
inflamm-aging via the accrual of intracellular “waste” (e.g., protein aggregates, damaged
mitochondria, lipofuscin granules). If not appropriately disposed, cellular garbage material
can be released at the systemic level and trigger inflammation [5]. Cellular senescence
contributes to systemic inflammation through the release of senescence-associated secretory
phenotype (SASP) factors, including cytokines, chemokines, growth and angiogenic factors,
and mediators of matrix remodeling [4]. However, the mechanisms linking SASP factors,
inflammation, and chronic degenerative diseases are yet to be deciphered.

The Special Issue “Advancements in Anti-Aging Treatment Development” gathers
contributions by biogerontologists and geroscientists focusing on anti-aging remedies and
personalized anti-inflammatory interventions to extend one’s health and lifespan [6–13].

Type 2 diabetes and Alzheimer’s disease (AD) are excellent examples of co-existing
conditions, with shared pathophysiologic mechanisms that could be targeted by the same
therapeutics [6]. Studies have shown that, in the setting of AD, an altered brain glucose
metabolism and insulin signaling installs a state of insulin resistance (i.e., “type 3 diabetes”)
that contributes to neurodegeneration and loss of synaptic plasticity [6,14]. An altered glu-
cose metabolism has also been related to neuronal senescence, which provides a theoretical
basis for exploring metabolic reprogramming as an intervention against AD [7].

Markers of metabolic derangements, together with those encompassing inflammatory,
musculoskeletal, stress response, and senescence-associated pathways, have been identified
among the mediators that discriminate older adults with physical frailty and sarcopenia
from controls [8]. In addition, a set of molecules and mediators pertaining to energy-sensing
pathways, including sirtuins, Klotho, and the mammalian target of rapamycin, have been
implicated in endothelial cell senescence and vascular aging [9]. Cellular senescence has
also been proposed as a therapeutic target for osteoporosis [10].

Efforts have been put forward to devise pharmacological and nutraceutical interventions
to compress morbidity, allowing for an extension of disease-free lifespan [15]. Ellagic acid (EA),
a phenolic compound abundant in fruits and vegetables, possesses anti-inflammatory and
antioxidant properties [13]. EA protects against neurodegeneration by preserving neuronal
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homeostasis and viability [13]. Supplementation with Ninjin’yoeito (NYT), a mix of natural
compounds used by traditional Japanese kampo medicine for treating anemia and physical
weakness, was tested for its ability to alleviate oxidative stress and frailty in senescence-
accelerated mouse prone 8, a murine model of senescence [12]. Significant improvements
in body weight, locomotion, and walking speed were observed in mice supplemented with
NYT compared with untreated controls. Lower levels of the oxidative marker 8-hydroxy-2’-
deoxyguanosine were found in the muscle and brain of NYT-treated mice [12]. In addition, a
lower protein abundance of cleaved caspase-3 was found in the brain tissue of mice supple-
mented with NYT, suggesting a possible attenuation of neuronal apoptosis [12].

Finally, genetic studies in loss-of-function (knockout) and gain-of-function (transgenic) mice
have demonstrated that the CDGSH iron−sulfur domain 2 (CISD2) gene is crucial for controlling
lifespan [11]. An overexpression of CISD2 improved several age-associated conditions, including
AD, liver disease, and corneal epithelial health. These findings suggest that a pharmaceutically
induced activation of CISD2 late in life may promote longevity. The flavonone hesperetin
triggers CISD2 expression and produces anti-aging effects via the activation of genes pertaining
to nitrogen, amino acid, and lipid metabolism in skeletal muscles [11].
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