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Abstract: In this study, we successfully prepared core–shell heterostructured nanocomposites (Fe
NWs@SiO2), with ferromagnetic nanowires (Fe NWs) as the core and silica (SiO2) as the shell. The
composites exhibited enhanced electromagnetic wave absorption and oxidation resistance and were
synthesized using a simple liquid-phase hydrolysis reaction. We tested and analyzed the microwave
absorption properties of Fe NWs@SiO2 composites with varied filling rates (mass fractions of 10 wt%,
30 wt%, and 50 wt% after mixing with paraffin). The results showed that the sample filled with 50 wt%
had the best comprehensive performance. At the matching thickness of 7.25 mm, the minimum
reflection loss (RLmin) could reach −54.88 dB at 13.52 GHz and the effective absorption bandwidth
(EAB, RL < −10 dB) could reach 2.88 GHz in the range of 8.96–17.12 GHz. Enhanced microwave
absorption performance of the core–shell structured Fe NWs@SiO2 composites could be attributed to
the magnetic loss of the composite, the core–shell heterogeneous interface polarization effect, and the
small-scale effect induced by the one-dimensional structure. Theoretically, this research provided
Fe NWs@SiO2 composites with highly absorbent and antioxidant core–shell structures for future
practical applications.

Keywords: core–shell structure; Fe NWs@SiO2; microwave absorption

1. Introduction

With the rapid development of modern electronic information and communication
technology in many fields, a large number of electromagnetic waves with different energies
and rich spectrum have been produced [1–3]. However, excessive electromagnetic waves
can cause serious electromagnetic radiation pollution problems, which in turn endanger
human health [4–6]. To solve the growing problem of electromagnetic radiation pollution,
it is urgent to develop electromagnetic wave absorbing materials (EMWAs) with excellent
absorbing properties, which can convert electromagnetic waves into heat or other forms of
energy [7–9].

Among many EMWAs, the ferromagnetic absorbing materials [10–12] (Fe, Co, Ni,
and their alloys) with high permeability, high magnetic loss, high Snoek’s cut-off fre-
quency, high saturation magnetization, and high Curie temperature have shown excellent
electromagnetic wave loss ability [13–15]. However, ferromagnetic absorbing materials
have the disadvantages of high density and strong skin effects [16]. Therefore, many re-
searchers have studied ferromagnetic absorbing materials with different microstructures
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to overcome the above shortcomings, such as three-dimensional Fe nanohollow spherical
structures [17–19], two-dimensional Fe nanosheet structures [20–22], and one-dimensional
Fe nanowire structures [23–25]. Among them, the one-dimensional Fe nanowire (NW)
structure has the advantages of small size, large specific surface area, and the ability to
improve the anisotropy and resonance frequency of magnetic materials [24] that exhibit
good microwave absorption properties. For example, Shen et al. [23] reported necklace-like
Fe NWs with a high aspect ratio, with the the minimum reflection loss (RLmin) reaching
−27.28 dB at 3.68 GHz. Yang et al. [26] also reported large-sized Fe NWs; the results
showed that the RLmin of −44.67 dB at 2.72 GHz and the effective absorption bandwidth
(EAB) reached 8.56 GHz at a layer thickness of 1.42 mm. This kind of one-dimensional
nanowire structure exhibited excellent microwave absorption performance, which provided
a reference for high-performance magnetic metal absorbing materials [27,28].

The single component Fe NWs with high dielectric constant, poor impedance matching
characteristics [29], and poor chemical stability can hinder their practical application [30].
To obtain EMWAs with excellent performance, researchers have proposed a strategy of
combining ferromagnetic materials with dielectric materials to construct core–shell com-
posite materials [31,32]. By coating Fe NWs with a layer of dielectric material to form a
core–shell structure, the dielectric shell will effectively reduce the dielectric constant of Fe
NWs, optimize the impedance matching, improve the magnetic loss and dielectric loss,
and thus enhance the absorption efficiency. For example, Wang et al. [33] reported that
the dielectric carbon shells were coated on the surface of Fe nanofibers, which improved
the oxidation resistance and reduced the density, optimized the impedance matching, and
obtained a better microwave absorption performance. Yang et al. [34] also reported that
dielectric silver shells were coated on the surface of Fe NWs; the results confirmed that
the dielectric silver shells could reduce the dielectric constant, optimize the impedance
matching, and enhance the microwave absorption performance. As an excellent dielectric
material, silica (SiO2) can not only adjust the dielectric loss capacity of composites but
can also improve the corrosion resistance and wear resistance of composites [35,36]. After
coating SiO2 on the surface of magnetic metal, the permeability will not be suppressed and
the electromagnetic wave (EMW) can more easily be absorbed into the material internally
rather than by reflection [37]. Hence, SiO2 can often be applied to improve the microwave
absorption properties of ferromagnetic materials. For example, Pao et al. [38] reported
that SiO2 nanoparticles coated Co nanosheets, confirming that SiO2 nanoparticles can
regulate the dielectric constant, increase the dielectric loss, optimize the impedance match-
ing, and improve the microwave absorption performance. Therefore, SiO2 shell-coated Fe
NWs would be a good choice and an effective way to reduce dielectric constant, optimize
impedance matching, and improve microwave absorption performance and oxidation
resistance.

In this work, core–shell heterogeneous nanocomposites with Fe NWs as core and SiO2
as shell Fe NWs@SiO2 were successfully obtained by a simple liquid-phase hydrolysis
method. This core–shell structure enriched the heterogeneous interface, reduced the dielec-
tric constant, optimized the impedance matching, and resulted in improved microwave
absorption performance and chemical stability. Here, electromagnetic parameters and
permeability of the Fe NWs@SiO2 composites were obtained by the coaxial testing method
and the wave-absorbing properties of Fe NWs@SiO2 composites with mass filling fractions
of 10 wt%, 30 wt%, and 50 wt% were calculated and analyzed. This work provided guid-
ing significance for the development of high-efficiency magnetic metal-based microwave
absorption materials.

2. Results and Discussion

The XRD patterns of Fe NWs and Fe NWs@SiO2 are shown in Figure 1. Diffraction
peaks of Fe NWs were about 2θ = 44.7, 65.0, and 82.4◦, corresponding to (110), (200), and
(211) planes of body-centered cubic (bcc) α-Fe (JCPDS No. 06-0696), respectively [24].
Diffraction peaks of Fe NWs@SiO2 composite were 2θ = 44.7, 65.0, and 82.4◦, corresponding
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to (110), (200), and (211) crystal planes of the body-centered cube, respectively. In addition,
a wide diffraction peak at 20–30◦ appeared in the Fe NWs@SiO2 spectrum, which was not
found in the Fe NWs’ spectrum, indicating that the surface of Fe NWs was covered with
SiO2. Therefore, it was proved that SiO2 was successfully coated on the surface of Fe NWs.
To further determine the chemical composition of Fe NWs@SiO2 composites, other means
of research will be continued.
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Figure 1. XRD spectra of Fe NWs and Fe NWs@SiO2 composites.

The morphology, elemental composition, and microstructure of Fe NWs@SiO2 com-
posites were characterized by SEM and TEM, as shown in Figure 2. The composite material
can be seen in Figure 2a as a nanowire structure with an average diameter of 100 nm.
Figure 2b,c shows the microscopic morphology of Fe NWs@SiO2 at the same position with
different magnifications; the Fe NWs were surrounded by nanoparticles and exhibited an
obvious core–shell structure. To further determine the microstructure of the composites,
TEM will be used for characterization. It can be seen from Figure 2d,e that the Fe NWs
were tightly wrapped; this phenomenon can be more clearly seen from the enlarged images
of Figure 2f,g. Moreover, the wrapping effect became uniform and dense and the core–shell
structure appeared very complete and homogeneous (a comparison between pure Fe NWs
and coated Fe NWs is shown in Figure A1d,f). DES was used to analyze the composition of
the elements in the above core–shell structure and the mapping images of each element are
shown in Figure 2h–k. Element scanning was performed in the area of Figure 2h; Fe, O,
and Si elements were detected in the core–shell structure. The distribution of each element
was linear, with Fe elements concentrated in the core and O and Si elements uniformly and
densely overlaid with Fe in a linear distribution. From the microstructure and elemental
analysis, it could be determined that Fe NWs were coated by SiO2 and formed a core–shell
structure.

To further determine whether SiO2 on the surface of Fe NWs affected magnetic prop-
erties, hysteresis loops of Fe NWs and Fe NWs@SiO2 (M-H curve) were measured at 300 K,
from which saturation magnetization (Ms) degree and coercivity (Hc) were obtained, as
shown in Figure 3. It can be seen that both particles exhibited typical ferromagnetic prop-
erties, with the magnetization intensity of the particles varying with the increase in the
applied magnetic field and then reaching saturation [39]. The Ms values of nanocomposites
are known to be related to the magnetic composition and are proportional to the Fe con-
tent [37]. However, SiO2, as an antimagnetic material, does not contribute to the saturation
magnetization, but the SiO2 shell layer can reduce the magnetic moment per unit volume
of Fe NWs@SiO2, which has a great impact on the magnetic properties of Fe NWs@SiO2.
Therefore, the increase of SiO2 shell content will reduce the Ms value of Fe NWs. It can
be seen that the Ms (81.7 emu/g) value of Fe NWs@SiO2 was higher than that of Fe NWs
(165.9 emu/g) [40]. When the magnetocrystalline anisotropy energy, stress, and impurity
content of the material increased, its Hc also increased [41]. As shown in Figure 3, the
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Hc value of Fe NWs@SiO2 (390.9 Oe) was higher than that of Fe NWs (317.3 Oe). The
SiO2 shell led to magnetocrystalline anisotropy and interfacial stress on the surface of Fe
NWs@SiO2, resulting in a significant increase in Hc. High Hc values will contribute to
shifting the resonant frequency to a higher region [42]. Thus, the higher Hc value of Fe
NWs@SiO2 composites improved the microwave absorption performance in the higher
frequency range.
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According to the transmission line theory [43], the reflection loss value (RL) can be
calculated according to the electromagnetic parameters of the material (εr, µr); the specific
formula is as follows [44]:

RL(dB) = 20lg
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (1)

Zin = Z0

√
µr

εr
tanh(j

2π f d
c
√

µrεr) (2)

where Zin is the intrinsic impedance of the material; Z0 is the intrinsic impedance of air;
εr and µr are the complex dielectric constant and complex permeability of the material,
respectively; f is the electromagnetic wave frequency; d is the corresponding thickness of
the material; c is the speed of light in a vacuum.

According to the above theory, the microwave absorption characteristics of Fe NWs@SiO2
composite materials with different filling mass fractions were studied. Figure 4 shows
the simulated calculated reflection curves in the frequency range of 2–18 GHz for the
composites prepared by mixing 10 wt%, 30 wt%, and 50 wt% of Fe NWs@SiO2 with
paraffin, respectively. The figures in the first and the second row represent one-dimensional
(1D) and three-dimensional (3D) plots of the RL values of the three filling mass fractions as
a function of frequency and thickness, respectively. In the range of 2–18 GHz, when the
filling mass fraction was 10 wt%, the RL value could not reach −10 dB, even if the thickness
was adjusted (Figure 4a,d). Figure A3 shows that the EAB of 10 wt%, 30 wt%, and 50 wt%
Fe NWs@SiO2 composites were 0 GHz, 1.5 GHz, and 2.88 GHz, respectively. In addition, as
shown in Figure 4e,f, when the matching thickness was 10 mm and 7.25 mm, the RLmin of
the sample (30 wt% and 50 wt%) reached −23.97 dB and −54.88 dB, respectively. Overall,
the comprehensive absorption performance was better at a filling mass fraction of 50 wt%.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 16 
 

 

𝑅𝐿(dB) = 20 lg ฬ
𝑍௜௡ − 𝑍଴

𝑍௜௡ + 𝑍଴

ฬ (1)

𝑍௜௡ = 𝑍଴ඨ
𝜇௥

𝜀௥

tanh (j
2𝜋𝑓𝑑

𝑐
ඥ𝜇௥𝜀௥)  (2)

where 𝑍௜௡ is the intrinsic impedance of the material; 𝑍଴ is the intrinsic impedance of air; 
𝜀௥ and 𝜇௥ are the complex dielectric constant and complex permeability of the material, 
respectively; 𝑓 is the electromagnetic wave frequency; 𝑑 is the corresponding thickness 
of the material; 𝑐 is the speed of light in a vacuum. 

According to the above theory, the microwave absorption characteristics of Fe 
NWs@SiO2 composite materials with different filling mass fractions were studied. Figure 
4 shows the simulated calculated reflection curves in the frequency range of 2–18 GHz for 
the composites prepared by mixing 10 wt%, 30 wt%, and 50 wt% of Fe NWs@SiO2 with 
paraffin, respectively. The figures in the first and the second row represent one-dimen-
sional (1D) and three-dimensional (3D) plots of the RL values of the three filling mass 
fractions as a function of frequency and thickness, respectively. In the range of 2–18 GHz, 
when the filling mass fraction was 10 wt%, the RL value could not reach −10 dB, even if 
the thickness was adjusted (Figure 4a,d). Figure A3 shows that the EAB of 10 wt%, 30 
wt%, and 50 wt% Fe NWs@SiO2 composites were 0 GHz, 1.5 GHz, and 2.88 GHz, respec-
tively. In addition, as shown in Figure 4e,f, when the matching thickness was 10 mm and 7.25 
mm, the RLmin of the sample (30 wt% and 50 wt%) reached −23.97 dB and −54.88 dB, respec-
tively. Overall, the comprehensive absorption performance was better at a filling mass fraction 
of 50 wt%. 

 
Figure 4. One-dimensional (1D) and 3D plots of reflection loss values with frequency and thickness 
for Fe NWs@SiO2 composites at different filling ratios: 10 wt% (a,d), 30 wt% (b,e), and 50 wt% (c,f). 

Electromagnetic parameters are an important basis for evaluating the absorption ca-
pacity; the complex permittivity (𝜀௥ = 𝜀ᇱ − 𝑗𝜀ᇳ) and complex permeability (𝜇௥ = 𝜇ᇱ − 𝑗𝜇ᇳ) 
of these parameters depend on the frequency of electromagnetic waves [45]. The real part 
of the complex permittivity and complex permeability characterizes the ability of a mate-
rial to store electrical energy and magnetic energy, while the imaginary part characterizes 
the ability of a material to dissipate electrical energy and magnetic energy, respectively 
[46]. To further investigate the microwave absorption mechanism of Fe NWs@SiO2, the 
complex permittivity and permeability of Fe NWs@SiO2 were analyzed. The 𝜀ᇱ and 𝜀ᇳ 
curves of Fe NWs@SiO2 with different filling mass fractions are shown in Figure 5a,b. The 

Figure 4. One-dimensional (1D) and 3D plots of reflection loss values with frequency and thickness
for Fe NWs@SiO2 composites at different filling ratios: 10 wt% (a,d), 30 wt% (b,e), and 50 wt% (c,f).

Electromagnetic parameters are an important basis for evaluating the absorption
capacity; the complex permittivity (εr = ε′ − jε′′ ) and complex permeability (µr = µ′ − jµ′′ )
of these parameters depend on the frequency of electromagnetic waves [45]. The real part
of the complex permittivity and complex permeability characterizes the ability of a material
to store electrical energy and magnetic energy, while the imaginary part characterizes the
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ability of a material to dissipate electrical energy and magnetic energy, respectively [46]. To
further investigate the microwave absorption mechanism of Fe NWs@SiO2, the complex
permittivity and permeability of Fe NWs@SiO2 were analyzed. The ε′ and ε′′ curves of Fe
NWs@SiO2 with different filling mass fractions are shown in Figure 5a,b. The curves of ε′

values for Fe NWs@SiO2 absorbing materials with different filling ratios showed similar
trends in the frequency test range, with a smooth decreasing trend. Since SiO2 has good
electrical insulation properties, the SiO2 coating formed an insulating layer on the surface
of Fe NWs, thus hindering the electron displacement polarization of Fe NWs and reducing
the ε′ value. In addition, when Fe NWs@SiO2 was added to paraffin to form composites,
the electronic shifts and interfacial polarization of Fe NWs intrinsically strengthened as the
filling ratio of Fe NWs@SiO2 increased; thus, the ε′ value increased. As shown in Figure 5a,
the value of ε′ increased with the increase in the filling ratio. The SiO2 shell layer also
reduced the conductivity of the mixed Fe NWs, which in turn weakened the conductivity
loss capacity of the mixed Fe NWs, resulting in a consequent decrease in their ε′′ . The ε′′

value curves of the three filling ratios had similar decreasing trends in the frequency test
range, with more disorderly changes and many rebound peaks, which may have originated
from dielectric loss mechanisms such as dipole polarization and interfacial polarization. In
this paper, the reported changes in the ε′ and ε′′ curves may have been a synergistic effect
of space charge, interface, and orientation polarization induced by the one-dimensional
core–shell structure of Fe NWs@SiO2 [47].
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composites with different filling ratios.

The dielectric loss of Fe NWs@SiO2 composites was further analyzed. Dielectric loss
includes conduction loss, ion polarization, electron polarization, interfacial polarization,
and dipole relaxation [48]. Among them, ion polarization and electron polarization were not
considered in the study frequency range. Therefore, the effects of conduction loss, interfacial
polarization, and dipole relaxation on dielectric loss were mainly studied. According to
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this theory of Debye, each Debye relaxation in the ε′-ε′′ graph corresponded to a Cole–Cole
semicircle, which could be expressed by the following formula [49]:

(ε′ − εS + ε∞

2
)

2
+ (ε′′ )2 = (

εS − ε∞

2
)

2
(3)

where εS and ε∞ are the static permittivity and relative permittivity of the high-frequency
limit, respectively. The ε′-ε′′ plots for different filling mass fractions of Fe NWs@SiO2
composites are shown in Figure 6a–c. As can be seen in the figure, the ε′-ε′′ plots with filling
ratios of 10 wt%, 30 wt%, and 50 wt% showed 4, 6, and 7 strong and distorted semicircles,
respectively, which were caused by multiple relaxation processes occurring inside the
material for electromagnetic waves. In addition, the one-dimensional core–shell structure
of Fe NWs@SiO2 led to an asymmetric distribution of space charges, which generated a
large number of dipoles and dipole polarization, as well as interfacial polarization at the
two interfaces of the core–shell. The appearance of a straight “tail” at the end of the ε′-ε′′

curve with different filling ratios indicated the coexistence of multiple loss mechanisms [50].
Therefore, various Debye relaxation and other dielectric loss mechanisms existed in the
core–shell composites of Fe NWs@SiO2.
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Figure 6. ε′-ε′′ plot of Fe NWs@SiO2-paraffin sample with 10 wt% loading (a), 30 wt% loading (b),
and 50 wt% loading (c).

The µ′ and µ′′ curves for different Fe NWs@SiO2 filling mass fractions are shown in
Figure 5c,d. The main dissipation mechanism of magnetic materials is represented by µ′

and µ′′ . The µ′ value curves of the three filling ratios decreased in the frequency test range;
the variation trends of the µ′ of the three filling ratios were similar. In the range of 2–18 GH,
the µ′ value decreased with increasing filling ratio and increased with decreasing filling
ratio; this was because, in Fe NWs@SiO2-filled paraffin composites, as the filling ratio
increased the SiO2 content became higher, leading to a decrease in the magnetic properties
of the composites; thus, the µ′ value became smaller. The variation of µ′ was accompanied
by many disordered peaks, which may have been caused by the suppression of the eddy
current loss by a one-dimensional core–shell structure. The µ′′ value curves for 10 wt% and
30 wt% were the same and the µ′′ value curves for 50 wt% were overall higher than those
for 10 wt% and 30 wt%. The 50 wt% had the highest filling ratio and exhibited the strongest
magnetic loss. The µ′′ value curves of the three packing ratios showed a decreasing state
and the samples regarding the three packing ratios showed many similar rebound peaks in
the frequency range. This change may have come from the natural resonance, exchange
resonance, and eddy current loss mechanism.

The magnetic losses in the microwave band are in the form of hysteresis, domain wall
resonance, eddy current loss, natural resonance, and exchange resonance [51,52]. However,
under weak external field conditions, hysteresis is usually neglected, while domain wall
resonance occurs only in the 1–100 MHz range of multidomain magnetic materials [53,54].
Therefore, eddy current loss, natural resonance, and exchange resonance are the main
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influencing factors of magnetic loss. The eddy current loss concerning the thickness (d) and
conductivity (σ) of the absorber can be expressed as the following equation [55]:

µ′′ =
2πµ0(µ

′)2
σd2 f

3
(4)

C0 = µ′′
(
µ′
)−2 f−1 (5)

where µ0 is the vacuum permeability. The C0 values for different Fe NWs@SiO2 filling
mass fractions are shown in Figure 7. When eddy current loss was the main magnetic
loss mechanism, C0 behaved as a constant and eddy current loss may have existed in the
range of 12–18 GHz. The peak value at 4–10 GHz was mainly caused by natural resonance,
while the fluctuation at high frequency (10–18 GHz) may have been caused by exchange
resonance.
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Figure 7. Eddy current loss (denoted by C0) of the Fe NWs@SiO2 composites with different filling
ratios.

To further analyze the dielectric and magnetic loss capabilities of the materials, the
dielectric loss tangent curves (tan δε) and magnetic loss tangent curves (tan δµ) were calcu-
lated for different filling ratios, as shown in Figure 8a,b. It was obvious that the trends in
tan δε and tan δµ curves were similar to the ε′′ and µ′′ curves, indicating that both dielectric
and magnetic losses contributed to the Fe NWs@SiO2 composites and both contributed to
microwave absorption. For the whole frequency test range, the tan δµ values were signifi-
cantly higher than the tan δε values, indicating high dielectric losses from magnetic losses.
Therefore, the main absorption mechanism of microwave absorption in Fe NWs@SiO2
composites was magnetic loss.

Two aspects affect electromagnetic wave absorption performance. On the one hand,
an electromagnetic wave enters the material as much as possible; on the other hand, the
material can fully dissipate the incident electromagnetic wave energy [56]. The impedance
coordination constant (Z) represents the ability of the electromagnetic wave to enter the
material. If the Z value is closer to 1, it indicates that the electromagnetic wave enters the
material more easily [57]. The attenuation constant (α) is used to describe the ability of the
material to consume electromagnetic waves; the larger the value is, the stronger the ability
to dissipate electromagnetic waves [58]. Only the most appropriate values of Z and α can
make the material have the best absorbing properties. Z and α can be calculated by the
following formula [59]:

Z =

∣∣∣∣Zin
Z0

∣∣∣∣ =∣∣∣∣√µr

εr
tanh

[
j
(

2π f d
c

)
√

µrεr

]∣∣∣∣ (6)
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α =

√
2π f
c
×
√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2 (7)
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with different filling ratios.

The Z values of different Fe NWs@SiO2 composite filling mass ratios are shown in
Figure 9. As can be seen from the figure, when the filling ratio increased, the Z value
decreased as a whole, and the Z value of each filling ratio had a stable overall change
trend, accompanied by slight fluctuations. When the filling ratio increased, the dielectric
loss of Fe NWs@SiO2 increased and the charge storage capacity decreased, resulting in
the overall decrease in the Z value. When an electromagnetic wave entered the material,
a weak eddy current was generated inside the material, causing the peak value of Z. In
the figure, the Z value decreased as the filler mass fraction increased, which was because
the higher the filler mass fraction, the better the electrical conductivity. The α values for
different filling mass ratios of Fe NWs@SiO2 composites are given in Figure 9b. The α
values indicated the attenuation ability of Fe NWs@SiO2 composites to EMW; the larger
the value, the greater the ability to consume EMW. It can be seen from the figure that the α
value for the filling mass ratio of 50 wt% was greater than that of 10 wt% and 30 wt% in the
whole frequency range, indicating better attenuation of the incident wave at 50 wt%. As
the frequency increased, the α value also increased, indicating that the attenuation ability
of the material increased with increasing frequency. The steep peaks that appear may have
been related to the strong interfacial polarization. Thus, the filling mass ratio of 50 wt%
had a poor impedance match, but the attenuation constant was the largest and EMW had
the best absorption capacity, which corresponded to RL values for different filling mass
fractions in Figure 4.

The multiple wave-absorbing mechanisms of core–shell Fe NWs@SiO2 composites
are shown in Figure 10. Firstly, the core–shell structured Fe NWs@SiO2 composites could
generate abundant heterogeneous interfaces between the Fe NWs’ core, the SiO2 shell,
and the paraffin. These heterogeneous interfaces would collect charges at the interface
and at the junction to enhance the interfacial polarization and the dielectric loss would be
increased when the material was under the alternating electromagnetic field [60]; secondly,
the one-dimensional nanowire structure with a high aspect ratio formed a good network
structure, which prolonged the microwave transmission path and facilitated microwave
consumption. In addition, the nanowires intertwined with each other to cause multiple
scattering of incident waves and further consumed the incident waves. Then, the natural
resonance and exchange resonance generated by the one-dimensional Fe NWs increased
the magnetic loss of the composite. In summary, these core–shell structured Fe NWs@SiO2
composites had good microwave consumption capability.



Int. J. Mol. Sci. 2023, 24, 8620 10 of 16

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 16 
 

 

 𝛼 =
√2𝜋𝑓

𝑐
× ට(𝜇ᇱᇱ𝜀ᇱᇱ − 𝜇ᇱ𝜀ᇱ) + ඥ(𝜇ᇱᇱ𝜀ᇱᇱ − 𝜇ᇱ𝜀ᇱ)ଶ + (𝜇ᇱ𝜀ᇱᇱ + 𝜇ᇱᇱ𝜀ᇱ)ଶ (7)

The 𝑍 values of different Fe NWs@SiO2 composite filling mass ratios are shown in 
Figure 9. As can be seen from the figure, when the filling ratio increased, the 𝑍 value 
decreased as a whole, and the 𝑍 value of each filling ratio had a stable overall change 
trend, accompanied by slight fluctuations. When the filling ratio increased, the dielectric 
loss of Fe NWs@SiO2 increased and the charge storage capacity decreased, resulting in the 
overall decrease in the 𝑍 value. When an electromagnetic wave entered the material, a 
weak eddy current was generated inside the material, causing the peak value of 𝑍. In the 
figure, the 𝑍 value decreased as the filler mass fraction increased, which was because the 
higher the filler mass fraction, the better the electrical conductivity. The 𝛼 values for dif-
ferent filling mass ratios of Fe NWs@SiO2 composites are given in Figure 9b. The 𝛼 values 
indicated the attenuation ability of Fe NWs@SiO2 composites to EMW; the larger the 
value, the greater the ability to consume EMW. It can be seen from the figure that the 𝛼 
value for the filling mass ratio of 50 wt% was greater than that of 10 wt% and 30 wt% in 
the whole frequency range, indicating better attenuation of the incident wave at 50 wt%. 
As the frequency increased, the 𝛼 value also increased, indicating that the attenuation 
ability of the material increased with increasing frequency. The steep peaks that appear may 
have been related to the strong interfacial polarization. Thus, the filling mass ratio of 50 wt% 
had a poor impedance match, but the attenuation constant was the largest and EMW had the 
best absorption capacity, which corresponded to RL values for different filling mass fractions 
in Figure 4. 

 
Figure 9. Frequency dependence of (a) impedance matching 𝑍 and (b) attenuation constant 𝛼 for 
Fe NWs@SiO2 composites with different filling ratios. 

The multiple wave-absorbing mechanisms of core–shell Fe NWs@SiO2 composites 
are shown in Figure 10. Firstly, the core–shell structured Fe NWs@SiO2 composites could 
generate abundant heterogeneous interfaces between the Fe NWs’ core, the SiO2 shell, and 
the paraffin. These heterogeneous interfaces would collect charges at the interface and at 
the junction to enhance the interfacial polarization and the dielectric loss would be in-
creased when the material was under the alternating electromagnetic field [60]; secondly, 
the one-dimensional nanowire structure with a high aspect ratio formed a good network 
structure, which prolonged the microwave transmission path and facilitated microwave 
consumption. In addition, the nanowires intertwined with each other to cause multiple 
scattering of incident waves and further consumed the incident waves. Then, the natural 
resonance and exchange resonance generated by the one-dimensional Fe NWs increased 
the magnetic loss of the composite. In summary, these core–shell structured Fe NWs@SiO2 
composites had good microwave consumption capability. 

This study does have some shortcomings, such as a narrow effective absorption 
bandwidth of 2.88 GHz and a high-frequency absorption band, etc. The imaginary part of 

Figure 9. Frequency dependence of (a) impedance matching Z and (b) attenuation constant α for Fe
NWs@SiO2 composites with different filling ratios.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 16 
 

 

the dielectric constant became small after the FeNWs@SiO2 composite and the dielectric 
loss was not strong. To address these issues, we plan to introduce dielectric materials to 
promote polarization at heterogeneous interfaces, increase multi-interface polarization, 
improve dielectric loss, enhance absorption performance, and achieve broadband absorp-
tion. Additionally, we aim to improve the magnetic permeability and magnetic loss to 
absorb electromagnetic waves in the lower frequency band and gradually move towards 
multifunctional absorbing materials in future work. 

 
Figure 10. Wave absorption mechanism of Fe NWs@SiO2 composites. 

3. Materials and Methods 
3.1. Materials 

All chemicals were of analytical grade and used without further purification. The Fe 
NWs were synthesized by a chemical reduction method under an external magnetic field 
according to our previous work [26]. Tetraethyl orthosilicate (TEOS) and aqueous ammo-
nia (H5NO, 28%) were obtained from Aladdin Co., Ltd. (Shanghai, China). Anhydrous 
ethanol (C₂H₆O, 99.7%) was supplied by Kelong Co., Ltd. (Sichuan, China). All the solu-
tions were prepared with deionized water (18.25 MΩ cm) and obtained from an ultrapure 
water system (GYJ2-20L-S) by Huachuang Co., Ltd. (Chongqing, China). 

3.2. Synthesis 
Core–shell Fe NWs@SiO2 was synthesized by a simple liquid-phase hydrolysis 

method; the preparation process of core–shell Fe NWs@SiO2 is shown in Figure 11. The 
detailed steps can be seen below: firstly, configure the Fe NWs solution, add 0.5 g Fe NWs 
into the solution containing 150 mL anhydrous ethanol and 40 mL deionized water, and 
sonicate the solution for 10 min to disperse the Fe NWs uniformly; secondly, add 3 mL of 
ammonia with a mass fraction of 28% to the mixed solution obtained in step one and shake 
ultrasonically for 30 min to fully disperse; thirdly, add 4 mL TEOS dropwise into the 
mixed solution obtained from step two and maintain the reaction at 500 r/min at room 
temperature with mechanical stirring for 10 h until TEOS is fully hydrolyzed (TEOS hy-
drolysis equation as in Equation (8)); finally, obtain the Fe NWs@SiO2 core–shell compo-
sites by centrifugal washing and drying. FeNW@SiO2 and paraffin are mixed in a ratio of 
1:9, 3:7, and 5:5 to prepare coaxial rings with an inner diameter of 3.04 mm, an outer di-
ameter of 7 mm, and a thickness of 2 mm, respectively. Coaxial ring composites will be 
used to measure electromagnetic absorption performance. 

Figure 10. Wave absorption mechanism of Fe NWs@SiO2 composites.

This study does have some shortcomings, such as a narrow effective absorption band-
width of 2.88 GHz and a high-frequency absorption band, etc. The imaginary part of
the dielectric constant became small after the FeNWs@SiO2 composite and the dielectric
loss was not strong. To address these issues, we plan to introduce dielectric materials to
promote polarization at heterogeneous interfaces, increase multi-interface polarization,
improve dielectric loss, enhance absorption performance, and achieve broadband absorp-
tion. Additionally, we aim to improve the magnetic permeability and magnetic loss to
absorb electromagnetic waves in the lower frequency band and gradually move towards
multifunctional absorbing materials in future work.

3. Materials and Methods
3.1. Materials

All chemicals were of analytical grade and used without further purification. The Fe
NWs were synthesized by a chemical reduction method under an external magnetic field
according to our previous work [26]. Tetraethyl orthosilicate (TEOS) and aqueous ammonia
(H5NO, 28%) were obtained from Aladdin Co., Ltd. (Shanghai, China). Anhydrous ethanol
(C2H6O, 99.7%) was supplied by Kelong Co., Ltd. (Sichuan, China). All the solutions
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were prepared with deionized water (18.25 MΩ cm) and obtained from an ultrapure water
system (GYJ2-20L-S) by Huachuang Co., Ltd. (Chongqing, China).

3.2. Synthesis

Core–shell Fe NWs@SiO2 was synthesized by a simple liquid-phase hydrolysis method;
the preparation process of core–shell Fe NWs@SiO2 is shown in Figure 11. The detailed
steps can be seen below: firstly, configure the Fe NWs solution, add 0.5 g Fe NWs into the
solution containing 150 mL anhydrous ethanol and 40 mL deionized water, and sonicate the
solution for 10 min to disperse the Fe NWs uniformly; secondly, add 3 mL of ammonia with
a mass fraction of 28% to the mixed solution obtained in step one and shake ultrasonically
for 30 min to fully disperse; thirdly, add 4 mL TEOS dropwise into the mixed solution
obtained from step two and maintain the reaction at 500 r/min at room temperature with
mechanical stirring for 10 h until TEOS is fully hydrolyzed (TEOS hydrolysis equation
as in Equation (8)); finally, obtain the Fe NWs@SiO2 core–shell composites by centrifugal
washing and drying. FeNW@SiO2 and paraffin are mixed in a ratio of 1:9, 3:7, and 5:5
to prepare coaxial rings with an inner diameter of 3.04 mm, an outer diameter of 7 mm,
and a thickness of 2 mm, respectively. Coaxial ring composites will be used to measure
electromagnetic absorption performance.

(C2H5O)4Si + H2O→ 4C2H5OH + SiO2 (8)
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Figure 11. Schematic illustration of the synthesis of Fe NWs@SiO2.

3.3. Characterization

The morphology and structure of core–shell Fe NWs@SiO2 composites are character-
ized using scanning electron microscopy (FIB/SEM, ZEISS AURIGA, Oberkochen, Ger-
many) and transmission electron microscopy (TEM, FEI F20, Thermo Scientific, Waltham,
MA, USA), the elemental compositions using energy dispersive spectroscopy (EDS) attach
to the SEM, the crystal structure and surface elemental composition are determined using
X-ray powder diffraction (XRD, Rigaku Ultima IV, Tokyo, Japan) and energy dispersive
X-ray spectroscopy (EDS), magnetic properties are measured by vibrating sample magne-
tometer (VSM, Lakeshore 7404, Columbus, OH, USA), thermal stability is measured by
thermogravimetric analysis (TGA, Mettler Toledo TGA/DSC3+, Shanghai, China), and the
electromagnetic parameters are measured by a vector network analyzer (Agilent N5234A,
Santa Clara, CA, USA) in the frequency range of 2–18 GHz.

4. Conclusions

In this study, we successfully coated SiO2 on the surface of Fe NWs using a simple
liquid-phase hydrolysis method, resulting in the production of Fe NWs@SiO2 composites
with a core–shell structure. The results showed that the Fe NWs had significantly enhanced
antioxidant properties and that the sample filled with 50 wt% had the best composite
performance. At the matching thickness of 7.25 mm, the RLmin could reach −54.88 dB
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at 13.52 GHz and the EAB could reach 2.88 GHz in the range of 8.96–17.12 GHz. The
improvement in the microwave absorption performance of Fe NWs@SiO2 composites with
core–shell structure could be attributed to the enrichment of interfacial polarization, the
reduction of dielectric constant, and the optimization of impedance matching. In addition,
the one-dimensional nanowire structure and complex network structure facilitated the
transmission and scattering of incident waves and enhanced the microwave absorption
properties. This study provided a simple and effective process for the production of Fe
NWs@SiO2 composites with core–shell structures with high absorption and oxidation
resistance for future practical applications. In future research, the focus will be on mul-
tifunctional wave-absorbing materials and the broadband absorption of electromagnetic
waves, which are important for the construction of broadband stealth weapon platforms.
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Experimental evidence: Thermo-gravimetric analysis of Fe NWs and Fe NWs@SiO2
was performed. As shown in Figure A2, untreated Fe NWs began to oxidize at 159 ◦C and
showed a mass increase in an air atmosphere and oxidized completely at 500 ◦C. The mass
of SiO2-coated Fe NWs increased only at 400 ◦C and became stable at 650 ◦C. At 800 ◦C, the
mass fraction of Fe NWs and Fe NWs@SiO2 was 144.31% and 120.1%, respectively, which
was consistent with the mass increase introduced by the oxidation of iron oxide (Fe2O3). In
addition, the oxidation temperature of Fe NWs@SiO2 was 400 ◦C, compared with 159 ◦C
for rapid oxidation of Fe NWs. In summary, Fe NWs@SiO2 had good thermal stability.
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