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Abstract: Benefiting from the additional active sites for sodium-ion (Na+) adsorption and porous
architecture for electrolyte accessibility, nitrogen-doped porous carbon has been considered the
alternative anode material for Na+-storage applications. In this study, nitrogen-doped and zinc-
confined microporous carbon (N,Z-MPC) powders are successfully prepared by thermally pyrolyzing
the polyhedral ZIF-8 nanoparticles under an argon atmosphere. Following the electrochemical
measurements, the N,Z-MPC not only delivers good reversible capacity (423 mAh/g at 0.02 A/g) and
comparable rate capability (104 mAh/g at 1.0 A/g) but also achieves a remarkable cyclability (capacity
retention: 96.6% after 3000 cycles at 1.0 A/g). Those can be attributed to its intrinsic characteristics:
(a) 67% of the disordered structure, (b) 0.38 nm of interplanar distance, (c) a great proportion of
sp2-type carbon, (d) abundant microporosity, (e) 16.1% of nitrogen doping, and (f) existence of
sodiophilic Zn species, synergistically enhancing the electrochemical performances. Accordingly, the
findings observed here support the N,Z-MPC to be a potential anode material enabling exceptional
Na+-storage abilities.

Keywords: sodium-ion batteries; nitrogen-doped porous carbon; thermal pyrolysis; zeolitic imidazolate
framework-8; clean energy technology

1. Introduction

To achieve net-zero emissions globally by 2050, employing renewable energy to gen-
erate clean electricity is regarded as a straightforward approach [1–3]. With the incessant
development of renewable energy sources, highly stable and cost-effective energy storage
devices (ESDs) are urgently desired for smoothing the intermittent electricity output, pro-
viding frequency regulation services and improving system reliability [4]. According to the
information disclosed in the global energy storage database, it is seen that 198 operational
projects utilized lithium- or sodium-ion batteries as the alternative ESDs. Especially, 95%
of operational projects are based on lithium-ion batteries (LIBs) [5]. It can be ascribed to
their fast response time, no geographical restrictions, and adjustable output based on the
requirements as compared to other technologies [6].

Except for energy storage applications, they also serve as electricity resources for
electric vehicles (EVs). Due to the rapid growth of the LIBs market, it is noticed that the
price of lithium carbonate, a critical chemical for lithium-ion batteries, greatly climbed to
around CNY 600,000 per ton in November of 2022. Although it declined to CNY 365,500 in
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early March of 2023, such a price is still about five times higher than that in March of 2021 [7].
Apart from the LIBs, the successful manufacturing of sodium-ion batteries (SIBs) is recently
announced [8]. Being an alternative charge carrier to lithium, the benefits of sodium can be
attributed to the material abundance, low cost, and electrochemical similarities [9]. Despite
the growing progress in the SIBs, the implementation of this technology still remains
challenging due to the kinetics mismatch between the anode and cathode.

Carbonaceous materials have been regarded as the most promising anodes for SIBs
because of their diverse structures and properties, as well as extensive availability and low
cost [10,11]. Among them, hard carbon (HC) was first demonstrated as a feasible intercala-
tion anode for SIBs in 2000 [12]. Benefiting from the enriched microcrystalline structures
(i.e., providing more defects and active sites to store sodium ions) and low operating
potential (~0.1 V vs. Na/Na+), a reversible capacity of 300 mAh/g was achieved, which is
close to that for lithium insertion in graphitic carbon anode materials [12]. Nonetheless, the
diffusion of Na+ within the HC is quite sluggish, causing poor rate capability. Besides that,
the large stress generated by Na+ insertion/extraction will also result in rapid structural
collapse and thus leads to poor cycling stability [13,14]. To address those concerns, nitrogen
(N)-doped carbon materials have attracted intense attention [15–19]. It is well-known that
the configurations of N presented in graphitic carbon included pyrrolic N (N-5), quaternary
N (N-Q), and pyridinic N (N-6), which can be found at defects, edge sites, and skeletons
in graphite planes, respectively [20]. So far, it is always believed that N-6 plays a major
role in the storage of alkali metal ions [21,22]. However, even better performance can be
achieved when the content of N-5 is high enough, which is attributed to the introduction of
N-5 that can enhance the conductivity, enlarge the interlayer distance, and increase defects
for sodium storage [20].

ZIF-8, one of the zeolitic imidazolate frameworks with a sodalite zeolite-like structure,
is constructed by Zn ions (Zn2+) and imidazolate (C3H3N2

−) linkers. Given a variety of
morphologies, three-dimensional (3D) frameworks, and high microporosities, it is widely
functioned as the starting material for efficiently preparing the N-doped porous carbon
(N-PC) by thermal pyrolysis under an inert atmosphere [23–26]. Owing to the good thermal
stability and self-templating behavior, the morphology and textural features of the resulting
N-PC were not significantly altered [27]. Furthermore, the amount of N present in the N-PC
is much greater than the one prepared using urea as the N source, which is due to the high
tetrahedrally coordinated structures among the Zn2+ and C3H3N2

− [28].
Inspired by the concepts (i.e., porous characteristics and highly N-doped amounts)

mentioned above, the polyhedral ZIF-8 nanoparticles were first synthesized in the present
study under ambient conditions. Unlike the organic solvent (e.g., methanol, ethanol,
dimethylformamide, etc.) generally utilized for synthesizing the ZIF-8, deionized (DI)
water was selected here as a green medium because of the cost and environmental con-
siderations [29–31]. Subsequently, the N-doped and Zn-confined microporous carbon
(N,Z-MPC) was prepared through thermal pyrolysis of ZIF-8 under an argon atmosphere.
After systemically analyzing the crystallinity, morphological, and physicochemical prop-
erties of N,Z-MPC, the possible reasons affecting the electrochemical performances and
storage mechanism were discussed. On the basis of the results reported in this study, it
is rationally believed that the N,Z-MPC can be used as an alternative anode material for
sodium storage applications.

2. Results and Discussion
2.1. Characterizations of Zeolitic Imidazolate Framework-8 (ZIF-8)

To confirm the successful synthesis of ZIF-8 within an aqueous medium, a variety of
characterizations, including crystallography, morphology, textural property, and chemical
environment, were systemically conducted. First of all, Figure 1a illustrates the refined
PXRD pattern that was recorded from 2θ between 5◦ and 50◦ to identify the crystallinity
and purity. As can be seen, the observed pattern matched well with the simulated one,
which was retrieved from the crystallography open database (COD ID: 7111968) [32]. In
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addition, the relatively low values in terms of goodness of fit (GOF: 2.48) and reliability
factors (Rexp: 2.90%, Rwp: 7.20%, and Rp: 5.53%) were also obtained. The predominant
peaks located around the 2θ of 7.3◦, 10.4◦, 12.7◦, 14.7◦, 16.4◦, and 18.1◦ corresponded to the
(011), (002), (112), (022), (013), and (222) crystallographic planes of ZIF-8, respectively [33].
Besides that, it is noticed that the undesired signals were not detected, indicating that high-
quality ZIF-8 was successfully synthesized using an aqueous medium, even under ambient
conditions. The micrographs captured from SEM and TEM are displayed in Figure S1a
and Figure 1b, respectively. As revealed, the synthesized ZIF-8 appeared as a polyhedral
architecture with well-defined facets and sharp edges (see Figure S1a). Moreover, their
particle sizes were estimated to be 300 nm to 500 nm, which was similar to the range
reflected in Figure 1b. The nitrogen adsorption–desorption measurement was carried out
to accurately determine the specific surface area (SSA) and pore-size distribution, in which
the corresponding isotherm is plotted in Figure S1b. Following the IUPAC classification,
the isotherm can be categorized as Type I. On the other hand, the SSA value received from
the Brunauer-Emmett-Teller (BET) method was found to be 1484 m2/g, while the pore-size
distribution analyzed by a t-plot method revealed a range between 0.3 nm and 0.9 nm (see
the inset of Figure S1b). Those results suggested that the ZIF-8 synthesized in the present
study possessed the microporous feature, which was consistent with the others prepared
through organic solvents [30,33].
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Figure 1. (a) Refined PXRD patterns and (b) low-magnification TEM micrograph of ZIF-8. Scale bar
of (b) is 100 nm.

The chemical composition and environment of synthesized ZIF-8 were analyzed using
X-ray photoelectron spectroscopy (XPS). The full-range XPS spectrum in Figure S2 indicates
the presence of Zn, O, N, and C, where the atomic percent of each element was 5.8%,
8.6%, 22.0%, and 63.6% in turn. Accordingly, the calculated N/Zn ratio is 3.8, approaching
the theoretical value in ZIF-8 [34]. Again, the successful synthesis of ZIF-8 is verified.
Figure 2a,b further illustrates the high-resolution Zn 2p and N 1s spectra, respectively.
The former showed two distinct peaks in the binding energies of 1021.4 eV and 1044.5 eV,
which were assigned to (1) Zn 2p3/2 and (2) Zn 2p1/2. The difference between these
peaks was calculated to be 23.1 eV, meaning +2 of valence state for the Zn [35]. This can
be attributed to the fact that the metal Zn center is Zn2+ in the ZIF-8 [36]. As for the
latter, two deconvoluted peaks fitted by the Gaussian-Lorentzian method were centered
at 398.5 eV and 400.1 eV, which were associated with (1) N-Zn coordination and (2) non-
deprotonated -NH- bonding, respectively [34,37]. Considering the integrated area ratio
among those peaks, it is found that 90.5% of N existed in N-Zn coordination, verifying that
the majority of N was coordinated with Zn2+ to build ZIF-8.
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2.2. Characterizations of Nitrogen-Doped and Zinc-Confined Microporous Carbon (N,Z-MPC)

The N,Z-MPC powders were directly acquired through thermal pyrolysis of ZIF-8
under an argon atmosphere; consequently, their characteristics, such as crystallography,
morphology, textural property, and chemical environment, were also carefully scrutinized.
Figure 3a depicts the normalized PXRD pattern, which was collected in 2θ range of 10◦ and
70◦. As revealed, only two broad peaks representing the (002) and (100) crystallographic
planes of carbon (JCPDS No.: 41-1487) were detected [38]. When analyzing the (002) peak
using the Gaussian-Lorentzian method from 2θ of 16◦ to 32◦, it can be seen that the 2θ value
was fitted well to be 24.18◦ (see Figure S3), corresponding to the d-spacing of 0.37 nm. In
order to clearly classify the crystal region within the N,Z-MPC, two deconvoluted peaks
correlated to disordered (1) and graphitic (2) regions were discriminated, as shown in
Figure 3b. The obtained results are also summarized in Table S1. As expected, the higher
area proportion of disordered regions (i.e., 67%) was reflected. Moreover, another effective
approach to evaluate the disorder degree of carbonaceous materials by using empirical
parameter R was proposed. On the basis of the definition, the R-value is received from
the ratio of the height of the (002) diffraction peak to the background [39,40]. The low
R-value means that the parallel-stacked graphene sheet structures that existed within
the carbonaceous materials were less. Accordingly, the lower the R-value, the more the
disordered structure will be contained. By calculating, the R-value of N,Z-MPC was 2.96,
which was significantly lower than the mesophase pitch-derived carbon (i.e., 5.47) prepared
under the same pyrolysis temperature [40].

Raman identification is a general strategy that can straightforwardly understand the
graphitization degree of carbonaceous materials. The normalized Raman spectrum plotted
in Figure 4 reveals two obvious peaks that appeared at 1336 cm−1 and 1575 cm−1, which
were the typical signals for the D and G bands. Considering the intensity ratio among these
peaks (i.e., ID/IG), it is found that the value was calculated to be 1.32. This result suggests
that less graphitization degree of N,Z-MPC shows a good agreement with the evidence
given in Figure 3b. Utilizing carbonaceous material as the active species of the electrode,
the graphitization degree is well-recognized as one of the significant factors affecting its
electronic conductivity. Consequently, it is imperative to discuss the proportion of sp3

to sp2 within the N,Z-MPC, even though the aforementioned results already showed its
highly disordered structure. To figure out this idea, the Raman spectrum analyzed by
the Gaussian-Lorentzian method was further deconvoluted into four peaks, which were
labeled as peaks (1) to (4) in Figure 4. Among them, peaks (1) and (3) are associated with
sp3-type carbon, while the others are related to sp2-type carbon [38,41]. The integrated area
ratio of sp3 to sp2 (Asp

3/Asp
2) has been demonstrated to provide insightful information on

the nature of carbonaceous materials, e.g., a low Asp
3/Asp

2 ratio gives that a larger amount
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of carbon exists as sp2-type [42]. As a result, the calculated Asp
3/Asp

2 ratio was about
0.17, signifying that the N,Z-MPC still retained a great proportion of sp2-type carbon, even
intrinsically with less crystallinity.
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The morphological observations of N,Z-MPC were performed through SEM-EDX and
TEM. In comparison with the original ZIF-8, it can be seen that not only the polyhedral
architecture but also the size observed from the N,Z-MPC (see Figures S4a and 5a) were not
significantly varied even after 800 ◦C of pyrolysis temperature. Moreover, the elements of C,
O, Zn, and N were well-distributed within N,Z-MPC, as shown in Figure S5, suggesting that
the Zn was confined inside the microporous carbon. To facilitate sodium-ion intercalation
and de-intercalation, it is reported that the d-spacing of carbonaceous materials should be
more than 0.37 nm [43]. With further magnifying, about 0.38 nm of the distance between
adjacent lattices was revealed, as pointed out in Figure 5b, indicating that our N,Z-MPC
meet the basic criteria towards sodium-ion transportations. No matter the carbonaceous
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materials were synthesized by which kinds of precursors, it has been proven that the tex-
tural properties, including the SSA value, pore size, and distribution function, are critical
factors in influencing the initial Coulombic efficiency, ionic mobility, reversible capacity,
etc. [14,44,45]. Figure S4b shows the nitrogen adsorption–desorption isotherm (Type I [46]).
It is noticed that the SSA value dramatically declined from 1484 m2/g to 441 m2/g, repre-
senting a similar tendency in ZIF-8-derived carbon materials [47]. Nevertheless, a similar
pore-size distribution was detected from N,Z-MPC (i.e., 0.3 nm ~ 0.9 nm, see the inset of
Figure S4b), solidly supporting a microporous characteristic that was still reserved.
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To explore the chemical composition and environment of N,Z-MPC, the full-range XPS
survey and high-resolution analysis were conducted. The former (Figure S6) shows the ex-
istence of C, N, O, and Zn with atomic percent of 74.2%, 16.1%, 7.4%, and 2.2%, respectively.
As for the latter, the C 1s spectrum in Figure 6a was fitted into three peaks at 284.5 eV,
285.7 eV, and 287.7 eV, which was attributed to C-C (1), C-N (2), and C-O/C=O (3) [37]. Sec-
ondly, two deconvoluted peaks associated with pyridinic-N (1) and pyrrolic-N (2) species
were found at 398.1 eV and 399.8 eV from the N 1s spectrum (Figure 6b). Based on the
integrated area of those peaks, the amount of pyridinic-N was calculated to reach 62%. It is
worth mentioning that no signals corresponding to Zn3N2 were seen, suggesting that the
nitrogen atoms were effectively introduced into the carbon matrix [48]. Similar to the ZIF-8,
the spectrum of Zn 2p (see Figure 6c) displays two typical peaks at (1) 1021.7 eV (Zn 2p3/2)
and (2) 1044.8 eV (Zn 2p1/2). Since the difference in binding energy between those peaks
was also 23.1 eV, the magnified Zn 2p3/2 peak was further fitted to distinguish the chemical
bonding among the Zn species. As revealed in Figure 6d, it can be deconvoluted into two
peaks: (1) Zn0 at 1021.3 eV and (2) ZnO at 1022.0 eV [49]. The integrated area ratio of Zn0

to ZnO was calculated to be 1.1, signifying that the Zn that existed within the N,Z-MPC
was in metallic form due to the thermal reduction [50]. However, it was partially oxidized
into ZnO when exposing the N,Z-MPC to air. Despite that, these Zn-based sites confining
within the N,Z-MPC would give an excellent affinity and strong interaction with sodium
ions upon cycling [51].

According to the results disclosed in this section, the N,Z-MPC acquired after thermal
pyrolysis of ZIF-8 under an argon atmosphere gives diverse benefits, including enlarged
d-spacing, a high proportion of sp2-type carbon, distinctive textural feature, a great amount
of nitrogen dopant, and sodiophilic Zn species. Encouraged by those characteristics, it
would make N,Z-MPC a very favorable material for sodium storage applications. What
is more is that exploring the sodium storage mechanism within such an N,Z-MPC is
also of significance.
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C-O/ C=O), (b) N 1s ((1) for pyridinic-N and (2) for pyrrolic-N), (c) Zn 2p ((1) for Zn 2p3/2 and
(2) for Zn 2p1/2), and (d) magnified Zn 2p3/2 peak ((1) for Zn0 and (2) for ZnO).

2.3. Electrochemical Measurements of Nitrogen-Doped and Zinc-Confined Microporous
Carbon (N,Z-MPC)

To evaluate the Na+-storage performance of N,Z-MPC, it was galvanostatically tested
in the potential window between 0.01 V and 3.0 V (vs. Na/Na+) at a current density
of 0.02 A/g. As depicted in Figure 7a, the charge and discharge capacities in the first
cycle were 453 mAh/g and 1209 mAh/g, corresponding to ~38% of the initial Coulombic
efficiency. In addition, not only a distinct plateau appeared around 1.3 V (vs. Na/Na+) but
also a sloping potential ranging from 0.8 V to 0.01 V (vs. Na/Na+) was observed. Those were
also reflected in the CV curve (refer to the first cycle of Figure S7). The former indicates the
reaction between sodium ions and active sites, whereas the latter associates with electrolyte
decomposition and solid electrolyte interface (SEI) formation [52]. Generally, such an
obvious irreversibility in the initial cycle is ascribed to the latter one. In the coming cycles,
another sloping potential between 0.6 V and 0.01 V (vs. Na/Na+) was displayed, which was
attributed to the insertion/extraction of sodium ions through the carbon lattices and also
in good agreement with the CV results. It is worth mentioning that the average potential
for inserting sodium ions into N,Z-MPC was higher than that for previously reported
carbonaceous materials (between 0 and 0.1 V vs. Na/Na+), which would avoid the growth
of dendrites [53]. By considering the Na+-storage capacity that was contributed above
0.6 V (vs. Na/Na+), it was about 140 mAh/g at the 10th cycle, i.e., ~33% of the total.
This significant enhancement can be acknowledged to the existence of pyridinic-N and
pyrrolic-N, evidenced in Figure 6b, increasing the active sites for rapid Na+ adsorption.
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Figure 7b illustrates the galvanostatic charge-discharge (GCD) profiles measured at
current densities from 0.02 A/g to 1.0 A/g. As can be seen, their GCD tendencies were
not significantly varied even after gradually increasing the rates. Additionally, the ratio
between the discharge capacities delivered at 0.6 V (vs. Na/Na+) to the total was kept at
~33%, as plotted in Figure S8, inferring the stable and reversible Na+-storage kinetic within
the N,Z-MPC. According to the GCD curves, the charge capacities of 423, 392, 335, 270,
178, and 104 mAh/g at 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 A/g, respectively, are compared in
Figure 7c. When the current density was returned to 0.05 A/g, it was noticed that 96.4%
of the recovery in capacity was achieved. Figure S9a compares the EIS spectra that were
recorded before and after rate-capability measurements. Before testing, the charge transfer
resistance (Rct) was fitted to be 453 Ohm according to the equivalent circuit model shown
in Figure S9b. Following the repeated charge-discharge processes, the resistance that came
from the SEI layer (RSEI) was about 70 Ohm, in which the Rct value was also increased to
828 Ohm (see Figure S9c for the fitting model). It is recognized that the Rct included ionic
and electronic resistances. The former is the resistance to the ionic mobility inside the textual
pores of the electrode, while the latter comprises the intrinsic resistance of the electrode
material and the contact resistance between the active layer and the current collector [54].
The N,Z-MPC still displayed good reversibility even though ~83% of the increase in the
Rct appeared, which could be supported by its distinctive features, i.e., microporosity, a
great amount of nitrogen doping, high proportions of sp2-type carbons, etc. The cycling
stabilities were further measured at 0.2 and 1.0 A/g, while the corresponding results are
shown in Figure S10 and Figure 7d, respectively. As revealed, the initial charge capacity
was 272 mAh/g with ~91% of Coulombic efficiency when the N,Z-MPC was cycled at
0.2 A/g. Even though the capacity values fluctuated, the capacity retention was calculated
to be 92.6% after 300 cycles. Encouragingly, 96.6% of capacity retention was further noticed
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at 3000 cycles at 1.0 A/g, as depicted in Figure 7d. These electrochemical performances
were further compared with previously reported nitrogen-doped carbon anodes using
the carbonate-based electrolyte. As summarized in Table S2, it is clearly noticed that the
initial Coulombic efficiency, rate capabilities, and capacity retention were significantly
influenced by the N content and specific surface area. Of course, other parameters such
as the electrode’s packing density, material’s porosity, and morphology also varied the
corresponding electrochemical performances. Nevertheless, the N,Z-MPC still shows better
reversible capacity recorded at 0.05 A/g with other studies [55–60].

3. Materials and Methods
3.1. Chemicals

All reagents, including zinc acetate dihydrate (Zn(CH3COO)2·2H2O, ≥98%, Sigma-
Aldrich, St. Louis, MO, USA), 2-methylimidazole (C4H6N2, 99%, Sigma-Aldrich, St. Louis,
MO, USA), sodium perchlorate (NaClO4, anhydrous, 98%, Alfa Aesar, Heysham, England),
ethylene carbonate (EC, 99%, Alfa Aesar, Heysham, England), diethyl carbonate (DEC,
99%, Alfa Aesar, Heysham, England), fluoroethylene carbonate (FEC, 99%, Sigma-Aldrich,
St. Louis, MO, USA), poly(vinylidenedifluoride) (PVDF, Kynar® HSV 900, Arkema Inc.,
Colombes, France), N-methylpyrolidinone (NMP, ChromAR®, Macron Fine ChemicalsTM,
Radnor, PA, USA), sodium metal (Na, 99%, E-Current CO., LTD., Taipei, Taiwan), glass
fiber separator (Type A/E, P/N 61630, Pall corporation, Port Washington, NY, USA), and
carbon black (Super P®, Timcal Ltd., Bodio, Switzerland) were employed without further
purification. Deionized (DI) water produced from a Milli-Q® Integral water purification
system (Millipore Ltd., Burlington, MA, USA) was used throughout the experiments.

3.2. Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8)

To synthesize the ZIF-8, 2 g of Zn(CH3COO)2·2H2O was first dissolved in 30 mL of
DI water to give solution A. Subsequently, solution A was directly added into another
solution that contained 7.48 g of C4H6N2 and 30 mL of DI water with continuous stirring
for 16 h under ambient conditions. The white ZIF-8 powders (~1.8 g) were finally acquired
by centrifugation, rinsing with DI water, freeze-drying, and grinding.

3.3. Preparation of Nitrogen-Doped and Zinc-Confined Microporous Carbon (N,Z-MPC)

For preparing the N,Z-MPC, 1.6 g of ZIF-8 powders were thermally pyrolyzed in the
tube furnace at 800 ◦C for 3 h under an argon atmosphere with a flow rate of 200 mL/min.
The black N,Z-MPC powders were collected when they were naturally cooled down to
room temperature and thoroughly ground using a pestle and agate mortar. The yield of
N,Z-MPC was about 50%, which was attributed to the thermal decomposition of organic
ligands within the ZIF-8.

3.4. Characterizations

The crystalline structures of ZIF-8 and N,Z-MPC were identified using a powder X-ray
diffractometer (PXRD, Bruker D2 PHASER) with a Cu target (λ = 1.541 Å) that was excited
at 30 kV and 10 mA. In addition, the corresponding PXRD pattern of ZIF-8 recorded in
the range of 2θ from 5◦ to 50◦ at a scanning rate of 2.5 sec/step was further refined via
Rietveld analysis using TOPAS 4.2 software (Bruker AXS Inc., Karlsruhe, Germany). As for
the N,Z-MPC, the PXRD pattern was collected from 2θ between 10◦ and 70◦ at a scanning
rate of 0.5 s/step. For morphological observations, the scanning electron microscope (SEM,
JSM-IT200, JEOL Ltd., Tokyo, Japan) and transmission electron microscope (TEM, JEM-
2100, JEOL Ltd., Tokyo, Japan) operated at an accelerating voltage of 200 kV was utilized.
N2 adsorption–desorption isotherm was recorded at 77 K on a surface area and porosity
analyzer (ASAP 2020 V3.00, Micromeritics Instrument Corporation, Norcross, GA, USA)
after the ZIF-8 and N,Z-MPC had been degassed in a vacuum at 160 ◦C for 8 h. The
pore size distribution of each sample was analyzed using a t-plot method (correlation
coefficient ≥ 0.995), which is a well-known technique for determining the micro- and/or
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mesoporous volumes [61]. The chemical environments were analyzed through an X-ray
photoelectron spectroscopy (XPS, PHI 5000 VersaProbe III, ULVAC-PHI, Inc., Kanagawa,
Japan) with a beam size of 100 um under Al Kα radiation (λ = 8.3406 Å). Their corresponding
spectra were analyzed by the Gaussian-Lorentzian fitting method using XPSPEAK 4.1
software. The Raman spectrum was collected by a confocal Raman microscope (inVia,
Renishaw, UK) equipped with a 633 nm laser source.

3.5. Electrochemical Measurements

The electrochemical tests throughout this study were conducted using the CR2032
coin-type cells under ambient conditions. The working electrodes were prepared by
homogeneously blending 70 wt.% N,Z-MPC, 10 wt.% Super P, and 20 wt.% PVDF with
the proper volume of NMP solvent. The resulting slurry was then coated onto the carbon-
coated copper foil using a doctor-blade process and dried at 60◦C until the NMP was
completely evaporated. The mass loading of N,Z-MPC was 0.3 ~ 0.6 mg/cm2. Meanwhile,
sodium foil, 1 M NaClO4/EC:DEC (1:1 v/v) with 5 vol.% FEC, and glass fiber served as
the counter electrode, electrolyte, and separator, respectively. After assembling the half
cells, the potential range utilized for cyclic voltammetry (CV) and galvanostatic charge-
discharge (GCD) measurements was between 0.01 V and 3.0 V (vs. Na/Na+). The cyclic
voltammograms and electrochemical impedance spectroscopy (EIS) spectra were recorded
using a multichannel electrochemical workstation (VSP-3e, Bio-Logic, Seyssinet-Pariset,
France). The latter was performed at open circuit potential (OCP) from 100 kHz to 0.01 Hz
with an AC potential amplitude of 5 mV. The GCD profiles and cycling stabilities were
evaluated through a computer-controlled system (CT-4008T-5V50mA, Neware Technology
Limited, Shenzhen, China). The capacity values presented throughout this study were
calculated based on the total mass of N,Z-MPC.

4. Conclusions

In summary, the polyhedral ZIF-8 nanoparticles with great crystallinity, high purity,
and huge specific surface area were successfully synthesized utilizing DI water as the green
medium under ambient conditions. Through thermal pyrolysis of synthesized ZIF-8 under
an argon atmosphere at 800 ◦C, the nitrogen-doped and zinc-confined microporous carbon
(N,Z-MPC) powders were subsequently obtained to explore the Na+-storage performances.
Following the systemic characterizations, the N,Z-MPC exhibited great dis-ordered struc-
ture, enlarged interplanar distance, and a high proportion of sp2-type carbon. Combining
those characteristics with major pyridinic-N configuration, sodiophilic Zn species, and
microporous feature, our N,Z-MPC delivered good reversible capacities (335 mAh/g at
0.1 A/g), comparable rate capabilities (104 mAh/g at 1.0 A/g), and remarkable cyclabilities
(96.6% of capacity retention at 3000 cycles at 1.0 A/g, i.e., 0.001% of loss per cycle). Conse-
quently, the results shown in this study suggested that the N,Z-MPC can thus be prepared
as a promising anode material with favorable Na+-storage abilities toward sodium-ion
batteries/capacitors applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24108777/s1, Figure S1: (a) SEM micrograph and (b) nitrogen
adsorption–desorption isotherm of ZIF-8. Scale bar of (a) is 500 nm, whereas the inset of (b) shows
the pore-size distribution analyzed by a t-plot method. Figure S2: Full-range XPS spectrum of ZIF-8.
Figure S3: The magnified XRD pattern of (002) peak for N,Z-MPC analyzing by Gaussian-Lorentzian
method. Figure S4: (a) SEM micrograph and (b) nitrogen adsorption–desorption isotherm of N,Z-
MPC. Scale bar of (a) is 500 nm, whereas the inset of (b) shows the pore-size distribution analyzed
by a t-plot method. Figure S5: SEM-EDX analysis of N,Z-MPC, scale bar: 250 nm. Figure S6: Full-
range XPS spectrum of N,Z-MPC. Figure S7: Cyclic voltammograms of N,Z-MPC collected in the
potential range between 0.01 V and 3.0 V (vs. Na/Na+) at a scanning rate of 0.2 mV/sec. Figure S8:
Relationship between the discharge capacity contributed from the potential below and above 0.6 V
(vs. Na/Na+) and current density. Figure S9: (a) Electrochemical impedance spectra of N,Z-MPC, and
the equivalent circuit models used for parameter fitting: (b) before and (c) after C-rate measurements.

https://www.mdpi.com/article/10.3390/ijms24108777/s1
https://www.mdpi.com/article/10.3390/ijms24108777/s1
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Figure S10: The cycling stability of N,Z-MPC measured at 0.2 A/g. Table S1: Parameters of (002) peak
from XRD pattern and related profile-fitting results. Table S2: Comparisons of the electrochemical
performances on previously reported nitrogen-doped carbon anodes for sodium-ion batteries using
the carbonate-based electrolyte [20,43,55–60,62,63].
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