
Citation: Pompili, S.; Vetuschi, A.;

Latella, G.; Smakaj, A.; Sferra, R.;

Cappariello, A. PPAR-Gamma

Orchestrates EMT, AGE, and Cellular

Senescence Pathways in Colonic

Epithelium and Restrains the

Progression of IBDs. Int. J. Mol. Sci.

2023, 24, 8952. https://doi.org/

10.3390/ijms24108952

Academic Editors: Alain Couvineau

and Cécile Haumaitre

Received: 29 March 2023

Revised: 9 May 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

PPAR-Gamma Orchestrates EMT, AGE, and Cellular
Senescence Pathways in Colonic Epithelium and Restrains the
Progression of IBDs
Simona Pompili 1,†, Antonella Vetuschi 1,†, Giovanni Latella 2 , Amarildo Smakaj 3, Roberta Sferra 1,‡

and Alfredo Cappariello 2,*,‡

1 Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
simona.pompili@univaq.it (S.P.); antonella.vetuschi@univaq.it (A.V.); roberta.sferra@univaq.it (R.S.)

2 Department of Life, Health, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
giovanni.latella@univaq.it

3 Department of Geriatrics and Ortopaedic Sciences, University Cattolica del Sacro Cuore, 00168 Rome, Italy;
amarildo.smakaj@gmail.com

* Correspondence: alfredo.cappariello@univaq.it
† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Abstract: Intestinal fibrosis, the most common complication of inflammatory bowel disease (IBD),
is characterized by an uncontrolled deposition of extracellular matrix proteins leading to complica-
tions resolvable only with surgery. Transforming growth factor is the key player in the epithelial-
mesenchymal transition (EMT) and fibrogenesis process, and some molecules modulating its activity,
including peroxisome proliferator-activated receptor (PPAR)-γ and its agonists, exert a promising an-
tifibrotic action. The purpose of this study is to evaluate the contribution of signaling other than EMT,
such as the AGE/RAGE (advanced glycation end products/receptor of AGEs) and the senescence
pathways, in the etiopathogenesis of IBD. We used human biopsies from control and IBD patients,
and we used a mouse model of colitis induced by dextran-sodium-sulfate (DSS), without/with
treatments with GED (PPAR-gamma-agonist), or 5-aminosalicylic acid (5-ASA), a reference drug
for IBD treatment. In patients, we found an increase in EMT markers, AGE/RAGE, and senescence
signaling activation compared to controls. Consistently, we found the overexpression of the same
pathways in DSS-treated mice. Surprisingly, the GED reduced all the pro-fibrotic pathways, in some
circumstances more efficiently than 5-ASA. Results suggest that IBD patients could benefit from
a combined pharmacological treatment targeting simultaneously different pathways involved in
pro-fibrotic signals. In this scenario, PPAR-gamma activation could be a suitable strategy to alleviate
the signs and symptoms of IBD and also its progression.

Keywords: IBD; intestine; inflammation; fibrosis; senescence; β-galactosidase; AGE; RAGE; EMT;
PPAR-γ

1. Introduction

Inflammatory bowel diseases (IBD) represent a wide range of chronic inflammatory
disorders of the gastrointestinal tract, including ulcerative colitis (UC) and Crohn’s dis-
ease (CD). In approximately 30% of CD patients and almost 5% of UC patients, chronic
inflammation leads to intestinal fibrosis [1–3]. Intestinal fibrosis is a process characterized
by an uncontrolled production and deposition of extracellular matrix (ECM) proteins by
activated myofibroblasts in the intestine derived from both resident mesenchymal cells
(fibroblasts, sub-epithelial myofibroblasts, and smooth muscle cells) and epithelial and en-
dothelial cells through the process of epithelial–mesenchymal transition (EMT)/endothelial–
mesenchymal transition (EndoMT) [4]. Furthermore, the activation of ECM-producing
cells is mediated by a plethora of molecules such as cytokines, chemokines, and angiogenic
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and growth factors. Among these, a key role is played by transforming growth factor-β
(TGF-β), which acts via both its canonical (mitogen-activated protein kinase, MAPK; phos-
phoinositide 3-kinase, PI3K; and suppressor of mothers against decapentaplegic, smad),
and non-canonical (i.e., sphingosine 1 phosphate) pathways to promote fibrogenesis onset
and progression [5–8]. Although different molecules, such as glycogen synthase kinase-3
beta (GSK-3β), peroxisome proliferator-activated-receptor gamma (PPAR-γ), and miR200,
are able to inhibit TGF-β1-induced fibrosis, to date, no efficient and well-tolerated anti-
fibrotic drugs are available [9]. Nowadays, the main clinical options for IBD are drugs
aimed at targeting inflammation, such as steroids, salicylates (i.e., sulfasalazine), and
biological agents against tumor necrosis factor-α (i.e., infliximab). Indeed, once ECM
deposition has begun, it inevitably leads to strictures, stenosis, intestinal obstruction, and
consequently a loss of function of the affected digestive tract, and surgery remains the
only therapeutic solution [5,6,9–11]. IBD has been extensively investigated, and many
steps forward have been made over the years. However, the precise etiology of these
disorders remains unknown. Several factors are involved in IBD pathogenesis, such as
environmental and immunological factors, genetic predisposition, and diet. In this context,
over the last two decades, the prevalence of IBD has been increasing constantly and is
becoming a global health problem, mainly in the newly industrialized countries (i.e., Brazil
and Taiwan) [12,13]. The increased incidence of IBD seems directly correlated with the
overconsumption of a Western diet, characterized by high sugar and fat content. These
compounds, in response to both industrial (i.e., sterilization) and home-made (i.e., baking)
heat treatments, are subject to chemical reaction and reduced into new products such as
Amadori products, melanoidins, and advanced glycosylation end products (AGEs) [14–16].

AGEs are heterogeneous substances formed by irreversible non-enzymatic interactions
between reducing sugars and proteins, lipids, or nucleic acids, a process known as glycation.
AGEs can be exogenously introduced or endogenously synthesized in the body. A plethora
of classes of exogenous AGEs result from cooking at high temperatures for an extended
time, low hydration, and high pH. Endogenous AGEs are mainly produced via the complex
Maillard reaction, resulting in the formation of reactive carbonyl compounds. Studies
revealed that AGEs, through binding to its receptor (receptor for advanced glycation
end products, RAGE), exert a negative effect on human health [17–19]. Physiologically,
RAGE is slightly expressed in most of the organs, while under pathological conditions,
including diabetes, neurodegenerative disorders, and inflammatory diseases, its levels
significantly increase [20]. Generally, the fibrotic process is accompanied by upregulation
of RAGE, but some exceptions occur, such as lung fibrosis characterized by the loss of
RAGE expression [21,22]. Once activated, RAGE is involved in many processes such as
inflammation, apoptosis, autophagy, oxidative stress, and cellular senescence.

Cellular senescence is a process characterized by a gradual loss of cell differentiation,
loss of nuclear structure and function via downregulation of laminin B1, blockage of cell
replication in the G1/S phase, and expression of β-galactosidase resulting in a permanent
growth arrest [23]. In response to dangerous stimuli (i.e., oxidative stress, epigenomic
dysregulation), a cell can become senescent, activating an apoptotic resistance program
and releasing several molecules, including chemokines, interleukins, and matrix proteases,
collectively known as senescence-associated secretory phenotype (SASP). This complex
secretum alerts neighboring cells to the occurrence of an injury and recruits the immune
cells to delete the senescent cells [24]. This scenario preserves the tissue to further exposure
to injury and restores tissue fitness and function. However, a prolonged exposure to
SASP contributes to the accumulation of senescent cells and the propagation of harmful
stimuli and tissue detriment. This situation concurs with the progression of many diseases,
especially degenerative ones, such as obesity, cardiovascular disease, steatohepatitis, as
well as IBDs [25–28].

We previously reported that the outcome of DSS-induced colitis is reversed by GED
0507-34 Levo (GED, an agonist of PPAR-γ), showing not only anti-inflammatory activity but
also higher effectiveness in fibrosis resolution compared to 5-aminosalicylic acid (5-ASA),
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the gold standard for IBD treatment. GED was demonstrated to be effective in alleviating
the macroscopic and microscopic typical hallmark of DSS-induced IBD, including disrup-
tion of organ morphology, reduction in and alteration of crypt architecture, diffuse signs
of inflammation in the mucosa and submucosa layers, collagen deposition in the mucosa,
submucosa and serosa, and induction of EMT, in in vitro and in vivo models [29,30].

On these bases, EMT, AGEs, and senescence are supposed to be strictly involved
with the IBD progression, having in common several molecular players, such as TGF-β
and IL-1β. Thus, we aimed to investigate how the EMT, AGEs, and senescence pathways
cooperate in the context of the intestinal inflammation and fibrosis process occurring in IBD.

2. Results
2.1. Human IBD Shows the Activation of EMT, AGE/RAGE, and Senescence

To estimate the clinical relevance of our hypothesis, we investigated human biopsies
of the colon from healthy subjects and IBD patients in the remission phase of the disease
(Figure 1). For one patient, we had biopsies both on healthy and inflamed colonic mucosa
(red symbols in the next graphs). First of all, we conducted a morphological analysis
to confirm the typical signs of IBD, such as the presence of plain inflammatory infiltrate
in the mucosa layer (Figure 1A) as well as glandular atrophy, distortion, and depletion,
accompanied by reduced intraluminal secretion (Figure 1B). Finally, signs of fibrosis were
highlighted (Figure 1C). In the IBD group, we found a thickness of the extracellular matrix
with abundant deposition of collagen fibers in the lamina propria, especially around the
glandular residues, compared to control patients (Figure 1C).
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Figure 1. Evaluation of colonic mucosa morphology of IBD patients. (A) Hematoxylin and eosin
staining to evaluate inflammation. Original magnification 10×, scale bar 100 µm (B) Periodic acidic
(PAS) staining to evaluate glands morphology. In the control group, the glands appeared inten-
sively colored in magenta red, indicating the presence of a high glycoprotein content. Original
magnification 20×, scale bar 50 µm. (C) Masson’s Trichrome staining to evaluate fibrosis and organ
architecture. Original magnification 10×, scale bar 100 µm. These images are representative of at
least n = 4 patients/groups.

Fibrogenesis is confirmed by the high positiveness of collagens I-III at protein and
transcriptomic levels (Figure 2A,B) as well as the increase in α-SMA-positive myofibroblasts
(Figure 2C).
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Figure 2. Evaluation of pro-fibrotic signaling (collagens I-III, CCN2, α-SMA), in the colonic mucosa of
IBD patients. (A) Immunohistochemistry and semi-quantitative analyses for collagens I-III (brown).
(B) Quantitative Real-Time PCR for Cellular Communication Network Factor 2 (CCN2) expression.
(C) Immunohistochemistry and semi-quantitative analyses for α-SMA. Nuclei are counterstained
with hematoxylin; Original magnification 10×, scale bar 100 µm. These images are representative
of at least n = 4 subjects/groups. Data were analyzed by unpaired t-test. IBD: inflammatory bowel
diseases group. Red symbols indicated biopsies from healthy (red circle) and affected (red triangle)
colonic mucosa of the same subjects.

Inflammation in the IBD group was confirmed by the evaluation of CD80 (Figure 3A,B).
Thus, we analyzed the molecular machinery sustaining morphological alterations. As
expected, PPAR-γ is decreased in IBD subjects compared to healthy ones both at the protein
and transcriptomic levels (Figure 3C,D).
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Figure 3. Evaluation of inflammation in the colonic mucosa of IBD patients. (A) Immunofluorescence
and quantification for CD80 (red). Nuclei are counterstained with DAPI (blue) (B) Quantitative
Real-Time PCR for CD80 expression. (C) Immunofluorescence and quantification for PPAR-gamma
(red). (D) Quantitative Real-Time PCR for PPAR-gamma expression. Original magnification 20×, scale
bar: 25 µm. These images are representative of at least n = 4 subjects/groups. Data were analyzed
by unpaired t-test. IBD: inflammatory bowel diseases group. Red symbols indicated biopsies from
healthy (red circle) and affected (red triangle) colonic mucosa of the same subjects.
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In line with the exacerbated inflammation and fibrosis, EMT was confirmed by the
decrease in E-cadherin (Figure 4A,B) and the increase in nuclear translocation of β-catenin
(Figure 4C) and in vimentin expression (Figure 4D).
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Figure 4. Evaluation of EMT process in the colonic mucosa of IBD patients. (A) Immunofluorescence
and quantitative analyses for E-cadherin (red). Nuclei are counterstained with DAPI (blue); Original
magnification 20×, scale bar 50 µm. (B) Quantitative Real-Time PCR for e-cadherin (cadh1) expression.
(C) Immunofluorescence and quantitative analyses for beta-catenin (red, white arrows) and its nuclear
translation (purple, pink arrows). Nuclei are counterstained with DAPI (blue). (D) Immunohisto-
chemistry and semi-quantitative analyses for vimentin. Nuclei are counterstained with hematoxylin.
These images are representative of at least n = 4 subjects/groups. Data were analyzed by unpaired
t-test. IBD: inflammatory bowel diseases group. Red symbols indicated biopsies from healthy (red
circle) and affected (red triangle) colonic mucosa of the same subjects.

Inflammation is reported to upregulate in some circumstances the AGE/RAGE path-
way, a crucial player for digestive tract fitness. AGEs are found to be upregulated in
patients compared to the healthy group (Figure 5A), and RAGE is concomitantly increased
both at the protein and transcriptomic levels (Figure 5B,C).

Chronic inflammation and activation of RAGE have been reported to be correlated
with the activation of senescence. Finally, the expression of acidic beta-galactosidase (β-gal)
was assessed. We noted an increase in β-gal positivity in the IBD subjects compared to
healthy ones both at the protein and transcriptomic levels (Figure 6A,C), without any
correlation between the age of patients and β-gal positivity (Figure 6B). Accordingly,
laminin-beta 1 (Lamnb1) expression is reduced in the IBD group (Figure 6D). Finally, also
the SASP member Matrix MetalloPeptidase (MMP)-1 was increased both at the protein and
transcriptomic levels (Figure 6E,F).
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Figure 5. Evaluation of advanced glycosylation end products signaling in the colonic mucosa of IBD
patients. (A) Immunohistochemistry and quantification for AGE (brown). (B) Immunohistochemistry
and quantification for RAGE. Nuclei are counterstained with hematoxylin; Original magnification
20×, scale bar: 25 µm. These images are representative of at least n = 4 subjects/groups. Data were
analyzed by unpaired t-test. IBD: inflammatory bowel diseases group. (C) Quantitative Real-Time
PCR for age receptor (AGER) expression. Red symbols indicated biopsies from healthy (red circle)
and affected (red triangle) colonic mucosa of the same subjects.
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Figure 6. Evaluation of senescent phenotype in the colonic mucosa of IBD patients. (A) Immunofluo-
rescence quantification of beta galactosidase (green). Nuclei are counterstained with DAPI (blue).
(B) Correlation between the age of human subjects and their beta gal positivity. (C) Quantitative Real
Time PCR for beta galactosidase (galb1) expression. (D) Quantitative Real-Time PCR for laminin b1
(lmnb1) expression. (E) Immunohistochemistry and quantification of beta MMP1 (brown). Nuclei are
counterstained with hematoxylin; Original magnification 20×, scale bar: 25 µm. (F) Quantitative Real-
Time PCR for MMP1 expression. These images are representative of at least n = 4 subjects/groups.
Data were analyzed by unpaired t-test. IBD: inflammatory bowel diseases group. Red symbols indi-
cated biopsies from healthy (red circle) and affected (red triangle) colonic mucosa of the same subjects.
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2.2. GED Reduced EMT Occurring in DSS-Induced Mouse Colitis

To evaluate the effects of the exacerbated inflammation in intestinal homeostasis in the
context of the IBD, we took advantage of the DSS-induced colitis mouse model. According
to its anti-inflammatory activity, GED reduced the number of CD80-positive inflammatory
cells, similarly to 5-ASA, but activated more efficiently the PPAR-γ signaling in the DSS
background (Figure 7A,B).
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To evaluate thoroughly the importance of EMT, we compared the regulatory effects of
GED and 5-ASA, looking at the expression of the main markers of EMT such as vimentin,
E-cadherin, and β-catenin in the colonic mucosa. In line with the exacerbated inflammation
and fibrosis, vimentin expression is found to increase in the DSS group (Figure 8A,B).
Notably, the modulation of PPAR-γ by GED administration countered the vimentin upreg-
ulation (Figure 8A,B). The administration of 5-ASA seems to be less effective in reducing
the vimentin expression, validating the presence of fibrosis (Figure 8A,B). E-cadherin was
restored at the level of the control group in the mucosa of DSS + GED, according to a
more preserved epithelium compared to DSS mice (Figure 8C,D). Finally, a decrease in
the nuclear localization of β-catenin was found after GED administration compared to the
other groups (Figure 8E). These data confirmed the importance of EMT in IBD progression
and the ability of GED to slow down both the fibrotic and EMT process more efficiently
than 5-ASA.

2.3. DSS-Induced Mouse Colitis Is Accompanied by Advanced Glycosylation End-Products (AGEs)
Accumulation, Revertible by GED

In this overt background of IBD, we investigated other pathways potentially exac-
erbating the mucosal disruption as in human samples. As expected, DSS administration
increased AGE expression in colonic mucosa (Figure 9A). We noted that the PPAR-γ activa-
tion by GED prevented the AGE upregulation induced by DSS, the result also being more
efficacious than via 5-ASA, which is not able to mitigate its overexpression (Figure 9A).
Accordingly, the RAGE expression (Figure 9B) is reduced by GED, being more effective
than 5-ASA.
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Figure 8. Evaluation of EMT process in the colonic mucosa of DSS-treated mice. (A) Immunohis-
tochemistry and quantification for vimentin (brown). Nuclei are counterstained with hematoxylin.
Original magnification 10×, scale bar 100 µm. (B) Quantitative Real Time PCR for vimentin (vim)
expression. (C) Immunofluorescence and semi-quantitative analyses for E-cadherin (red). Nuclei
are counterstained with DAPI (blue); Original magnification 20×, scale bar 50 µm. (D) Quantitative
Real-Time PCR for e-cadherin (ecadh1) expression. (E) Immunofluorescence and semi-quantitative
analyses for beta-catenin (red) and nuclear translation (purple, pink arrows), Nuclei are counter-
stained with DAPI (blue). These images are representative of at least n = 3 animals/groups. Data
were analyzed by ANOVA (vimentin, p = 0.0146; vim, p = 0.0103; E-cad, p = 0.0006; ecadh1, p < 0.0001;
nuclear β-cat, p = 0.0012) using Tukey’s test for multiple comparisons (indicated in graphs). Ctl,
control; DSS, DSS treated; GED, DSS treated plus GED; ASA, DSS treated plus 5-ASA.
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Figure 9. Evaluation of advanced glycosylation end products signaling in the colonic mucosa of
DSS-treated mice. (A) Immunohistochemistry and semi-quantitative analyses for AGE (brown).
(B) Immunohistochemistry and semi-quantitative analyses for RAGE. Nuclei are counterstained with
hematoxylin; original magnification 10×, scale bar 100 µm. These images are representative of at
least n = 3 animals/groups. Data were analyzed by ANOVA (AGE, p < 0.0001; RAGE, p < 0.0001),
using Tukey’s test for multiple comparisons (indicated in graphs). Ctl, control; DSS, DSS treated;
GED, DSS treated plus GED; ASA, DSS treated plus 5-ASA.
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2.4. GED Is Able to Mitigate the Increase in Senescent Phenotype in DSS-Induced Mouse Colitis

Chronic inflammation and activation of RAGE have been reported to be correlated
with the activation of senescence. In line with this, an increase in markers of senescence,
β-gal, laminin b1, and SASP members, such as IL-1b and MMP1, were investigated in the
DSS group compared to the control (Figure 10). Surprisingly, the activation of PPAR-γ by
GED was effective in attenuating the increase in β-gal induced by DSS administration, to a
greater extent than via 5-ASA (Figure 10A,B). Interestingly, 5-ASA was unable to rescue
the decrease in laminin B1 (Figure 10C), despite the abrogation of some SASP members,
namely, IL-1b and IL-6 (Figure 10D–F). We have summarized all the results in Figure 11.
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Figure 10. Evaluation of senescent phenotype in the colonic mucosa of DSS-treated mice. (A) Im-
munofluorescence and quantification of beta galactosidase (green). Nuclei are counterstained with
DAPI (blue); original magnification 20×, scale bar: 50 µm. (B) Quantitative Real Time PCR for beta
galactosidase (galb1) expression. (C) Quantitative Real-Time PCR for laminin b1 (lmnb1) expression.
(D) Immunohistochemistry and quantification of beta IL1b (brown). (E) Immunohistochemistry
and quantification of beta MMP1 (brown). Nuclei are counterstained with hematoxylin. Origi-
nal magnification 10×, scale bar: 100 µm. (F) Quantitative Real-Time PCR for MMP1 expression,
n = 3 animals/groups. Data were analyzed by ANOVA (β-gal, p = 0.0018; galb1, p < 0.0001; lamnb1,
p = 0.0112; IL1b, p < 0.0001; MMP1, p = 0.0071; mmp1, p < 0.0010), using Tukey’s test for multiple
comparisons (indicated in graphs). Ctl, control; DSS, DSS treated; GED, DSS treated plus GED; ASA,
DSS treated plus 5-ASA.
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Figure 11. Schematization of intestinal fibrosis occurring in DSS-treated mice and in human IBD.
After an injury, intestinal epithelium disruption is induced by inflammation. The persistence of
inflammatory response gradually leads to the downregulation of PPAR gamma (red arrow), an
abnormal deposition of ECM proteins and the onset of fibrogenesis. EMT, AGE/RAGE signaling, as
well as senescence, cooperates with the progression of intestinal fibrosis both in mice and in human
(blue arrows). Their activation is mitigated by GED administration in DSS-treated mice, under the
control of PPAR gamma (green arrow).

3. Discussion

In an attempt to clarify the mechanisms involved in the IBD pathogenesis, in this paper,
we focused our attention on the EMT process, the AGE/RAGE signaling as well as their
possible correlation with cellular senescence in the context of intestinal fibrosis. Altogether,
our data showed that the massive inflammatory status present in patients suffering from
IBD and the animal model of DSS-induced colitis is associated with EMT, AGE/RAGE, and
senescence activation. Moreover, the administration of the PPAR-γ modulator GED in the
animal model of IBD prevented the aberrant activation of all these pathways, endorsing the
protective effect of the PPAR-γ on the intestinal mucosa in the context of IBD and widening
the role of PPAR-γ as a main orchestrator of the intestinal fitness, being potentially more
efficacious than 5-ASA.

AGEs arise from nonenzymatic modifications of proteins by reducing sugars, nor-
mally present in the diet and physiologically formed in aging. However, an acceleration
of these compounds occurs in oxidative conditions (typical of the inflammation), and
their accumulation contributes to the progression of several chronic diseases (i.e., hepatic
fibrosis, lung fibrosis, chronic rhinosinusitis, and pelvic organ prolapse), mainly through
the activation of the receptor RAGE. Furthermore, AGEs induce EMT and contribute to the
stiffening of the extracellular matrix, which alters intracellular communication and induces
fibrogenesis [19,31–34]. Chronic inflammation leads to a process known as “inflammaging”,
characterized by accelerated biological aging. Despite senescence being indispensable to
limiting the progression of damaged cells, its persistence exerts constant inflammatory
effects releasing several proinflammatory cytokines and finally the SASP. In this complex
mechanism, AGEs contribute to the inflammatory status, also leading to exacerbation of
the senescence and consequently to the release of oxygen free radicals (ROS) and the onset
and progression of the inflammation [35–38].
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IBD is a spectrum of diseases, including CD and UC, affecting the gastrointestinal
tract. Frequently, these disorders switch from chronic inflammation to intestinal fibrosis,
a process characterized by an uncontrolled accumulation of ECM proteins by activated
myofibroblasts. Fibrosis leads to a rearrangement of normal tissue architecture, and irre-
versible complications such as strictures, stenosis, and intestinal obstruction, principally in
CD. Currently, no resolutive pharmacological remedies are available for IBD treatment once
the ECM deposition has begun. Nowadays, anti-inflammatory drugs, such as sulfasalazine,
are the palliative therapeutic choice with mainly anti-inflammatory effects, and surgery
remains the only definitive treatment for the severe forms of IBD. Intestinal fibrogenesis
is driven by complex mechanisms orchestrated by TGF-β [39]. Moreover, many other
TGF-β-agonist pathways concur with the progression of IBD, still poorly understood. For
this reason, many preclinical efforts against intestinal fibrosis are oriented towards the use
and optimization of promising TGF-βmodulators exerting anti-fibrotic action, including
PPAR-γ and its natural (i.e., omega 3 and 6) and synthetic agonists (glitazones).

In human biopsies, morphological analyses revealed, as expected, inflammation,
gland alterations, and fibrosis in IBD patients compared to the control (Figures 1 and 2).
Concurrently, we found an increase in the expression of the inflammatory marker CD80
(Figure 3) as well as in the EMT markers (Figure 4), and AGE/RAGE pathway (Figure 5) in
the IBD group, thus validating the activation of fibrotic signaling. Moreover, a senescent
process accompanied the fibrosis progression in IBD patients. Indeed, we highlighted an
increase in β-gal and MMP1 and a decrease in laminin B1 in the IBD group compared to
the control (Figure 6).

To mimic the human IBD, we used an in vivo model of DSS-induced colitis and we
found features of inflammation compared to control mice as revealed by CD80 evaluation
(Figure 7). Similarly, the expression of the main markers of EMT (Figure 8), and AGE/RAGE
signaling members increased in DSS mice (Figure 9), confirming the presence of fibrosis.
The same molecules decreased in our PPAR-γ agonists-treated groups, both in 5-ASA and
GED (Figure 7). Furthermore, to support our hypothesis of senescence involvement, we
found an increase in β-gal and SASP (Figure 10) expression in the DSS group, confirming
the presence of a senescent phenotype correlated with fibrosis. Surprisingly, via GED
administration, it is possible to reduce senescence with greater efficacy than via 5-ASA
treatment (Figure 10A,B). We believe that our data could represent a step forward in the
knowledge of the complex IBD world. Indeed, TGF-β is an inducer of EMT, and ECM
deposition is supported by AGEs, which are in turn introduced into the body with food.
Finally, it is known that both TGF-β and RAGE can accelerate the cellular senescence
process, as they encourage the production of oxygen free radicals (ROS) and increase
oxidative stress. Furthermore, all these biological processes are crucial in the chronicity of
inflammatory states, as they are involved in the activation of immune cells.

Overall, our observations indicate that the IBD is sustained by the activation of multi-
ple pathways having detrimental effects on intestinal fitness: inflammation, fibrosis, and
activation of EMT, AGE/RAGE and senescence pathways. Our results are in line with other
papers. In fact, CD80 overexpression is reported both in human and mouse IBDs [40–42].
Accordingly, the AGE/RAGE axis is reported as a key driver of IBD, and multiple beneficial
effects are reported for PPAR-gamma agonists against metabolic syndromes and age-related
diseases [43–46]. In addition, senescence is associated with the progression of intestinal
inflammation and illnesses, such as colorectal cancer, and senolytics are promising therapies
for degenerative diseases [47,48].

All of the previous pathways establish a positive feedback loop, leading to intestinal
damage and organ failure. We highlighted that this background is present in patients
suffering from IBD in the remission phase of the disease. The remission phase is clinically
reached when the disease is plenty asymptomatic and healthy by mucosal endoscopy. Un-
fortunately, endoscopic mucosal healing does not fit always with histological healing, and
patients frequently experience recurrence of the acute phase. Interestingly, although the
patients are under pharmacological treatments and follow a moderately healthy lifestyle to
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prevent the acutization of the disease, the AGE/RAGE axis is still exacerbated, suggesting
an endogenous and/or idiopathic alteration rather than a triggering from the diet. Fur-
thermore, our data indicate that IBD patients can take advantage of a combination therapy
that can trigger the PPAR-γ pathway and inhibit the AGE/RAGE and senescence axes.
Notably, this pathogenetic loop can be attenuated in the animal model using a PPAR-γ
modulator, GED, endorsing the protective role of PPAR-γ in colon homeostasis and the use
of its modulator for the treatment of patients suffering from IBD.

4. Materials and Methods
4.1. Animal Experiments

This study used samples recovered from a previous study performed at the Institu-
tion of Pasteur Animal care facility (Institut Pasteur de Lille, Lille, France) according to
governmental guidelines and approved by the “Comité d’Ethique en Expérimentation
Animale Nord-Pas de Calais” (CEEA n◦75; ethics committee for animal experimentation
of the region Nord-Pas de Calais, France). All animals were housed in plastic cages and
kept in a pathogen-free environment, under constant room temperature, with a 12 h/12 h
light/dark cycle. The animals were fed a standard diet and had free access to water. Sixteen
male C57BL/6 mice (Janvier, Le Genest-St-Isle, France) were included in the present study.

4.2. Induction of Chronic Colitis, Drugs, and Experimental Design

The mice were randomly divided into four groups: control (H2O) n = 3, DSS n = 4,
DSS + GED n = 5, and DSS + 5ASA n = 4. Chronic colitis and fibrosis were induced in mice
by oral administration of 2.5% (w/v) DSS (MW: 36,000–44,000, purchased from TdB Consul-
tancy, Uppsala, Sweden), solubilized in autoclaved tap water and administered ad libitum
for three cycles (5 days DSS, followed by 7 days of tap water). The control group received
only tap water. GED-0507-34 Levo (Nogra Pharma Ltd., Dublin, Ireland), a selective agonist
of PPAR-γ, was dissolved in a solution containing 0.5% Carboxymethylcellulose sodium
salt (Sigma-Aldrich, Darmstadt, Germany) and 1% Tween 80, administrated by oral gavage
(100 µL/mouse), at a dose of 30 mg/Kg/day. The 5-aminosalicylic acid (5-ASA) (Pentasa,
Ferring Pharmaceuticals, Gentilly, France), the most common anti-inflammatory drug used
in IBD treatment, was mixed with standard chows and was administrated daily at a dose
of 150 mg/kg. All drugs were administrated at the beginning of the second cycle of DSS
(day 12).

4.3. Sample Recovery and Preparation

The animals of each group were sacrificed four days after the last DSS cycle administra-
tion. Following laparotomy, colon was identified and rapidly excised. Then, the colorectal
samples were subjected to conventional histological processing procedures, fixation in 4%
buffered formalin in phosphate-buffered saline (PBS) (pH 7.4 for 3 h at room temperature),
and paraffin embedding.

4.4. Human Biopsies: Patients and Methods

In this study, we examined a total of nine patients recruited at the San Salvatore
Hospital at L’Aquila by the Gastroenterology unit and dived into two groups: the control
group (n. 4) and the clinical case group (n. 5). Control group included people who
underwent coloscopy for in-depth diagnostic analysis given the presence of a familiarity
history of colorectal cancer, rectorrhages, abdominal pain correlated to the irregularity of the
hive, presence of occult blood in the stool associated or not with anemia, and follow-up of
patients subject to previous endoscopic removal of adenomatous colon polyps. The clinical
cases group included patients suffering from IBD, including both Crohn’s disease and
ulcerative colitis, who underwent control coloscopy to assess the severity of the intestinal
lesions. Both controls and patients included in the study were over 18 years old, the control
group having a median age of 51.5 years (range 36–64) and the IBD group a median age
of 48 (range 31–54). The Institutional Ethics Committee of University of L’Aquila (prot.
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n. 46004; 29 November 2017) approved the investigation protocol, and all eligible patients
signed a consent form for the processing of personal data and to allow the excision of tissue
and its use for this study.

4.5. Histomorphological Analysis

Serial 3 µm sections were stained using Hematoxylin and Eosin (H&E) (Bio Optica,
Milano, Italy), in order to highlight the degree of inflammation, and Masson’s Trichrome
(Bio Optica, Milano, Italy), to evaluate the deposition of connective tissue and fibrosis.
Furthermore, human samples were stained with Periodic acid-Schiff (PAS, Bio Optica,
Milano, Italy) to assess changes in the number of goblet cells. The stained sections were
then observed under an Olympus BX51 Light Microscope (Olympus Optical Co., Ltd.,
Tokyo, Japan). Quantification of markers in mouse sections was performed on three whole
sections and normalized against the total section area, while for human samples, four fields
were randomly analyzed and normalized against the number of nuclei. Two independent
pathologists performed blind evaluations.

4.6. Senescence Assay

The presence of active endogenous acidic beta-galactosidase was revealed by CellEvent™
Senescence Green Assay Kit (Thermo Fisher Scientific, Waltham, MA USA), in accordance
with the manufacturer instructions.

4.7. RNA Extraction and Real Time-PCR

Total RNA was extracted using deparaffinization solution (Qiagen, cat. QG19093,
Hilden, Germany) and miRNeasy FFPE Kit (Qiagen, cat QG217504) according to manufac-
turer’s instruction from 5 sections (10 µm each) of FFPE (formalin fixed paraffin embedded)
samples of murine and human colons. Then, RNA (0.8 µg) was reverse transcribed via
Reliance Select cDNA Synthesis KT (Bio-rad, cat. 12012801, Hercules, CA, USA). cDNA
was subjected to real-time PCR, using the iQ™ Multiplex Powermix, (Bio-rad, cat. 1725849),
together with gene-specific PrimePCR™ Probe Assays (Bio-rad, Table 1) for detecting
expression of human genes or using PowerUp SYBR Master Mix (TermoFisher) with gene-
specific primers (Themo fisher, Table 2) for detecting expression of mouse genes. Reactions
were set up in Primo® FrameStar® 96-well PCR plates (Euroclone, cat. ECPCR0770C, Pero,
Italy), which were sealed with MicroAmp™ optical adhesive films (Applied Biosystems,
cat. 4360954, Waltham, MA, USA). The thermal profile of Cielo 6 qPCR system (Azure
Biosystem, Dublin, CA, USA) was set as follows: 2 min at 95 ◦C, then 45 cycles of 15 s at
95 ◦C and 20 s at 60 ◦C, along with a final post-read stage of 30 s at 60 ◦C.

Table 1. List of probes used for human gene expression analysis by Taqman assay.

PrimerPCR Probe Assay, Fluorophore Unique Assay ID

Actb, HEX qHsaCEP0036280
Ager, FAM qHsaCEP0040022

Ccn2, TEX615 qHsaCEP0024255
Cd80, Cy5.5 qHsaCIP0026764
Cdh1, Cy5.5 qHsaCEP0049339

Glb1, TEX615 qHsaCEP0057625
Lmnb1, FAM qHsaCIP0029571
MMP1, Cy5 qHsaCEP0055366
Pparg, Cy5 qHsaCEP0051687
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Table 2. List of primers used for mouse gene expression analysis by Sybr Green assay.

Gene Name Sequence 5′-3′

Actb FW CCACCATGTACCCAGGCATT
Actb RW CGGACTCATCGTACTCCTGC
Cdh1 FW AGAATGAGGTCAATGCCCGG
Cdh1 RW TGTATTGCTGCTTGGCCTCA
Glb1 FW CATCTCGGGAAGCATTCATT
Glb1 RW CGGTCCCCAGAAAACTCATA

Lmnb1 FW TGCTGCTCAATTATGCCAAG
Lmnb1 RW TGCTTCTAGCTGGGCAATCT
MMP1 FW GTTGCTTCTCTGGGCTGCTA
MMP1 RW CAGCCATCATCTCCTTGCCA

Vimentin FW GATCAGCTCACCAACGACA
Vimentin RW GGTCAAGACGTGCCAGAGAA

4.8. Immunohistochemistry and Immunofluorescence

Colonic samples were also promptly fixed in 4% buffered formalin in PBS for 3 h at
room temperature, dehydrated in graded ethanols and embedded in low-melting paraffin.
Sections of 3 µm in thickness were incubated in methanol and in 3% hydrogen peroxide so-
lution for 15 min. The specimens were incubated overnight at 4 ◦C with specific antibodies.
The samples were washed in PBS for 5 min and finally incubated for 1 h at room tempera-
ture with the appropriate secondary antibody, horseradish (HRP) (EnVision® + Dual Link
System-HRP (DAB+); Agilent, Santa Clara, CA, USA) or fluorophore conjugated. Finally,
for IHC, the sections were counterstained with Mayer’s hematoxylin and mounted with
Eukitt medium, while for IF, the sections were mounted with Fluorlast with DAPI medium
for nuclear counterstaining (Biovision, Milpitas, CA, USA). The specimens were observed
under an Olympus BX51 light microscope equipped with a laser source (Olympus, Optical
Co., Ltd.).

4.9. Semiquantitative Digital Image Analysis of Immunohistochemical Staining

Semiquantitative evaluation of immunohistochemical staining was performed using
the immunohistochemistry profiler, a plugin of a digital image analysis public domain soft-
ware ImageJ version 1.52a (U.S. National Institutes of Health, Bethesda, MD, USA) [49,50].
Four random microscopic fields from all experimental groups were photographed at the
same magnification and analyzed. Data were expressed as a percentage of the positive area
and presented as mean ± standard deviation. Statistical significance was set at p ≤ 0.05.

4.10. Statistical Analyses

Results were expressed as mean ± standard deviation. Statistics were run using
ANOVA with unpaired non-parametric Mann–Whitney test, which was used for statistical
analyses among more than two experimental groups; a p-value < 0.05 was considered
statistically significant. All experiments involving animals were performed using at least
3 mice/group. Statistics between two experimental groups involving human subjects (at
least 4 individuals/group) were run using an unpaired t-test, and a p-value < 0.05 was
considered statistically significant. (GraphPad Prism 7.00; GraphPad Software, Inc., La
Jolla, CA, USA).
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