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Abstract: The inflammatory system activated by uterine infection is associated with decreased
fertility. Diseases can be detected in advance by identifying biomarkers of several uterine diseases.
Escherichia coli is one of the most frequent bacteria that is involved in pathogenic processes in dairy
goats. The purpose of this study was to investigate the effect of endotoxin on protein expression in
goat endometrial epithelial cells. In this study, the LC–MS/MS approach was employed to investigate
the proteome profile of goat endometrial epithelial cells. A total of 1180 proteins were identified in
the goat Endometrial Epithelial Cells and LPS-treated goat Endometrial Epithelial Cell groups, of
which, 313 differentially expressed proteins were accurately screened. The proteomic results were
independently verified by WB, TEM and IF techniques, and the same conclusion was obtained. To
conclude, this model is suitable for the further study of infertility caused by endometrial damage
caused by endotoxin. These findings may provide useful information for the prevention and treatment
of endometritis.
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1. Introduction

Uterine diseases, such as hysteritis and endometritis, are common in high-yield dairy
goats and lead to economic losses due to a decline in milk production and fecundity [1,2].
Gram-negative bacteria are usually associated with uterine infection in dairy goats [2,3].
Dystocia and placental retention of dairy goats make them vulnerable to uterine diseases
because the physical barrier of infection is broken and the immune response is disrupted,
so pathogens should be eliminated [2,3].

Successful implantation requires a balance and accurate molecular communication
between the embryo and the maternal endometrium [3,4]. Even a small imbalance could
negatively affect the dialog between the mother and the embryo necessary for the establish-
ment of pregnancy [4].

According to the diagnosis of endometrial cytology, the prevalence of endometritis in
dairy cows is very high [4,5], which increases the reproductive cycle and time costs [5]. Sev-
eral studies have confirmed that the incidence of endometritis 35–45 days after delivery is
very high [5,6], resulting in a significant reduction in the fertility rate of the population [5,6].
Although consistently contaminated or infected in the early postpartum period [6], it is
essentially sterile by approximately 28 days postpartum [5,6]. Finally, the characteristics of
the relationship between uterine infection and endometritis can reveal the mechanism by
which endometritis prolongs pregnancy intervals and even leads to infertility [7,8].
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2. Results
2.1. Identification and Hierarchical Clustering Heatmap

We identified a total of 1180 proteins in the goat Endometrial Epithelial Cells (gEECs)
and LPS-treated goat Endometrial Epithelial Cell groups. Among them, 1097 proteins
were common in both groups, and 21 and 62 proteins were unique to the gEECs and
LPS-treated gEEC groups, respectively (Figure 1I). At the same time, 313 differentially
expressed proteins were screened by p-value (Supplementary File S1). For the gEECs and
LPS-treated gEEC groups, protein clustering can be seen, as in Figure 1II. The hierarchical
clustering analysis of the two groups showed that F1 and F3 and F8 and F9 were clustered
together at first, followed by F2 and F7. The red color showed the up-regulated expression,
and the blue color represented the down-regulated expression. The color from red/blue to
white represented the ratio from large to small. The cluster analysis of different proteins
shows that the cluster map can be divided into several parts. The sensitivity of these
proteins to inflammation is particularly important. The proteins clustered together indicate
a consistent response to inflammation, see Supplementary File S1.
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Figure 1. Identification and hierarchical clustering heatmap. (I): Screening of Expressed Proteins.
(control: goat Endometrial Epithelial Cells; model: LPS-treated goat Endometrial Epithelial Cells.
Venn diagram). (II): Cluster heatmap of the expression intensity of the differentially expressed
proteins (DEPs) from gEECs and LPS-treated gEEC groups. Red indicates increased abundance;
blue indicates decreased abundance. Each row shows the relative abundance of a protein in the six
different groups, and each column shows the relative abundance of DEPs in each experimental group.
The numbers F1, F2, F3, F7, F8 and F9 indicate the individual replicates in each group.



Int. J. Mol. Sci. 2023, 24, 10018 3 of 19

2.2. Gene Ontology (GO) Functional Category Analysis

When analyzing differentially expressed proteins, there were significant differences
in biological process (Figure 2I), such as the single-organism metabolic process, single-
organism process and so on. Although they were insignificant, there are still differences in
differentially expressed proteins, such as the regulation of membrane potential, regulation
of protein targeting, response to estrogen, necroptotic process, maturation of LSU-rRNA,
response to oxidative stress, organophosphate biosynthetic process, mitophagy, mitochon-
drion disassembly and so on.

When analyzing differentially expressed proteins, there were significant differ-
ences in cellular components (Figure 2II), such as the extracellular vesicles, extracel-
lular organelles, cytoplasmic components, membrane-bound organelles, extracellular
membrane-bound organelles, membrane-bound vesicles, extracellular region compo-
nents, intracellular organelles, intracellular membrane-bound organelles and so on.
Although they were insignificant, there are still differences in differentially expressed
proteins, such as the nascent polypeptide-associated complex, endoplasmic reticulum-
Golgi intermediate compartment, late endosome membrane, early endosome, lytic
vacuole membrane, eukaryotic translation elongation factor 1 complex, Cul7-RING
ubiquitin ligase complex, lysosomal membrane, late endosome, Golgi membrane, COP9
signalosome, plasma membrane region, vacuolar components, recycling endosome
membrane, lysosomal lumen and so on.

When analyzing differentially expressed proteins, there were significant differ-
ences in molecular function (Figure 2III), such as peptidase regulator activity, endopep-
tidase regulator activity, oxidoreductase activity, catalytic activity, hydrogen, trans-
membrane movement of substances, ATPase coupled, anion binding, protein complex
binding, hydrogen-exporting ATPase activity, nucleotide binding, nucleoside phos-
phate binding, ATPase activity, coupling, NAD(P)H oxidoreductase activity, NADH
dehydrogenase activity and so on. Although they were insignificant, there are still
differences in differentially expressed proteins, such as, helicase activity; quinone or
similar compounds as acceptors; iron-responsive element binding; glucosylceramidase
activity; 6-phosphofructokinase activity; translation release factor activity; codon spe-
cific, calmodulin-dependent protein phosphatase activity; beta-N-acetylhexosaminidase
activity; sequence-specific mRNA binding; transferase activity; transferring of aldehyde
and ketonic groups and so on.

2.3. Pathway Analysis

We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
on differentially expressed proteins (DEPs), as shown in Figure 3. We obtained a total of
199 KEGG pathways, see Supplementary File S2.

When comparing the the gEECs and LPS-treated gEEC groups, metabolic pathways,
carbon metabolism pathways, oxidative phosphorylation pathways, citrate cycle (TCA
cycle) pathways, and endocytosis pathways were significantly different. Phagosome
pathways were also significantly different. The lysine degradation pathway, one carbon
pool by folate pathway, 2-oxocarboxylic acid metabolism pathway, purine metabolism
pathway, glucagon signaling pathway and so on were different as well, but the difference
was not significant.
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Figure 2. Gene ontology (GO) analysis. (I): biological process (BP), (II): cellular components (CC) 
and (III): molecular function (MF). Gene ontology classification of differentially expressed proteins 
based on biological process, cellular components and molecular function. Vertical coordinates indi-
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in the corresponding annotation among all DEPs. 

Figure 2. Gene ontology (GO) analysis. (I): biological process (BP), (II): cellular components (CC) and
(III): molecular function (MF). Gene ontology classification of differentially expressed proteins based
on biological process, cellular components and molecular function. Vertical coordinates indicate
different functional annotations, and the abscissas indicate the percentage of proteins enriched in the
corresponding annotation among all DEPs.
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differentially expressed proteins. 
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Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially
expressed proteins (DEPs). The size of the circle represents the degree of enrichment. The closer the
colour is to red, the smaller the p-value, and the greater the degree of significance. DEPs: differentially
expressed proteins.

2.4. PPI Network and Module Analysis of the Identified Proteins

We built PPI networks of proteins identified in the gEECs and LPS-treated gEEC groups.
All significantly different proteins in the gEECs and LPS-treated gEEC groups were

analyzed by PPI. All 313 differentially expressed proteins were included in the protein
interaction network of up-and down-regulated proteins following LPS stimulation of goat
Endometrial Epithelial Cells (Figure 4I). Among of them were 218 up-regulated proteins
(Figure 4II) and 95 down-regulated proteins (Figure 4III). The PPI diagram shows that
many kinds of differential proteins are related to each other, and the protein–protein
interaction (PPI) network is highly complex. Network nodes represent proteins, while
edges represent protein–protein associations which were already known (light blue and
purple), or predicted (other colors) by String analysis.

From the PPI map, we can see interactions between the OLA1 and A2M; FETUB and
SERPINF2; ALB and VCAN, TF and CALU, and TF and RBP4 proteins, and so on. From the
PPI map, we can see interactions between the PSMB6 and UCHL5, PSMB6 and NDUFA2,
ETFB and ETFA, HIBADH and ALDH4A1, and HIBADH and ABHD14B proteins, and so
on. From the PPI map, we can see interactions between the CBR1 and AKR1A1, CBR1 and
SPR; CBR1 and GART, DDX47 and PUS7, DDX47 and NOP56, PSMA3 and PSMA2, and
PSMA3 and PSMB1 proteins, see Supplementary Files S1 and S2.
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teraction types. Colored nodes: query proteins and first shell of interactors, white nodes: second 
shell of interactors, filled nodes: some 3D structure is known or predicted. The network nodes rep-
resent proteins from the goat database, and the lines are the predicted functional annotations (red 
line—the presence of fusion evidence; green line—neighborhood evidence; blue line—cooccurrence 
evidence; purple line—experimental evidence; yellow line—text mining evidence; light-blue line—
database evidence; black line—co-expression evidence). 
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were significantly different between the gEECs and LPS-treated gEEC groups. The TEM 
results clearly show that the number of autophagic vesicles formed by late lysosomes in 
the LPS-treated gEECs group is much greater than that in the gEECs group (Figure 5). 

The results of proteomics were consistent with those of transmission electron micros-
copy. This means that lysosomes, autophagosomes and carbon metabolism are more ac-
tive in LPS-treated gEECs than gEECs. 

Figure 4. Protein–protein interaction (PPI) network of proteins identified in gEECs and LPS-treated
gEEC groups. (I): differentially expressed proteins (DEPs). (II): up-regulated proteins. (III): down-
regulated proteins. Protein–protein interactions (Evidence Mode) of dysregulated proteins were
predicted by STRING. Each circle node represents 1 protein, the connection between node and node
represents the interaction between 2 proteins, and lines with different colors indicate different inter-
action types. Colored nodes: query proteins and first shell of interactors, white nodes: second shell
of interactors, filled nodes: some 3D structure is known or predicted. The network nodes represent
proteins from the goat database, and the lines are the predicted functional annotations (red line—the
presence of fusion evidence; green line—neighborhood evidence; blue line—cooccurrence evidence;
purple line—experimental evidence; yellow line—text mining evidence; light-blue line—database
evidence; black line—co-expression evidence).

2.5. Transmission Electron Microscopy (TEM)

KEGG analysis showed that the lysosome, proteasome and endocytosis pathways
were significantly different between the gEECs and LPS-treated gEEC groups. The TEM
results clearly show that the number of autophagic vesicles formed by late lysosomes in
the LPS-treated gEECs group is much greater than that in the gEECs group (Figure 5).
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ure 6). The change in inflammatory variables was conspicuous, proving that LPS were 
successful in making gEECs become inflammatory. 

Figure 5. Transmission Electron Microscopy (TEM). (I): control group. (II): LPS-treated group.
(III): control group. (IV): LPS-treated group. TEM analysis highlights the morphological differences
in the gEECs and LPS-treated gEEC groups, (I,II) (ruler: 1 µm, control group), (III,IV) (ruler: 1 µm,
LPS-treated group).

The results of proteomics were consistent with those of transmission electron mi-
croscopy. This means that lysosomes, autophagosomes and carbon metabolism are more
active in LPS-treated gEECs than gEECs.

2.6. qRT-PCR Analysis

Real-time PCR was performed to examine differences in the expression of inflam-
matory factor in LPS-mediated gEECs inflammatory response. Significantly more IL-1β
and IL-6 mRNA was present in the LPS stimulation group compared to the control group
(Figure 6). The change in inflammatory variables was conspicuous, proving that LPS were
successful in making gEECs become inflammatory.
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binds calcium ions, which are necessary for its function. The p-AKT (Figure 7IV) has a 
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a transcription-independent manner by activating the serine/threonine kinase AKT1, 
which then phosphorylates and inactivates components of the apoptotic machinery. SER-
INE1 (PAI, Figure 7III) inhibits TMPRSS7. As a PLAU inhibitor, it is involved in cellular 
and replicative senescence. Equal amounts of proteins from the gEECs were detected with 
antibodies, as shown in Figure 7. The results showed that the ratios of the selected proteins 
were consistent with those obtained from the label-free quantitation analysis. In future 
work, we will conduct an in-depth study of the above proteins. 

Figure 6. qRT-PCR analysis. (I): IL-1β. (II): IL-6. The effect of LPS on inflammatory cytokine
expression quantified by qRT–PCR after treatment with 3 µg/mL LPS for 24 h. The data are presented
as the mean ± SEM from three independent experiments, and bars with different * and ** are
significantly different (p < 0.05).

2.7. Western Blot

To validate the DEPs identified from the label-free quantitation analysis, proteins
with important physiological functions were selected for detection. COL1A1 (Figure 7II)
is involved in the structural components of extracellular matrix, platelet-derived growth
factor binding, vascular development, the cell response to mechanical stimulation, the
collagen-activated tyrosine–kinase receptor signal pathway, the collagen biosynthesis,
positive regulation of cell migration, positive regulation of epithelial–mesenchymal trans-
formation, and binding of platelet-derived growth factor. COL1A1 is a type I collagen. It
binds calcium ions, which are necessary for its function. The p-AKT (Figure 7IV) has a
significant impact on cell survival and growth. Survival factors can suppress apoptosis in a
transcription-independent manner by activating the serine/threonine kinase AKT1, which
then phosphorylates and inactivates components of the apoptotic machinery. SERINE1
(PAI, Figure 7III) inhibits TMPRSS7. As a PLAU inhibitor, it is involved in cellular and
replicative senescence. Equal amounts of proteins from the gEECs were detected with
antibodies, as shown in Figure 7. The results showed that the ratios of the selected proteins
were consistent with those obtained from the label-free quantitation analysis. In future
work, we will conduct an in-depth study of the above proteins.

2.8. Immunofluorescence

From Figure 8, it can be seen that the protein localization of COL1A1 (Figure 8I),
SERPINE1 (PAI, (Figure 8II)) and KNG1 (Figure 8III) is in the cytoplasm, which is consistent
with the results of GO analysis. The differential expression of COL1A1 and SERPINE1
(PAI) and KNG1 indicates that the protein expression profile of the control group and the
inflammation group has changed, and it also shows that the biological function of the cells
has changed from a side point of view, which may be the main cause of pregnancy failure.
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3. Discussion
3.1. Proteome Quality Difference between gEECs and LPS Treated gEECs Groups

Compared with the gEECs group, the expression of Q6QAT4 was downregulated in
the LPS-treated gEECs group. Q6QAT4 is involved in antigen delivery in the immune
system. It is also involved in antigen processing and presentation of exogenous protein
antigens via MHC class I b, which are TAP-dependent processes. It is closely related to
the inflammatory response. RPLP2 expression was downregulated in the LPS-treated
gEECs group. RPLP2 participates in the process of protein synthesis and extension and is a
structural constituent of ribosomes. This may indicate that the protein synthesis process
is abnormal.

3.2. The Possible Role of Distinct Proteins Based on GO

When comparing the gEECs group, PRKAR2A expression was downregulated in
the LPS-treated gEECs group. PRKAR2A has cAMP-dependent protein–kinase regulator
activity and is involved in cAMP and ubiquitin–protein–ligase binding. It participates
in the regulation of cAMP-mediated signaling. Compared with the gEECs group, KNG1
gene expression was downregulated in the LPS-treated gEECs group. This study was
successfully verified by the immunofluorescence experiment. KNG1 is a mediator of
inflammation. It has cysteine-type endopeptidase inhibitor activity. It participates in the
inflammatory response and negative regulation of blood coagulation. When comparing the
gEECs group, PPT1 expression was upregulated in the LPS-treated gEECs group. PPT1
removes thioester-linked fatty acyl groups. This may indicate that inflammation is related
to cellular fat metabolism [5].

3.3. The Possible Role of Significantly Different Proteins in Cell Migration, Adhesion
and Implantation

When comparing the gEECs group, ITGA5 expression was downregulated in the LPS-
treated gEECs group. ITGA5:ITGB1 acts as the receptor of fibrin 1 (FBN1), playing the role
of adhesion. When comparing the gEECs group, SERPINE1 expression was downregulated
in the LPS-treated gEECs group. As a PLAT inhibitor, SERPINE1is required for fibrinolysis
downregulation and is responsible for the controlled degradation of blood clots.

3.4. The Possible Role of Different Proteins in Epithelial-Mesenchymal Transformation
and Polarization

When comparing the gEECs group, COL1A1 expression was downregulated in the
LPS-treated gEECs group. COL1A1 is an extracellular matrix structural constituent. It
participates in blood vessel development, the collagen-activated tyrosine kinase receptor
signaling pathway. This is consistent with the study of endometrial protein and uterine
fluid Wang C and Li T [2,8].

3.5. The Possible Role of Significantly Different Proteins in the Process of Apoptosis and the
Cell Cycle

When comparing the gEECs group, MCM6 expression was downregulated in the LPS-
treated gEECs group. MCM6 acts as a component of the MCM2-7 complex (MCM complex).
It combines with ATP and DNA. The biological processes in which it is involved are the
cell cycle and DNA replication initiation. When comparing the gEECs group, ANXA11
expression was upregulated in the LPS-treated gEECs group. ANXA11 is involved in the
process of mesosome formation and cytokinesis. The biological processes in which it is
involved are the cell cycle and cell division. The changes of these proteins are closely
related to the changes of endometrial function.

3.6. The Possible Role of Significantly Different Proteins in Hormones

When comparing the gEEC group, CYB5R3 expression was upregulated in the LPS-
treated gEECs group. The biological processes in which CYB5R3 is involved are cholesterol
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biosynthesis [9,10]. When comparing the gEECs group, CSN1S2 expression was down-
regulated in the LPS-treated gEECs group. Casocidin-I inhibits the growth of E. coli and
S. carnosus. The biological processes in which it is involved are the defense response to
bacterium, response to dehydroepiandrosterone, response to estradiol, response to growth
hormone and response to progesterone.

3.7. The Possible Role of Significantly Different Proteins in the Immune System

When comparing the gEECs group, the expression of RBM14 in LPS-treated gEECs
group was down-regulated. RBM14 may act as a nuclear receptor coactivator, promoting
transcription through other coactivators. It regulates centrosome biogenesis by inhibiting
the formation of abnormal centrosomal-protein complexes in the cytoplasm, thus main-
taining the integrity of mitotic spindles. It is involved in the regulation of innate immune
response mediated by the DNA virus by assembling HDP–RNP complex. HDP–RNP
complex is the platform for IRF3 phosphorylation. This suggests that inflammation is
closely related to protein phosphorylation.

3.8. The Possible Role of Significantly Different Proteins in Stress

When comparing the gEECs group, UFL1 expression was upregulated in the LPS-
treated gEECs group. It participates in response to endoplasmic reticulum stress. It partici-
pates in ufmylation-dependent reticulophagy and inhibits the unfolded protein response
(UPR) via ERN1/IRE1-alpha. When comparing the gEECs group, VBP1 expression was up-
regulated in the LPS-treated gEECs group. VBP1 binds specifically to cytosolic chaperonin
(c-CPN) and transfers target proteins to it. The biological process in which it is involved is
protein folding. When comparing the gEECs group, PSMB1 expression was upregulated
in the LPS-treated gEECs group. The noncatalytic component of the 20S core proteasome
complex is involved in the proteolytic degradation of most intracellular proteins.

3.9. The Possible Role of Significantly Different Proteins in Energy Supply

When comparing the gEECs group, the expression of NDUFA9 in the LPS-treated
gEECs group was up-regulated. NDUFA9 is a subsidiary subunit of mitochondrial mem-
brane respiratory chain NADH dehydrogenase. Compared with the gEECs group, MDH2
expression was upregulated in the LPS-treated gEECs group. The biological process in
which MDH2is involved is the tricarboxylic acid cycle.

4. Materials and Methods
4.1. Goat Endometrial Epithelial Cells (gEECs) Culture

Trypsin (sequencing grade) was obtained from Promega Corporation (Madison, WI,
USA) [7]. A Micro BCA protein assay kit and Pierce C18 tips were obtained from Thermo
Fisher Scientific (Rockford, IL, USA) [7,8]. Trifluoroacetic acid, dithiothreitol, iodoac-
etamide, methanol, acetonitrile, formic acid, and all other chemicals were of analytical
grade and obtained from Sigma Aldrich Corporation (St. Louis, MO, USA) [7,8]. All
aqueous solutions were prepared using Milli-Q treated water [8].

The hTERT–EECs, which were established and kept in our lab, were in good condition,
maintaining normal cellular characters [8,11], such as serum dependence, contact inhibition,
chromosome number and morphology, and no suspension growth and tumorigenicity [11].
Epithelial cells were cultured in F-12 medium (Sigma, USA) containing10% Fetal Bovine
Serum, 1%Penstrep® (5000 units/mL penicillin/streptomycin) [8,11]. Cells were seeded
into a 25 cm [2] ventilation flask and cultured in a water-jacked incubator with 5% CO2 at
37 ◦C [11].

4.2. Goat Endometrial Epithelial Cells (gEECs) Challenged with E. coli LPS

Cultured gEECs were challenged with E. coli LPS (Dulbecco’s Modified Eagle Medium,
DMEM/F12, Hyclone, Logan, UT, USA) with concentrations in the range of those previ-
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ously reported in vitro studies [11,12]. LPS (0 and 3 µg/mL LPS) was applied to the gEECs
for 24 h with three biological repeats per sample [12].

4.3. Extraction of Cell Samples

Cellular pellets were solubilized in a buffer with protease inhibitors [12,13]. Briefly,
the cells were washed with PBS buffer for 5 min each time, split with 20 µL cleavage buffer,
scraped off, and placed on ice [13].

Afterward, the cells were centrifuged at room temperature at 10,000 rpm for 10 min.
The precipitate was discarded [13,14]. Protein quantification was performed using a bicin-
choninic acid (BCA) Protein Assay quantification kit. All steps are carried out according to
the instructions for the reagent [14].

4.4. Preparation of Colloidal Particles

The samples were prepared for short-range SDS-PAGE (12%) [14,15]. Gels were
stained in colloidal Coomassie blue. After gel staining, each lane was cut into small pieces
and subjected to in-gel digestion with SimplyBlue Safe Stain (Invitrogen, Carlsbad, CA,
USA) [15]. All the steps were operated in the specified temperature range.

4.5. Digestion in Protein Gel

A gel containing 100 µg of proteins was mixed with dithiothreitol (final concentration
of 10 mM) and kept at 60 ◦C for 70 min [15,16]. After the sample was cooled, iodine
acetamide with a final concentration of 66 mM was added and reacted away from light at
room temperature for 40 min [16].

After that, 200 µL NH4HCO3 solution (50 mM) was added to the filter and centrifuged
at 14,000× g for 25 min. Finally, 1.25 µg of trypsin was added and the mixture incubated
at 40 ◦C overnight [16,17]. The digestion procedure was stopped by adding formic acid
(10%), and digested peptides were collected by centrifuging at 14,000× g for 15 min. After
desalting with the C18 tips, the collected peptides were vacuum-dried [17,18]. After trypsin
digestion, Ziptip C18 micropipette tips (Millipore) were used to purify the peptides prior
to adding 0.1% formic acid for LC-MS/MS analysis.

4.6. LC–MS/MS Analysis

We used the Easy-nLC 1200 system coupled with a Orbitrap Fusion Lumos mass
spectrometer for LC-MS/MS analysis, according to the method reported previously [17–19].
Dried samples were re-suspended with mobile phase A (0.1% formic acid in water) [17,18].
Then, samples were loaded onto a pre-column (100 µm × 2 cm; 5 µm; C18 particles) and
separated by a linear-gradient elution with mobile phase B on an analytical column at
a flow rate of 300 µL/h [17]. Analysis time: 0 min (5% phase B), 1 min (12%), 29 min
(27%), 44 min (38%), 49 min (55%), 50 min (100%), and 60 min (100% phase B) [18,19].
The MS conditions were as follows: First-order mass spectrometry parameters: Detector
Type: Orbitrap, Resolution: 60,000, Cycle time (s): 3, RF lens (%): 30, AGC target: 4.0 × 105,
Microscans: 1, Data type: profile, Maximum IT: 50 ms and Scan range: 275–1500 [19].
Secondary mass spectrometry parameters: Detector Type: Orbitrap. Resolution: 15,000,
first mass (m/z): 110, AGC target: 5.0 × 105, Maximum IT: 256, microscans: 1, data type:
centroid, HCD Collision Energy (%): 30 [16–19].

4.7. Data Processing

We analyzed all LC-MS/MS raw data files using Proteome Discoverer 2.2 software
(version 2.2; Thermo Fisher Scientific). Difference screening criteria: Ratio > 1.5 or <0.67,
p-value < 0.05 [9,19]. Due to insufficient protein annotations for goat species, we searched
for data in a “Ruminantia” database from UniProt (protein database: ruminantia-filtered-
reviewed_yes.fasta) [9,20]. Analysis settings: Enzyme Name, Trypsin (Full), Precursor
Mass Tolerance, 20 ppm, Fragment Mass Tolerance, 0.5 Da, Static Modification: Car-
bamidomethyl/+ 57.021 Da(C). Processing node 1. Spectrum Properties Filter: Lower
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RT Limit, 0. Upper RT Limit, 0. Min. Precursor Mass, 350 Da. Max. Precursor Mass,
5000 Da. A maximum of two missed cleavages was allowed. The maximum false discovery
rate for peptide and protein was specified as 0.01; the LFQ (Label-Free Quantitation) was
enabled with the LFQ minimum ratio count to 1. Regression Settings: Regression Model,
Non-linear Regression, Parameter Tuning, Coarse. The other settings were kept as default.
GraphPad Prism v7.0 was used with all data pre-tested for normality [9,20]. Additionally,
the values are presented as mean ± SD. Difference between an experimental group and a
control was analyzed with Student’s t-test or one-way ANOVA [9,18]. The dataset identi-
fier IPX0004443000. https://www.iprox.cn/page/PSV023.html;?url=1677679444384dvFy
(accessed on 5 March 2023) [3–5]. Passport: OkPc. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org (accessed on 5 March 2023)) via the iProX partner repository with
the dataset identifier IPX0004443000 [12–14].

4.8. Bioinformatics of Differentially Expressed Proteins
4.8.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Annotations from Differentially Expressed Proteins

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.
genome.jp/kegg/or http://www.kegg.jp/ (accessed on 22 July 2021)) was used to pre-
dict the main metabolic pathways. The protein sequences of differentially expressed
proteins were retrieved in batches from the UniProtKB database (http://www.uniport.
org/, 13 June 2017, release) in FASTA format [19,20]. The GO mapping and annotation
(http://geneontology.org/ (accessed on 22 July 2021)) results were plotted using Clus-
ter 3.0 and Blast2 GO (version 3.3.5). The GO annotation results were plotted using R
scripts. Functional annotation was performed using the Gene Ontology (GO) database
(http://www.geneontology.org (accessed on 22 July 2021)) and included the cellular com-
ponent, molecular function, and biological process. Briefly, the identified protein ID was
converted to UniProt ID and then mapped to GO IDs by protein ID. The retrieved credibil-
ity is ≥95%, false positive is <5% in the database; difference ratio of proteins is ≥1.5-fold
and p-value is ≤0.05. The enrichment analysis revealed 20 significant GO terms by hy-
pergeometric test (p < 0.05). The FASTA protein sequences of differentially expressed
proteins (DEPs) were blasted against the online GO database (http://geneontology.org/
(accessed on 22 July 2021)) to retrieve their GO annotations and were subsequently mapped
to pathways in KEGG. GO and KEGG pathway enrichment analyses were applied based
on Fisher’s exact test. The LFQ was selected for the quantification. The hypothesis was
performed using the t-Test, and the associated p-values were adjusted based on Benjamini–
Hochberg’s correction (FDR < 0.05). Briefly, the Benjamini–Hochberg correction for multiple
tests was further applied to adjust the derived p-values. Only functional categories and
pathways with p-values under a threshold of 0.05 were considered significant. The other
settings were kept as default [20,21]. The analysis showed the 20 most relevant pathways
sorted by p-value. The pathway enrichment analysis was performed using the database for
annotation, visualization and integrated discovery.

4.8.2. Hierarchical Clustering from Differentially Expressed Proteins

The related protein data were used to perform hierarchical clustering analysis [20,22].
For this purpose, Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.
htm (accessed on 22 July 2021)), Java TreeView software (http://jtreeview.sourceforge.net
(accessed on 22 July 2021)) and R scripts were used. The Euclidean distance algorithm for
similarity measurement and the average linkage clustering algorithm (clustering using the
centroids of the observations) were selected during hierarchical clustering [22,23].

4.8.3. Protein–protein Interaction (PPI) Networks from Differentially Expressed Proteins

The PPI information for the studied proteins used the gene symbols and STRING
software, version 11 [23]. The PPI information for the studied proteins was retrieved from
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the IntAct molecular interaction database (http://www.ebi.ac.uk/intact/ (accessed on
22 July 2021)) using the gene symbols and STRING (http://string-db.org/ (accessed on
22 July 2021)) software. The difference ratio of proteins is ≥1.5-fold and p-value is ≤0.05;
identified proteins must be redundant by all artificial. The minimum interaction score was
set to medium at 0.40 as the confidence score. The primary default setting was used for the
analysis. The results were downloaded in XGMML format and imported into Cytoscape5
software (http://www.cytoscape.org/ (accessed on 22 July 2021), version 3.2.1) to visualize
and further analyze the functional PPI networks [23,24].

4.9. Transmission Electron Microscopy (TEM)

The cell was fixed with 2% glutaral dehyde, 2% paraformaldehyde buffered with 0.1 M
phosphate buffer, pH 7.2 overnight at 4 ◦C, followed by post-fixation with 1% osmium
tetroxide in a 0.1 M sodium cacodylate buffer, pH 7.4 for 1.0 h at room temperature,
and graded ethanol dehydration [15,16]. Samples were embedded in Epon (Electron
Microscopy Sciences, Shinagawa-ku, Tokyo, Japan) and sectioned using an ultramicrotome
(Leica, Germany) [16,17].

4.10. qRT-PCR

Solation of total RNA from the gEECs cultures was performed using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol [10,25]. Total
RNA (500 ng) was reverse-transcribed into a cDNA template using PrimeScript RT Kit with
gDNA Eraser (TaKaRa, Dalian, China). Quantitative Real-time PCR was performed using
SYBR Premix Ex Taq (TaKaRa, Dalian, China) on iQ5 thermal cycler (Bio-Rad, San Fran-
cisco, CA, USA) [2,5,6]. The mRNA expression levels of IL-6 and TNF-α were measured
relative to the GAPDH reference gene using the 2−∆∆Ct method. The details of the primers
were: IL-1β, XM_013967700.2 (Forward: TCCACCTCCTCTCACAGGAAA, Reverse: TAC-
CCAAGGCCACAGGAATCT), IL-6, NM_00128564.1 (Forward: CCTCTTCACAAGCGC-
CTTCA, Reverse: TGCTTGGGGTGGTGTCATTC) and GAPDH, XM_005680968.3 (For-
ward: GATGGTGAAGGTCGGAGTGAAC, Reverse: GTCATTGATGGCAACGATGT). The
mRNA expression levels were calculated using the 2−∆∆Ct method.

4.11. Western Blot

Equivalent amounts of protein (15.0 µg) were loaded on 12% SDS-PAGE gels and then
transferred onto 0.45 µm nitrocellulose membrane (Millipore; Bedford, MA, USA) [19,20]. The
samples were incubated with anti-COL1A1 (#P28373; Abmart; diluted 1:2000), anti-p-AKT
(Ser473, #4060; CST; diluted 1:2000) and anti-SERPINE1(#YT-3569; Immunoway, Plano, TX,
USA) [21,22]. The membranes were incubated for 2.5 h with horseshoe radish peroxidase-
labeled secondary antibody (ZHONGHUIHECAI, Xi’an, China) at room temperature. Detec-
tion was performed (Dining, Beijing, China) and recorded by film exposure [22–24].

4.12. Confocal Microscopy

Cells were seeded in confocal dishes until growth was >80%. The cell culture medium
was removed by aspiration and cells were washed once with PBS. The treatment was
performed as described. The cells were fixed by 4% paraformaldehyde for 20 min, then
permeabilized with 0.5% triton-x diluted for 20 min. The cells were blocked with 10% FBS
in 1× PBS containing 0.5% Tween-20 [14,15].

The primary antibodies (anti-COL1A1; diluted 1:200, anti-KNG1; diluted 1:200 and
anti-SERPINE1; diluted 1:200) were added and the cells at a concentration were incubated
overnight at 4 ◦C. The following day, the cells were washed and added to the secondary
antibodies (Alexa-labeled donkey anti-rabbit IgG (Invitrogen, Life Technologies, Carlsbad,
CA, USA; diluted 1:500)) for 2 h at room temperature in the dark [20,26]. They were dyed
by DAPI (C1005, Beyotime Biotechnology, Shanghai, China) at 37 ◦C for 10 min. The
cells were mounted by ProLong Glass Antifade Mountant (Antifade Mounting Medium,
Beyotime Biotechnology). The cells were observed by a Nikon A1+/A1R+ microscope (30 ×
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objective, Nikon Inc., Melville, NY, USA) [9,20–23]. The anti-COL1A1 (TU-425068) and anti-
KNG1 (TU-418934) were purchased from Abmart antibodies, ShangHai, China [27]. The
anti-SERPINE1 (YT-3569) was purchased from Immunoway, Plano, TX,75024 USA [21–24].

5. Conclusions

One of the most popular techniques for finding potential biomarkers for many dis-
eases in recent years is quantitative methods of mass, which include ultra-sensitive mass
spectrometry. A total of 1180 proteins were identified in the goat Endometrial Epithelial
Cells and LPS-treated goat Endometrial Epithelial Cell groups, of which 313 differential
proteins were accurately screened. Compared with the goat Endometrial Epithelial Cells
group, the inflammatory response, endoplasmic reticulum stress, apoptosis and mito-
chondrial function were activated or inhibited from differentially expressed proteins in
the LPS-treated goat Endometrial Epithelial Cells group. The results of differentially ex-
pressed proteins showed that several signaling pathways related to biological processes
or molecular function of proteins were upregulated or downregulated. The results were
independently verified by WB, TEM and IF techniques, and the results were consistent with
the proteomic data. Additionally, some of these proteins can be used as biomarker proteins
to predict diseases. Our team will continue to study the relevant molecular mechanisms in
depth. All findings reported here may provide new ideas and directions to improve our
understanding of the biological mechanism of endometritis.
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