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Abstract: Edible/medicinal mushrooms have been traditionally used in Asian countries either in the
cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing
attention in Europe as well, due to their health and nutritional benefits. In particular, among
the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative,
antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to
exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this
article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially
focusing on the possible bioactive compounds involved and their mechanisms of action. In particular,
the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps
sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes,
and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption
of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses
focusing on the effects of fungal extracts on breast cancer patients.

Keywords: breast cancer; edible/medicinal mushrooms; in vitro studies; in vivo studies; clinical
studies

1. Introduction

Breast cancer (BC) is among the major causes of cancer-related deaths worldwide,
with 2.3 million new cases per year, according to the GLOBOCAN 2020 data [1]. Projections
indicate that by 2030, the number of new cases diagnosed worldwide will reach 2.7 million,
while the number of deaths will reach 0.9 million [2] (Global Cancer Observatory: Cancer
Tomorrow, accessed on 29 April 2023. Available online: https://gco.iarc.fr/tomorrow). In
addition, the incidence of breast cancer is expected to further increase, in particular in low-
and medium-income countries, due to the effects of a westernized lifestyle, characterized
by delayed pregnancies, reduced breastfeeding, low age at menarche, lack of physical
activity, and poor diet [3].

Breast cancer is categorized into three major subtypes based on the presence or absence
of molecular markers for estrogen, progesterone, and human epidermal growth factor 2
(ERBB2, also known as HER2) receptors: hormone receptor positive/HER2 negative (70%
of patients), HER2 positive (15–20%), and triple-negative (TNBC, tumors lacking all three
standard molecular markers; 15%) [4,5].

A number of BC risk factors have been established, including family history. This
association is driven by epigenetic changes as well as by environmental factors acting as
potential triggers [6]. In addition, several genetic mutations have been highly associated
with an increased risk of BC. Particularly, BRCA1 and BRCA2 are two major genes primarily
linked to the increased risk of breast carcinogenesis [7]. Other highly penetrant BC genes
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include TP53, CDH1, PTEN, CHECK2, and STK11 [8–11]. According to recent research,
mutations within the XRCC2 gene could also be potentially associated with an increased
risk of breast cancer [12].

According to the World Health Organization (WHO), alcohol, highly processed meat
consumption, and excessive intake of saturated fats might enhance the risk of both gastroin-
testinal tract tumors and BC [13,14]. Ultra-processed food is rich in sodium, fat, and sugar,
which subsequently predispose to obesity, recognized as another factor of BC risk [15]. It
was observed that a 10% increase in ultra-processed food in the diet is associated with
an 11% greater risk of BC. Conversely, a diet rich in vegetables, fruits, legumes, whole
grains, and lean protein is associated with a lowered risk of BC [16]. Generally, a diet
that includes food containing high amounts of ω-3 PUFA, vitamin D, fiber, folate, and
phytoestrogen might be beneficial to prevent BC [17]. In addition, a lower intake of n-6
PUFA and saturated fat is recommended.

Conventional approaches, including surgery, chemotherapy, immunotherapy, radio-
therapy, targeted therapy, and endocrine therapy, are routinely used to treat BC. Although
the treatment of patients with BC has evolved dramatically over the past decades, the
median overall response is still poor. In particular, triple-negative BC remains rather
untreatable and, as with other tumors, BC cells may undergo acquired resistance, which
reduces the tumor’s response to conventional treatments [18]. In addition, these treatments
may lead to severe adverse effects such as myelosuppression, gastrointestinal disorders,
hemorrhagic cystitis, alopecia and cardio- and neuro-toxicity, which limit the patient’s
quality of life [19].

In recent years, the impact of the adverse effects of conventional therapy, as well
as the poor results obtained with conventional medicinal approaches, highlighted the
need for alternative therapeutic strategies. Among the complementary and integrative
approaches evaluated, the combination of conventional medicine and complementary activ-
ities, including the use of a wide range of products, such as herbs, vitamins, nutraceuticals,
and probiotics, has shown promising results [20–22]. In this context, edible/medicinal
mushrooms have emerged not only as sources of new nutraceuticals but also as a possible
complementary and alternative medicine, showing interesting results as an adjuvant to
conventional chemo- or radiation-therapy, enhancing their potency or reducing their side
effects, thus improving the patient’s quality of life [23,24].

The antineoplastic effects of mushrooms have been mainly related to their ability to
modulate the immune system, thanks to their content in glucans, sesquiterpenes, glycopro-
teins, or peptide/protein-bound polysaccharides [23,25]. Furthermore, minerals, amino
acids, other organic compounds, and several vitamins (e.g., thiamin, riboflavin, ascorbic
acid, and vitamin D) are contained in mushrooms and contribute to their overall health
benefits [25]. Some of these natural mushroom compounds have demonstrated specific
activity against signaling pathways that are aberrantly activated in cancer cells and have
been shown to negatively modulate specific molecular targets involved in cell proliferation,
survival, and angiogenesis [26,27]. The potential therapeutic effects of mushrooms have
been investigated both at the preclinical and clinical levels. Several quality reviews pub-
lished in recent years have summarized the effects of mushrooms and mushroom extracts
in human disease and, more specifically, in cancer [28–30].

This review aimed to summarize the described in vitro and in vivo effects of edi-
ble/medicinal mushrooms, which have been investigated for their direct or indirect ac-
tivity on breast cancer. In particular, we considered Agaricus bisporus (J.E. Lange) Imbach,
Antrodia cinnamomea T.T. Chang and W.N. Chou, Cordyceps sinensis (Berk.) Sacc. and
Cordyceps militaris (L.) Fr., Coriolus versicolor (L.) Quél., Ganoderma lucidum (Curtis) P. Karst.,
Grifola frondosa (Dicks.) Gray, Lentinula edodes (Berk.) Plegrel, and Pleurotus ostreatus (Jacq.)
P. Kumm. (Figure 1). We report insights about the mechanisms through which they exert
antitumoral effects on BC. We also review studies and meta-analyses about the effects
of edible/medicinal mushroom extracts on breast cancer patients, as well as the effect of
dietary consumption of mushrooms on breast cancer risk.
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Agaricus bisporus, by Jerzy Opioła, Own work, CC BY-SA 3.0, https://commons.wikimedia.org/
w/index.php?curid=24843662; Antrodia cinnamomea, by Thomaswz19, Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=30570855; Cordyceps militaris, By Andreas
Kunze, Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16244069;
Cordyceps sinensis, by L. Shyamal, Own work, CC BY-SA 3.0, https://commons.wikimedia.org/
w/index.php?curid=4116391; Coriolus versicolor, by Jerzy Opioła, Own work, CC BY-SA 3.0, https:
//commons.wikimedia.org/w/index.php?curid=25175312; Ganoderma lucidum, by Shane Hanofee,
Attribution, https://en.wikipedia.org/w/index.php?curid=64332594; Grifola frondosa, by Pethan,
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1792907; Lentinula edodes, by
frankenstoen from Portland, Oregon, Shiitake Mushrooms, CC BY 2.0, https://commons.wikimedia.
org/w/index.php?curid=7304024; Pleurotus ostreatus, by Archenzo, Own work, CC BY-SA 3.0, https:
//commons.wikimedia.org/w/index.php?curid=3005251, accessed on 29 April 2023).

2. Bioactive Compounds in Medicinal Mushrooms and Their Mechanisms of Action

Mushrooms’ bioactivities have been related to several biologically active compounds,
including polysaccharides, which are structural components of the fungal cell wall. Polysac-
charides have been shown to exert antitumor, immunomodulatory, antioxidant, anti-
inflammatory, antimicrobial, and antidiabetic activities [31–33]. However, specific chemical
features, such as the weighted degree of branching, backbone linkage, side-chain units, and
the type of constituent monosaccharides, can influence the type and modulation of these bi-
ological activities. α- and β-glucans are the most abundant polysaccharides, whereas other
glycans, such as heteroglycans, peptidoglycans, and polysaccharide–protein complexes,
are known to exert important biological activities [31,34].

Mushrooms are rich in proteins that have cytotoxic and anticancer properties. Some
of these are known for their characteristic and marked immunomodulatory effects. These
proteins are indicated as fungal immunomodulatory proteins (FIPs), whose mechanisms
of action can be diverse [31,33]. Proteins also include lectins, which bind reversibly to
mono- and oligosaccharides with high specificity, recognizing and interacting with various
carbohydrates and proteoglycans on the cell surface. They are involved in many biological
activities, such as innate immunity and cell-to-cell interaction, and their immunomod-
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ulatory mechanism varies depending on the origin of each compound. They also have
immunomodulatory, antitumor, and antiproliferative properties [31,35].

Other compounds that play a pivotal role in the bioactivities of mushrooms are
terpenes, quinones, triacylglycerols, isoflavones, catechols, and steroids. Other fungal
metabolites showing interesting biological activities are phenolic compounds, antioxidants
with different mechanisms of action (oxygen scavenging, metal inactivation, free radical
inhibition, peroxidase decomposition), laccases (copper-containing oxidases), and fatty
acids [36].

In the past, high molecular weight compounds (i.e., polysaccharides and glycopro-
teins) were believed to exert their antitumor activity through the immune response acti-
vation, while low molecular weight compounds were believed to directly regulate signal
transduction pathways linked to cancer development, progression, and survival. How-
ever, evidence has been reported indicating a direct action of certain polysaccharides on
tumor cells [23]. Mushroom-derived polysaccharides exhibit potent antitumor activity
against several kinds of metastatic cells. Moreover, they show increased activity when
used in conjunction with chemotherapy. Mechanistically, antitumor activity is facilitated
through a thymus-dependent immune mechanism, which necessitates an intact T-cell com-
ponent. Polysaccharide class components mainly trigger cytotoxic macrophages, natural
killer cells, dendritic cells, monocytes, neutrophils, and chemical messengers that acti-
vate complementary and acute phase responses. In addition, these polysaccharides act as
multi-cytokine inducers, capable of stimulating gene expression of many immunomodu-
lating cytokines and their receptors [37,38]. Various mushroom species, belonging to the
genuses Agaricus, Albatrellus, Antrodia, Calvatia, Clitocybe, Cordyceps, Flammulina, Fomes,
Funlia, Ganoderma, Inocybe, Inonotus, Lactarius, Phellinus, Pleurotus, Russula, Schizophyllum,
Suillus, Trametes, and Xerocomus produce compounds with inhibitory activity on cancers.
Besides the immunomodulatory effects, these compounds exhibit their anticancer effects
by acting as angiogenesis inhibitors, antimitotic agents, mitotic kinase inhibitors, reactive
oxygen species inducers, and topoisomerase inhibitors [31,39] (Figure 2).
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3. Edible/Medicinal Mushrooms in Breast Cancer

As already mentioned, several edible/medicinal mushrooms have been studied for
their potential antineoplastic effects on BC, which is still one of the main causes of death in
the world. The inclusion of mushrooms in the diet has been shown to be protective against
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cancer [40]. Furthermore, dietary consumption of mushrooms has been associated with a
diminished risk of BC [41,42].

Here, we have considered some of the edible/medicinal mushrooms with inhibitory
action on BC and the possible mechanisms responsible for their effects. A summary of the
principal bioactive components contained in the considered mushrooms, along with their
possible anticancer mechanisms, is reported in Table 1, while Figure 3 reports a simplified
scheme of the mechanisms involved in the anticancer effects of the considered mushrooms
on TNBC. Table in Section 4.2 summarizes the in vitro and in vivo evidence of their effects
on BC reported in this review.
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3.1. Agaricus bisporus (J.E. Lange) Imbach

Agaricus bisporus is an edible basidiomycete mushroom belonging to the family of
Agaricaceae, native to grasslands in Eurasia and North America. A. bisporus is one of the most
widely consumed mushrooms worldwide, and indeed it is cultivated in more than seventy
countries. The immature state is characterized by a closed cap and can present two different
colors, white and brown. The white one is also known as the common mushroom, white
mushroom, button mushroom, or champignon, while the brown one is known as the Swiss
brown mushroom, Roman brown mushroom, Italian brown mushroom, cremini/crimini
mushroom, or chestnut mushroom. Regarding the mature state, it is brown with an open
cap and is commonly sold under the names of portobello, portabella, or portobella.

A. bisporus is a precious source of amino acids, unsaturated fatty acids (including
linoleic and linolenic acids), vitamins B, vitamin C, sterols, phenolic and indole compounds,
beta-glucans, ergosterol, ergothioneine, vitamin D, and flavonoids, which are present in
different concentrations depending on the cooking method, and on the exposure to UV light.
For example, the ergocalciferol (vitamin D2) content increases substantially after exposure
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to UVC. As a matter of fact, unlike plants, the mushrooms’ cell wall possesses a high
content of ergosterol, which plays a similar role to cholesterol in the animal cell wall. Upon
exposure to UV light, ergosterol is transformed into pre-vitamin D2, which subsequently
undergoes a temperature-dependent reaction that leads to ergocalciferol [31,43,44].

Thanks to the high content of nutrients, the fruiting bodies of A. bisporus have impor-
tant anti-oxidant, anti-bacterial, anti-inflammatory, anti-tumoral, and immunomodulatory
activities [45].

Conjugated linoleic acid is one of the bio-active components of A. bisporus, with a
significant role in chemoprevention and inhibition of carcinogenesis. As a matter of fact,
A. bisporus possesses interesting potential in protecting against some cancers, including
breast cancer [31,46]. In addition, conjugated linoleic acid from white button mushroom
extracts was able to inhibit testosterone-induced cell proliferation in MCF7 cells without
affecting non-tumorigenic MCF-10A cells. Moreover, the extract was able to suppress
tumor growth in nude mice bearing MCF-7 xenografts [47].

Several studies have evaluated the effects of polysaccharides, mainly β-glucans, from
A. bisporus and their immunomodulatory effects. In this context, evidence has been reported
about the potentiality of linear β-(1→6)-d-glucan (B16) isolated from A. bisporus in inducing
macrophage polarization towards the M1 phenotype, which presents anti-tumoral activities
with the production of pro-inflammatory markers (IL-1 β, TNF-α, CoX-2). Unfortunately,
MDA-MB-231 BC cells were insensitive to B16; however, combined treatment with B16 and
doxorubicin resulted in a synergic effect, providing an increase in M1 polarization and an
improvement of BC cell sensitivity to doxorubicin [48]. Previously reported data concerning
the effects of two distinct polysaccharide fractions (ABP-1 and ABP-2) extracted from
A. bisporus on murine macrophages demonstrated the induction of nitric oxide, Interlukin-6,
and Tumor Necrosis Factor-α (TNF-α) production, in part through the activation of Nuclear
factor-kB. Moreover, both fractions were able to inhibit human BC MCF7 cell growth,
probably also due to their activity on macrophages [49].

Lectins present in Agaricales, as well as in other medicinal fungi, showed therapeutic
properties against many cancers in both animal and clinical studies. However, the specific
anti-cancer mechanisms of lectins have not yet been fully elucidated. What is known
is that the preferential binding of lectins to sugars present on cancer cell membranes
causes cytotoxicity and apoptosis. Lectins may also alter the production of interleukins,
acting at the level of the immune system. Furthermore, they can bind to ribosomes, thus
modulating the proteome of the cell and inhibiting protein synthesis [50]. Moreover, the
antiproliferative effect of lectins present in A. bisporus is likely to be a consequence of the
inhibition of protein uptake into the nucleus, following the lectin trafficking to the nuclear
periphery, where it blocks sequence-dependent protein import [33].

Recently, a lectin-like protein from A. bisporus has been shown to recognize and
bind mannose on MCF7 cellular membranes, inducing cell death at high concentrations
(100 µg/mL) and cell growth arrest at lower concentrations [51].

Interestingly, for their ability to bind glycoproteins and glycolipids, lectins from
mushrooms could be a potential source for detection of glyco-markers, which are aberrantly
expressed on the cancer cell surface (e.g., T/Tn antigens, Lewis/Lewis X). This could have
a positive impact on early detection and better prognosis, as well as on follow-up and
responsivity to cancer therapy progression and evolution [52].

3.2. Antrodia cinnamomea T.T. Chang and W.N. Chou

Antrodia cinnamomea (Syn. Antrodia camphorata) belongs to the family of Polyporaceae.
Its current name is Taiwanofungus camphoratus (M. Zang and C.H. Su) Sheng H. Wu, Z.H. Yu,
Y.C. Dai, and C.H. Su). A. cinnamomea is a precious and rare edible and medicinal mushroom
that grows slowly and exclusively on decaying empty trunks of the Cinnamomum kanehirae
Hayata (Lauraceae), an endangered aromatic tree endemic to Taiwan.

Due to the rarity of this product, and the high market demand, the fruiting bodies of
this mushroom are very expensive, which recently encouraged the development of novel
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cultivation techniques to provide a steady supply at reasonable prices [53,54]. A. cinnamomea
is also extremely valued, as it contains bioactive compounds with potential anti-cancer,
antioxidant, anti-inflammatory, anti-hypertensive, anti-hyperlipidaemic, hepatoprotective,
and immunomodulatory activities, as well as regulating properties of the gut microbiota. In
the past, this mushroom was used by native populations to treat liver diseases, particularly
the disorders caused by alcohol intoxication. Nowadays, it is used as a chemopreventive
agent in folk medicine [55].

Several bioactive compounds from A. cinnamomea have been identified, including ter-
penoids, polysaccharides, lignans, glycoproteins, benzene derivatives, ubiquinone deriva-
tives, and maleic and succinic acid derivatives [56]. In particular, ergostanes, found only in
fruiting bodies, and lanostane, present in both fruiting bodies and cultured mycelia, are
among the most interesting terpenoids in A. cinnamomea, and Anticin A, which compre-
hends different bioactive mycoconstituents, has shown important anti-inflammatory and
anti-tumoral effects [31,56].

As regards BC, Anticin-A demonstrated the ability to arrest the epithelial-to-mesenchymal
transition (EMT) in human estrogen receptor-positive MCF7 and triple-negative MDA-MB-
231 cells, acting through the upregulation of the epithelial markers E-cadherin and occludin,
and through the concomitant downregulation of the mesenchymal markers N-cadherin
and vimentin. At the molecular level, Anticin-A appears to act through the p53 pathway
by inducing miR-200, a repressor of ZEB1, known to be an important actor of EMT via
downregulation of E-cadherin expression [57,58]. Furthermore, Antrocin C, belonging to
the group of maleic acid and succinic acid derivatives, has been demonstrated to reduce
the migratory capacity of human BC cells in vitro. In addition to the upregulation of epithe-
lial markers (E-cadherin and occludin) and the downregulation of mesenchymal markers
(N-cadherin and vimentin), Antrocin C was able to significantly inhibit TGF-β1-induced
migration and invasion of MCF7 cells through the suppression of the β-catenin transcrip-
tion factor, ultimately leading to a reduction in the expression of matrix-metalloproteinases
MMP-2 and MMP-9. Moreover, Antrocin C was able to reverse EMT in MCF7 cells, prob-
ably acting on Smad2/3, a transcriptional factor belonging to the TGF-β pathway. This
same phytochemical has also shown an interesting activity on metastatic MDA-MB-231
cells, as it inhibited both Akt/mTOR and NF-κB pathways, thus acting as a promising dual
inhibitor of one of the major oncogenic driver pathways in many cancers [59]. Furthermore,
Antrocin induced apoptosis by downregulating Bcl-2, Bcl-xL, and survivin expression, as
well as by upregulating cytosolic cytochrome C and Bax [58].

Several in vitro studies demonstrated potent anti-proliferative, anti-metastatic, and
cytotoxic activities of A. cinnamomea fermented culture broth (FCB) on tumor cells. For exam-
ple, it has been shown that FCB promotes cell cycle arrest and apoptosis and also possesses
anti-metastatic activity on the highly metastatic BC cell line MDA-MB231 [60]. Furthermore,
another in vitro study on MCF7 cells showed an FCB dose- and time-dependent induction
of apoptosis, demonstrated by loss of cell viability, chromatin condensation, internucle-
osomal DNA fragmentation, sub-G1 phase accumulation, the release of cytochrome C
in the cytosol, activation of caspase3, and degradation of poly(ADP-ribose) polymerase
(PARP) [61]. In addition, analysis of ROS species generation showed a dose-dependent
activity of FCB in MCF7 cells.

The effects of the ethanolic fruiting bodies fraction of A. cinnamomea, containing antcin
K, antcin C, antcin B, methyl antcinate B, eburicoic acid, and dehydroeburicoic acid, have
also been evaluated in some studies, showing a potent growth inhibitory activity associated
with apoptosis, increased by the concomitant administration of tamoxifen, on an acquired
tamoxifen-resistant MCF7 cell line. This effect seemed to be due to the inhibition of mRNA
expression of skp2 (S-phase kinase-associated protein 2), whose overexpression in BC is
synonymous with poor prognosis [62]. The ethanolic extract also showed antiproliferative
activity in human hormonal receptor-expressive T47D breast cancer cells in vitro and
in vivo [31].
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The ethanolic extract of dish-cultured A. cinnamomea (EEAC) on endoplasmic reticulum
(ER) stress and histone deacetylate (HDAC) inhibition in breast cancer cells (T47D, MCF7,
and MDA-MB-231) was also studied; both the induction of cell cycle arrest in G1 and the
inhibition of HDACs were observed. Moreover, the presence of the autophagic marker LC3-
II of the p62 protein and of the FOXO1 transcription factor was detected, thus suggesting
that the autophagic process is a central mechanism of inhibition of proliferation of T47D
cells upon exposure to EEAC [53,58].

The potential anti-tumor effect of EEAC has also been confirmed in vivo in nude mice.
Reduction of tumor size without observation of significant side effects was documented,
suggesting a possible role for EEAC as an anti-cancer agent, particularly in the field of
HDAC inhibitors [53].

3.3. Cordyceps sinensis (Berk.) Sacc. and Cordyceps militaris (L.) Fr.

Widely used in traditional Chinese medicine, medicinal mushrooms of the Cordyceps
genus have shown beneficial effects on human health thanks to their immune stimulatory,
neuroprotective, antimicrobial, anti-inflammatory, and anticancer activities. C. sinensis
(current name is Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones, and
Spatafora) and C. militaris are the most known and studied among the more than 680 species
belonging to the Cordyceps genus [63–65]. They are entomopathogenic fungi; namely, they
parasitize insects by attacking the underground pupae and larvae of lepidoptera, ultimately
producing a fruiting body that can be used as a medicinal remedy [66]. C. sinensis is also
known in China as ‘Dong Chong Xia Cao’, which means “winter worm summer grass”, and
“caterpillar fungus”. It is native to the Tibetan Plateau, Bhutan, Nepal, and the northeastern
regions of India and grows optimally at 3500–5000 m above sea level [64]. C. militaris
is typically used in China and East Asia as a tonic [67] and is widely used as a crude
preparation due to its multiple pharmacological properties [68].

Several active compounds are present in Cordyceps mushrooms, such as ergosterol,
mannitol, and modified nucleosides [69], but the major functional component with medici-
nal properties shared by both the aforementioned fungi is cordycepin, whose anticancer
effects on various tumors, including BC, have been reported [63]. These antitumoral
properties are attributed to structural similarity with cellular nucleosides and adenosine:
cordycepin, lacking oxygen at the 3′-position of its ribose moiety, acts like a nucleoside
analog and inhibits the polyadenylation of the mRNA of cancer cells [65].

Lee et al. demonstrated that both cordycepin and ethanol extracts of C. militaris
suppressed MCF7 cell proliferation in a concentration-dependent fashion. Specifically, the
authors showed that exposure to C. militaris (100 µg/mL) and cordycepin (25 µM, 50 µM)
induced apoptotic cell death. In particular, exposure to cordycepin induced apoptosis
through mitochondria-mediated intrinsic apoptotic pathways by promoting expression
and translocation of Bax to mitochondria, releasing cytochrome C, activating caspase-9, and
activating extrinsic apoptotic pathways through the activation of caspase-8 [65]. In vitro
experiments demonstrated that Cordycepin extracts inhibited growth, migration, and
invasion of the human BT549 and mouse 4T1 TNBC cell lines, mainly through the reduction
of proteins such as TWIST1, SLUG, SNAIL1, and ZEB1 involved in EMT. Among its various
actions, Cordycepin also downregulates N-cadherin, triggering the overexpression of
E-cadherin, thus inhibiting the migratory behavior of BC cells [63].

Cordycepin extracts from C. sinensis have also shown cytotoxic activity on TNBC MDA-
MB-231 and MCF7 human BC cells. This effect was mainly due to lactate dehydrogenase
cellular release, ROS production, and disruption of mitochondrial function. In addition,
downregulation of the antiapoptotic Bcl-2 protein and upregulation of proapoptotic protein
levels were observed. Autophagy, DNA damage, and targeting of cancer stem cells also
contributed to the Cordycepin tumor-suppressing effect [58].

The effects of cordycepin have also been confirmed in 4T1 mouse models, as 30 days
of treatment significantly decreased experimental tumor weight and size and reduced
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the number of metastatic colonies in the lungs [63]. Consistently, in vivo studies have
demonstrated that C. sinensis reduced BC metastases in 4T1 tumor-bearing mice [66].

Furthermore, an aqueous extract of C. militaris exerted anticancer action and prolonged
the survival of nude mice bearing MCF7 xenografts.

Interestingly, dietary administration of JLM 0636, a preparation of cordycepin-enriched
C. militaris characterized by a seven-fold increased cordycepin concentration, led to tumor
growth arrest and prolongation of survival in C3H/He mice bearing FM3A BC xenografts,
possibly due to an increment of interferon-γ (IFN-γ) expressing cytotoxic T cells [58].

Finally, in MCF7 xenografts, administration of C. militaris for 14 days was shown to
boost the expression levels of cleaved PARP, cleaved caspase-3, cleaved caspase-8, and Bax,
thus supporting the existing evidence about the antitumoral effects of this mushroom [67].

3.4. Coriolus versicolor (L.) Quél.

Coriolus versicolor (Syn. Polyporus versicolor) is commonly known as Y(T)unzhi in
China, Kawaratake in Japan, or Turkey tail in the Western world, and also as Trametes
versicolor (L.) Lloyd, which is its current name. It belongs to the Polyporaceae family [70]. It
is common in Asia, North America, and Europe. Its medicinal value is known in Chinese
traditional medicine and includes general health-promoting effects. In Asian regions, and
particularly in China, C. versicolor has been used as a “magic herb” to promote good health,
strength, and longevity [71,72]. Since 1987 in China and 1977 in Japan, C. versicolor extracts
have been approved in integrated cancer therapy in combination with chemotherapy or
radiotherapy [31,70].

Coriolus versicolor contains various bioactive substances, including two protein-bound
polysaccharides (i.e., the polysaccharide peptide, PSP, and the glycoprotein PSK, krestin),
terpenes, proteins, peptides, amino acids, purpurins, and others. However, PSP and PSK
are the most studied mushroom bio-compounds and the most active biological components
in the mushroom [70].

PSP possesses immunomodulating effects, mainly due to the ability to act on cytokine
release, to increase the expression of cytokines and chemokines, such as tumor necrosis
factor-α (TNF-α), interleukins, histamine, and prostaglandin E, to activate natural killer
(NK) cells and to enhance dendritic and T cell infiltration into tumors. Furthermore,
antitumor, anti-inflammatory, and antiviral effects have been reported, along with other
physiological effects, such as liver-protecting, system-balancing, antiulcer, antiaging and
learning, and memory-enhancing properties. Interestingly, C. versicolor was also shown to
reduce adverse effects related to chemotherapy and radiotherapy treatments [71,73].

Krestin showed both direct and indirect cytotoxic effects on cancer cells in vitro [74–76].
Thus, PSP and PSK can strengthen the body’s natural immune response, therefore exerting
anti-tumor effects; however, the underlying mechanism has not been fully understood.

A number of studies investigated the anti-tumor and anti-metastatic effects of
C. versicolor on BC cell lines [77–79]. In particular, it has been shown that C. versicolor
extract suppressed the proliferation of T47D, MCF7, and MDA-MB231 cells with a mag-
nitude similar to the anti-cancer drug mitomycin C. These effects are exerted through
the induction of apoptotic cell death, the upregulation of p53, and the downregulation of
Bcl-2 [78]. The effects of a C. versicolor aqueous extract were also evaluated in mouse
mammary carcinoma 4T1 cells and a 4T1-tumor-bearing mouse model, showing significant
inhibition of cell migration, invasion, and MMP9 enzyme activity and protein downregula-
tion. Animal studies showed that a C. versicolor aqueous extract induced a decrease in tumor
weight and lung metastases. Furthermore, treatment with C. versicolor aqueous extract
resulted in significant immunomodulatory effects, which were reflected by increased IL-2,
IL-6, IL-12, TNF-α, and IFN-γ production in the spleen lymphocytes of C. versicolor-treated
tumor-bearing mice [80]. The effects of C. versicolor extracts in metastasis-promoting chronic
inflammation in BC cell lines were also evaluated, and antimigratory and cytotoxic effects
were observed [81].
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Recently, it has been reported that protein-bound polysaccharides from C. versicolor
induced stimulation of the TNF-α/TNFR1 pathway, leading to cytotoxicity via necroptosis
activation in MCF7 cells [82].

3.5. Ganoderma lucidum (Curtis) P. Karst. (Reishi)

Ganoderma lucidum, also known in China and Korea as ‘Ling-zhi’ (meaning “spiritual
power grass”) and in Japan as ‘Reishi’ or ‘Mannentake’ (10,000 years fungus), is one of the
most widely used medicinal mushrooms in the world.

G. lucidum grows worldwide in temperate and subtropical areas: it is common in
Europe, America, Canada, Africa, India, China, Japan, Korea, and other Southeast Asian
countries. The Chinese mushroom differs from the European G. lucidum s.str., and several
studies have been conducted to distinguish the one from the other. Nowadays, the Asiatic
species is called the ‘Ling-zhi’ fungus and refers to the species G. lingzhi Sheng H. Wu,
Y. Cao, and Y.C. Dai [83]. The two species have different morphological characteristics and
seem to contain different amounts of triterpenes [23,84–86].

Known since ancient times in traditional Chinese medicine as the “mushroom of im-
mortality”, G. lucidum has been used to promote well-being and longevity and is recognized
for its hypoglycemic, immunomodulatory, antihypertensive, anti-diabetic, antioxidant, an-
tihyperlipidaemic, antimutagenic, antiaging, antimicrobial, and hepatoprotective pharma-
cological properties [31,87]. In addition, it has also been widely used as an adjuvant in the
treatment of various types of cancer [88,89], including breast cancer [90–92]. The polysac-
charides and secondary metabolites present in G. lucidum are thought to be responsible
for these biological activities. In particular, secondary metabolites from G. lucidum include
triterpene compounds such as ganoderic acids, ganodermic acid, ganodermic alcohols,
lucidones, lucinedic acids, ergosterol, 5,6-dehydroergosterol, ergosterol peroxide (EP), and
palmitic acid. They possess antitumor, antimetastatic, cytotoxic, and enzyme inhibitory
properties, while polysaccharides, mainly α-1,3, β-1,3, and β-1,6-D-glucans and ganoderan,
are characterized by strong antiangiogenic and immune system-strengthening proper-
ties [89,93]. Therefore, these two categories of molecules are primarily responsible for the
anticancer properties of Reishi by suppressing cell proliferation, metastasis, and invasion
and by promoting apoptosis, combined with its immunomodulating, immunostimulating,
antioxidant, and anti-inflammatory activities [20].

More than 100 Reishi-based products are currently marketed, such as nutraceuticals,
supplements, functional foods, mycopharmaceuticals, and cosmeceuticals.

Concerning BC, many studies associated whole mushroom extract or individual
bioactive compounds of G. lucidum with cell death induction or cell cycle arrest of several
human BC cell lines. In particular, cytotoxic ity and pro-apoptotic effects of total triterpenes
from G. lucidum were evaluated in both noninvasive, estrogen-dependent, and highly
invasive, estrogen-independent human breast adenocarcinoma cell lines, showing apoptosis
induction and cell cycle arrest through downregulation of cyclin D1, Bcl-2, Bcl-xL levels,
and upregulation of Bax and caspase-9 levels [91,94,95]. In vivo experiments in Wistar
rats were also performed to evaluate the anti-carcinogenicity of total triterpenes using
dimethyl-benz-[a]-anthracene (DMBA) to induce mammary adenocarcinomas. The results
showed a significant reduction in the incidence of mammary tumors. In addition, total
triterpenes were also found to reduce the average number of tumors per animal and extend
the tumor latency period [96].

Recently, the most abundant components of whole G. lucidum extracts have been tested
on a panel of triple-negative BC cell lines, showing the greatest selective anti-cancer activity
of EP on BC cells and no significant toxicity against normal breast and non-cancerous
mammary epithelial cells [89]. Specifically, this study demonstrated that EP exerts anti-
proliferative effects through G1 phase cell cycle arrest, apoptosis induction via caspase
3/7 activation, and PARP cleavage, concomitantly inhibiting the expression of total AKT1,
AKT2, BCL-XL, Cyclin D1, and c-Myc in BC cells. In addition, EP generated reactive
oxygen species, thus compromising cellular viability. Moreover, EP decreased migratory
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and invasive effects of cancer cells at lower dosages than those reported in the literature in
BC cell lines [97]. To confirm the antimetastatic effect of G. lucidum extract, other studies
showed that extracts of this mushroom inhibited the release of MMP2 and MMP9 in
triple-negative BC cells and that in nude mice, oral administration of GLE can inhibit breast-
to-lung cancer metastases through the downregulation of genes associated with invasive
behavior [92,98]. Furthermore, other in vitro and in vivo studies highlighted a selective
action of G. lucidum extracts and the commercial extract ReishiMax GLpTM (carpophore
and cracked spores) on mice injected with inflammatory breast cancer (IBC) on the protein
expression of E-cadherin, mammalian target of rapamycin (mTOR), human eukaryotic
translation initiation factor 4G (eIF4G), and p70 ribosomal protein S6 kinase (p70S6K) as
well as on the activity of extracellular regulated kinase (ERK 1/2), along with the reduction
in tumor size and weight [91,99,100].

An active fraction containing fucose glycoprotein, isolated from G. lucidum (Ling-Zhi)
extract (FFLZ), was shown to exert immunomodulating activities by stimulating the expres-
sion of inflammatory cytokines and antibody-mediated cytotoxicity in cancer cells [101,102].
In BC models, FFLZ reduced tumor size and suppressed metastasis in vivo through the
down-regulation of TGFR and downstream signaling pathways, including the phosphory-
lation of Smad2/3 and the expression of Smad4. Furthermore, FFLZ inhibited breast cancer
cell migration and altered the epithelial-to-mesenchymal transition phenotype [103].

Recently, it was shown that a crude polysaccharide isolated from the fusion of
G. lucidum and Polyporus umbellatus mycelia (namely, Khz) decreased the proliferation
and induced the apoptosis on MCF-7 cells through intracellular [Ca2+] increase and apop-
totic induction mediated by caspase-7, -8, and -9 [104,105].

Recently, an extract derived from the sporoderm-breaking spores of G. lucidum (ESG)
has been shown to suppress 4T1 tumor growth in vivo rather than in vitro. In this context,
ESG could significantly increase both the cytotoxic T cell (Tc) population and the ratio of Tc
to helper T cells (Th) in the peripheral blood of tumor-bearing mice; a similar promotion of
Tc was also found in tumor-infiltrating lymphocytes. Moreover, ESG markedly downregu-
lated the two immune checkpoints, programmed cell death protein-1 (PD-1, in the spleen)
and cytotoxic T lymphocyte antigen-4 (CTLA-4, in the tumor), suggesting that ESG could
effectively restore the T cell paradigm by recovering the exhaustion status through the
suppression of the co-inhibitory checkpoints [106]. Finally, the effects of G. lucidum fruiting
bodies ethanolic extract (GLEet) on the expression of xenobiotic-targeting enzymes, on the
oxidant–antioxidant and hormonal status of 7,12-dimethyl-benz[a]anthracene (DMBA)-
induced experimental breast cancer was investigated in female Sprague Dawley rats. Oral
administration of GLEet to tumor-bearing animals significantly diminished the levels of
lipid peroxidation, thereby enhancing nonenzymatic antioxidant levels, and also positively
regulated estrogen receptor hormone levels to near normal when compared with DMBA-
treated rats. Moreover, it also positively modulated xenobiotic metabolizing enzymes [107].

Thus, all the reported evidence suggests that Ganoderma lucidum and its bioactive
compounds are capable of inducing cytotoxicity, antiproliferative effects, proapoptotic
processes, and cell cycle arrest as part of its anti-BC properties. In addition, the dietary
administration of G. lucidum may be efficiently used as a chemopreventive agent against
mammary carcinogenesis.

3.6. Grifola frondosa (Dicks.) Gray (Maitake)

G. frondosa, belonging to the order of Polyporales, has a long history as a medicinal
mushroom. It has different appellatives, according to the reference country—in the USA
and Canada, it is commonly known as “sheep’s head”, ”king of mushrooms”, ”hen-of-
the-woods”, and “cloud mushroom”; in Japan, it is termed ‘Maitake’, whose meaning
is “dancing mushroom”. The reason for this peculiar nickname is possibly due to the
singular morphology of the mushroom itself, characterized by petaloid basidiomata that
extend from a common, thick, and whitish stem. It usually grows in clusters at the base of
broadleaf trees, preferentially near oaks, but also on other deciduous trees such as beech,
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chestnut, elm, and maple. The ideal habitats for its growth are northern temperate forests
in North America, China, and Japan; it is uncommon in Europe [23,108].

This mushroom is used as a culinary ingredient in Japan, where it is cultivated exclu-
sively for this purpose. Only young Maitake are edible since the mushroom becomes harder
as it ages. Along with its high nutritional and nutraceutical value, it has been demonstrated
to possess a wide range of therapeutic effects, including immunomodulatory, antiviral,
antidiabetic, antitumoral, and anti-inflammatory ones.

The major bioactive components involved in these beneficial outcomes for health are
the β-glucans, in particular, the so-called D-fraction, a β-glucan complex composed of
about 30% protein. Specifically, the D-fraction is extracted from the fruit bodies of the
mushroom and contains a unique structure composed of a 1,6 main chain having a greater
degree of 1,3 branches and a 1,3 main chain with 1,6 branches. In addition to the D-fraction,
Maitake contains many other bioactive substances, such as the X-fraction, Grifolan, the
MZ-fraction, and MT-α-glucan. [108,109].

The G. frondosa D-fraction has been demonstrated to be the major component showing
antitumoral effects, possibly due to its ability to tune immune responses and to have direct
antiproliferative and cytotoxic effects in a variety of human cancer cells [23,108]. For this
reason, the Maitake D-fraction (MDF) has been the focus of multiple investigations in
cancer research, including breast cancer. In vitro studies on hormone-dependent MCF7
cells demonstrated that MDF promotes the release of cytochrome C from mitochondria,
fostering cell dysfunction and apoptosis, whereas studies on TNBC MDA-MB231 cells
indicate that it alters the expression of genes involved in cell growth, proliferation, and
progression. Moreover, MDF is involved in the regulation of both migratory and metastatic
processes by upregulating E-cadherin protein levels and promoting cell-substrate adhesion,
as well as by downregulating cell motility through the remodeling of the actin cytoskeleton
and by inhibition of MMP2 and MMP9, linked to invasive behavior. Furthermore, it
has been established that MDF decreases cell viability by affecting the localization of β-
catenin, which is often correlated with poor prognosis in breast cancer patients. Specifically,
MDF decreases β-catenin expression in the cytoplasm and nucleus, stimulating membrane
localization to facilitate the binding with E-cadherin, thus favoring its anti-metastatic
activity [109].

Moreover, G. frondosa polysaccharides regulate cell viability by promoting the ex-
pression of pro-apoptotic proteins by altering the Bax/Bcl-2 ratio and dampening the
pro-survival pathways coordinated by PI3K-Akt and ERK [58,109].

A number of studies confirmed that MDF also maintains its antitumoral properties
in vivo. Interestingly, in mice harboring cancer xenografts, MDF induced immunostimu-
latory effects on macrophages, natural killer cells, and T cells [58]. Furthermore, studies
carried out in a xenotransplanted murine model of TNBC human cells showed a decrease in
distant lung metastases following MDF treatment [109]. In addition, the treatment affected
the viability of hormone-independent LM3 cells in culture and the metastatic potential of
cells in an LM3 syngeneic murine model. Finally, the Maitake D-Fraction Pro4x inhibited
carcinogenesis, angiogenesis, and cancer invasiveness and prolonged survival in BALB/c
mice bearing breast tumor xenografts [58].

The evidence shown in this section demonstrated that, differently from other medicinal
mushroom extracts, the Maitake D-Fraction affects BC cell viability regardless of the
hormone receptor and HER2 status of tumor cells. This compound could be useful to
treat an array of different breast tumor subtypes, including hormone-dependent, hormone-
independent, and triple-negative BC. The medicinal mushroom G. frondosa may become a
potential therapeutic strategy for the management of BC [109].

3.7. Lentinula edodes (Berk.) Pegler (Shitake)

Lentinula edodes represents the second most popular edible mushroom after Agaricus
bisporus in the global market [110–112]. It is extensively consumed in Oriental and, more
recently, Western cuisine. Besides its culinary value, this mushroom exerts positive effects
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on human health, such as antioxidant effects, due to the phenolic compounds and ergoth-
ioneine, hypocholesterolemic activity, due to ergosterol, β-glucans, and eritadenine, and
antihypertensive effects, due to various peptides, including lenthionine [113]. However,
Shitake has attracted clinical attention due to its immunomodulatory and antiviral capaci-
ties as well as its potent antitumor action on different types of cancer, including BC, mainly
due to its glucan component lentinan [114].

In MCF7 and MDA-MB-231 BC cells, it has been observed that a peptide (latcripin-
7A) extracted from L. edodes induced cell cycle arrest and decreased the mitochondrial
membrane potential, leading to apoptotic cell death. Furthermore, in the same cell lines,
the peptide significantly reduced migration and promoted autophagy without affecting
the survival of MCF-10A normal breast cells [115]. The antiproliferative and proapoptotic
effects of L. edodes mycelial and fruit body extracts were previously observed in MCF-
7 [116]. Furthermore, in MCF7 and MDA-MB-453 cells, the ethyl acetate fraction of L. edodes
induced apoptosis by increasing Bax and p21 levels and by decreasing cdk4 and cyclin D1,
ultimately resulting in cell cycle arrest [117].

Interesting results have also been obtained in vivo, in nude mice in which the β-
glucan from L. edodes (GLE) demonstrated a significant reduction of MCF7 tumor growth,
possibly through the suppression of cell proliferation and promotion of apoptosis. In-depth
analysis indicated that GLE inhibited multiple pathways, such as the ones modulated by
PI3K/Akt/mTOR, NF-κB, ERK, ERα, caspase, and p53 [118].

3.8. Pleurotus ostreatus (Jacq.) P. Kumm.

Pleurotus ostreatus, also called oyster mushroom, belongs to the Agaricaceae family
under the Basidiomycetes class [119,120]. The Pleurotus genus includes approximately
40 species of mushrooms, which are among the most cultivated and consumed in the
world [121].

Phytochemicals present in P. ostreatus were screened, and the antioxidant, antibacterial,
and anticancer activities of the ethanolic extract of P. ostreatus have been studied in-depth.
In addition, the binding affinities of 32 biologically active compounds found in oyster
mushrooms with EGFR, PR, and NF-κB proteins, which are overexpressed in breast cancer,
were evaluated [122].

Hypocholesterolemic, free radical scavenging, antioxidant, antiatherogenic, anti-
tumor, and immunomodulatory effects have been attributed to the bioactive compounds
contained in P. ostreatus, such as α-glucans, β-glucans, lentanin, lipopolysaccharides, resver-
atrol, concanavalin A, the natural statin mevinolin, and many others [122]. Recently, some of
these effects have been correlated to the antitumor activity of P. ostreatus [121]. A methanol
extract prepared from the fruiting body of P. ostreatus inhibited MDA-MB-231 and MCF7
cell growth through the induction of cell cycle arrest at the G0/G1 phase, upregulation of
the p21, p53, p27, and p19 genes and downregulation of E2f transcription factor 1, PCNA,
CDK4, CDK6, and Transcription factor DP-1 [123]. Consistently, P. ostreatus ethanolic extract
inhibited growth and proliferation and induced oxidative stress and apoptotic cell death in
MCF7 cells [121].

Recent in silico results provided evidence confirming that P. ostreatus may be a useful
source of bioactive compounds responsible for its significant antioxidant, antibacterial, and
anticancer properties [122].

The six linked glucans in P. ostreatus extracts potentiated the cytotoxic activity of
natural killer cells against breast and lung cancer cells, which was associated with the
induction of nitric oxide and interferon-γ through upregulation of KIR2DL. The cytotoxicity
of the compound was augmented by interleukin-2 [58].

Oral administration of P. ostreatus ethanolic extract to rats bearing carcinogen-induced
tumors led to a significant decrease in tumor volume and an increased body weight
without any alterations in food and water intake or other behavioral patterns of the animals.
Ethanolic extracts of P. ostreatus also downregulated estrogen and progesterone receptors,
probably due to the presence of ergosterol, which most likely acted as an anti-estrogen
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block in receptor-mediated pathways. COX2 expression was also inhibited, resulting
in a prostaglandin cascade and hence tumor suppression [124]. Lovastatin/mevinolin,
present in the P. ostreatus ethanolic extract, inhibited angiogenesis and metastasis through
the inhibition of MMP-2 and MMP-9 expression in the 4T1 metastatic breast cancer cell
line [121].

P. ostreatus polysaccharides downregulated the expression of VEGF, resulting in the
suppression of angiogenesis in MCF7 cells. In addition, they also induced apoptosis
by increasing caspase-9, caspase-3, Bax, and phospho-JNK expression and by reducing
mitochondrial membrane potentials. In rats carrying carcinogen-induced breast cancer,
supplementation of the β-Glucan derived from P. ostreatus resulted in low tumor incidence,
decreased tumor volume, and reduction in the total number of tumor nodules [121]. Fur-
thermore, P. ostreatus extracts induced apoptosis and significantly reduced colony forming
ability, cell viability, and tumor spheroid size of MCF7 cells. The increase in caspase3/7 ac-
tivity, the upregulation of p53 and Bax, and the downregulation of Bcl2 raised the Bax/Bcl2
ratio, thus showing that apoptosis was mediated by the intrinsic pathway and by an
alteration in the balance of pro-apoptotic and antiapoptotic genes [125].

Despite the promising results observed, little is still known about the detailed signaling
cascade induced by P. ostreatus extracts in BC cells.

Table 1. Summary of the main bioactive constituents and of the in vitro and in vivo (in animal
models) effects against breast cancer of the considered mushrooms and mechanisms involved in
these effects.

Species Main Bioactive Constituents Mechanisms

Agaricus bisporum

Polysaccharides (ABP-1 and ABP-2 fractions),
in particular, β-glucans (β-(1→6)-d-glucan,
B16), lectins, amino acids, unsaturated fatty
acids (linoleic and linolenic acids), vitamin B,
vitamin C, sterols, phenolic and indole
compounds, ergosterol, flavonoids,
ergocalciferol, ergosterol

Inhibition of cell proliferation, suppression of
tumor growth in nude mice xenografts; induction
of macrophages polarization towards M1
phenotype and production of Il-6, IL-1 β, TNF-α,
CoX-2; induction of nitric oxide, activation of
NF-κB and cell growth inhibition, probably due to
the activity on macrophages; inhibition of proteins
synthesis; lectins induce cytotoxicity, apoptosis,
and immune system modulation [33,47–51]

Antrodia cinnamomea

Polysaccharides, terpenoids (ergostane,
lanostane), lignans, glycoproteins, benzene
derivatives, ubiquinone derivatives, maleic
and succinil acids derivatives, Anticin A,
Antrocin C, Antcin K, antcin C, antcin B

Induction of apoptosis, suppression of mRNA
expression of S-phase kinase-associated protein 2
(skp2); decrease of urokinase plasminogen
activator (uPA) activity, uPA receptor (uPAR),
vascular endothelial growth factor (VEGF), and
MMP-9 and MMP-2; inhibition of TGF-β1-induced
migration arrest epithelial to mesenchymal
transition (EMT); suppression of the ERK1/2, p38,
and JNK1/2 phosphorylation; inhibition of
Akt/mTOR and NF-κB pathways; apoptosis
induction, cell cycle arrest, antimetastatic effect,
dysfunction of mitochondrial caspase-3/-9
activation, cytochrome c release, degradation of
PARP, and Bcl2/Bax dysregulation; HDAC
inhibition, autophagy induction (LC3-II, p62, and
FOX1 increase) [31,53,57–62,126]; proliferation
inhibition related to the arrest of cells at the G1
phase and induction of autophagy; stress of the
endoplasmic reticulum; reduction of tumor
size [62]
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Table 1. Cont.

Species Main Bioactive Constituents Mechanisms

Cordyceps sinensis and
Cordyceps militaris

Cordycepin (3-deoxyadenosine), ergosterol,
mannitol, modifies nucleosides

Induction of apoptosis by promoting expression and
translocation of Bax to mitochondria and decreasing
Bcl2 levels by releasing cytochrome C, activating
p53, caspase-9, caspase 3, caspase-8; inhibition of cell
growth, migration, and invasion, through reduction
of the EMT (TWIST1, SLUG, SNAIL1, ZEB reduction,
N-cadherin downregulation, E-cadherin
upregulation); inhibition of migration;
antiproliferative activity through induction of
apoptotic cell death; LDH release, PARP increase,
ROS production, inhibition of AKT activation and
PI3K/Akt; increased level of Cu/Zn superoxide
dismutase in cancer cells; induction of autophagy,
DNA damage, and targeting of cancer stem
cells [58,63,65]; decrease in tumor weight and size;
reduction of the number of metastasis; increase
survival; increased expression levels of cleaved
PARP, cleaved caspase-3, cleaved caspase-8, and
Bax [63,66,67]

Coriolus versicolor

Protein-bound polysaccharides
(polysaccharide peptide, PSP, and
glycoprotein PSK, Krestin), terpenes,
proteins, peptides, amino acids, purpurins

Suppression of cell proliferation through apoptotic
cell death induction, upregulation of p53, and
downregulation of Bcl-2; NK cell activation, p53, and
Bcl-2 downregulation; inhibition of migration
(MMP9 activity and protein levels downregulation);
cytotoxicity via necroptosis activated through the
TNF-α/TNFR1 pathway stimulation [77–79];
suppression of cancer cell proliferation, reduction of
tumor weight and antimetastatic effect,
simultaneously protecting bones against breast
cancer-induced osteolysis; migration and invasion
inhibition; immunomodulatory (increase IL-2, 6, 12
TNF-α, INF-γ, histamine, prostaglandin E) and
antimigratory effects [80–82,126]

Ganoderma lucidum

Polysaccharides (α-1,3, β-1,3 and
β-1,6-D-glucans, ganoderan), triterpenes,
ganoderic acids, ganodermic acid,
ganodermic alcohols, lucidones, lucinedic
acid, ergosterol, 5,6-dehydroergosterol,
ergosterol peroxide, and palmitic acid

Inhibitory effect against Akt phosphorylation on
Ser473 and downregulation of Akt expression,
inhibition of NF-κB, also related to estrogen receptors,
cyclin D1, and subsequently cdk4 [126]; suppression
of adhesion, migration, and invasion of cancer cells,
down-regulation of oncogene c-myc expression and
secretion of uPA and inhibition of MMP2 and
MMP9 [92,98]; apoptosis induction through
downregulation of cyclin F, Bcl-2, Bcl-xL and
upregulation of Bax and caspase-9 levels [91,94,95]; G1
phase arrest, apoptosis induction via caspase 3/7
activation, and PARP cleavage [89]; inhibition of
tumor growth and migration via inhibition of
Wnt/β-catenin signaling; suppression of cancer cell
growth through apoptosis induction via
mitochondria-mediated pathway; effects on protein
expression of E-cadherin, mammalian target of
rapamycin (mTOR), human eukaryotic translation
initiation factor 4G (eIF4G), and p70 ribosomal protein
S6 kinase (p70S6K) and activity of extracellular
regulated kinase (ERK 1/2), reduction in tumor size
and weight; downregulation of immune checkpoints;
effects on cancer stem cells [91,99,100,106,126,127];
reduction in incidence of mammary tumors [96]
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Table 1. Cont.

Species Main Bioactive Constituents Mechanisms

Grifola Frondosa

β-glucans and α-glucan (D-fraction,
X-fraction, Grifolan, MZ-fraction, and
MT-α-glucan), proteins, carbohydrates,
ergocalciferol, minerals

Apoptosis induction through the release of CytC
from mitochondria, alterations in genes involved in
cell proliferation and invasion; upregulation of
E-cadherin protein levels, promotion of cell
adhesion, downregulation of cell motility and
MMP2 and MMP9; decrease in β-catenin levels;
modulation of Bax/Bcl2 ratio, affecting the
pro-survival pathways related to PI3K/Akt and
ERK [58,109]; immunomodulatory effects on
macrophages, NK and T cells; decrease in metastasis;
inhibition of carcinogenesis, angiogenesis, and
cancer invasiveness; prolonged survival [58,109]

Lentinula edodes
β-glucans (lentinan), phenolic compounds,
ergothioneine, sterols (ergosterol),
eritadenine, peptides (lenthionine)

Induction of apoptosis associated with
mitochondrial membrane potential decrease and
decreased cdk4 and cyclin D1 resulting in cell cycle
arrest; increased p21, p53, and Bax levels; inhibition
of migration, autophagy induction [115–117,126];
reduction in tumor growth through suppression of
cell proliferation and apoptosis promotion;
inhibition of multiple pathways (PI3K-Akt-mTOR,
ERK, p53) [118]

Pleurotus ostreatus
α-glucans, β-glucans, lentanin,
lipopolisaccharides, resveratrol, concavallin
A, mevinolin, ergosterol

Cell growth inhibition related to cell cycle arrest at
the G0/G1 phase, upregulation of the p21, p53, p27,
and p19 genes and downregulation of E2f
transcription factor 1, PCNA, CDK4, CDK6, and
transcription factor DP-1; induction of oxidative
stress and apoptotic cell death due to the
upregulation of p53 and Bax, downregulation of
Bcl2, and increase in caspase 3/7 activity; increased
cytotoxic activity of natural killer cells; inhibition of
angiogenesis and metastasis by the inhibition of
MMP2 and MMP9 expression; downregulation of
VEGF [58,121,124]; decrease in tumor volume and
increased body weight; decrease in tumor incidence,
volume, and metastasis [121,124,125]

4. Human Studies

To retrieve the available published evidence concerning studies performed in humans,
electronic databases (PubMed, Embase, SCOPUS) were searched for articles published in
English or other European languages, using broad search terms (e.g., for human studies:
((mushroom(MeSH Terms)) AND (breast cancer(MeSH Terms))); restricted to observational
studies: ((mushroom(MeSH Terms)) AND (breast cancer(MeSH Terms))) AND (case control
study(MeSH Terms)), or ((mushroom(MeSH Terms)) AND (breast cancer(MeSH Terms)))
AND (cohort study(MeSH Terms)). Hand-searching was also performed in the reference
lists of retrieved records.

A PRISMA flow chart [128] of the process of record retrieval and screening, with
reasons for exclusion, is shown in Figure 4.

Eighty-eight deduplicated records were retrieved by database consultation and hand-
searching. Fifty-eight and eight records were excluded after title/abstract and full-text
screening, respectively (performed by two authors). Twenty-two articles reporting epidemi-
ological and clinical studies were finally included in the review.
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4.1. Studies on Dietary Consumption of Edible Mushrooms and Breast Cancer Risk

Long-term longitudinal studies performed on large populations point to a positive
survival effect of dietary consumption of mushrooms. In the USA, a Cox proportional
hazards regression analysis, performed on 15,546 participants in the frame of the Third
National Health and Nutrition Examination Survey (NHANES III) over the average span
of 19 years, showed that the hazard ratio (HR) for overall mortality was lower in subjects
whose diet included regular consumption of mushrooms (HR adjusted for demographic
factors, lifestyle, and overall diet quality, 0.84; 95% CI, 0.73 to 0.98). In addition, consump-
tion of a daily portion of mushrooms in place of a daily serving of processed or red meat
reduced the risk of all-cause mortality to 65% (HR, 0.65; 95% CI, 0.5 to 0.84). However,
when cause-specific mortality was analyzed, the hazard ratio for ‘cancer’ (HR, 0.77; 95% CI,
0.5 to 1.19), as well as for other major causes of death, such as cardiovascular diseases or
diabetes mellitus, did not reach statistical significance [41].

A 2014 dose-response meta-analysis of eight case-control and two cohort studies
(6890 cancer cases) demonstrated that mushroom consumption may be inversely associated
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with the risk of breast cancer (BC). In particular, each one-gram-per-day increment in
dietary intake of mushrooms appears to decrease the risk of BC by 3% (risk ratio (RR), 0.97;
95% CI, 0.96 to 0.98). The RR for postmenopausal women decreases to 0.94 (95% CI, 0.91
to 0.97) but loses statistical significance in premenopausal patients (RR, 0.96; 95% CI, 0.91 to
1.00) [42].

The data concerning breast cancer were confirmed by a more recent meta-analysis
of 17 observational studies (6 cohort and 11 case-control studies), including 19,732 cancer
cases. Analysis showed that mushroom consumption is associated with a significant
reduction in the risk for ‘any cancer’ (RR, 0.66; 95% CI: 0.55 to 0.78). Interestingly, cancer
subgroup analysis showed that the major contributor to the significance of the meta-
analysis was BC. As a matter of fact, the relative risk for BC was 35% lower in mushroom
consumers compared to controls (RR, 0.65; 95% CI, 0.52 to 0.81) [41], whereas risk ratios for
prostate, ovarian, stomach, liver, and colorectal cancers were not statistically significant,
thus suggesting a specific activity of mushrooms on BC. Alternatively, according to Ba
and coworkers, issues concerning the sample size of this meta-analysis may account for
nonsignificant results in non-breast cancers. The latter hypothesis appears to be supported
by other cohort studies performed in Asia, the pooled Japanese Miyagi Cohort Study,
Ohsaki Cohort Study, and a Korean study showing that regular mushroom consumption is
associated with a significant reduction in the hazard for prostate cancer [129] and gastric
cancer [130].

Mushrooms are part of the daily diet in East Asia, whereas, in Western countries or
other continents, mushroom consumption is less frequent. A case-control study performed
in China included 1009 pre- and post-menopausal BC patients, and 1009 matched healthy
controls. The odds of getting BC decreased along with the increase in dietary mushroom
consumption and reached statistical significance for daily intakes of at least 10 g of fresh
mushrooms (odds ratio (OR) after adjusting for confounders, 0.36; 95% CI 0.25 to 0.51) or
4 g dried mushrooms (OR, 0.53; 95% CI, 0.38 to 0.73). In this study, a protective effect of
mushrooms was observed in both premenopausal and postmenopausal women [131].

A similar Korean study compared 362 pre-and post-menopausal patients with 362 matched
healthy controls. Daily mushroom intake was divided into quintiles. A significant inverse
association between breast cancer and dietary mushroom consumption was found when
the fifth quintile was compared to the lowest quintile (OR for daily intake adjusted for
confounding factors, 0.55, 95% CI, 0.33 to 0.94) [132]. Subgroup analysis was performed by
dividing cases and controls according to the menopausal status. Interestingly, a significant
dose-dependent trend was confirmed in post-menopausal (p < 0.05 for trend) but not in
pre-menopausal women (p > 0.05 for trend) in all tested multivariate-adjusted models.
Nevertheless, significant protection was demonstrated in pre-menopausal women in one
out of two adjusted models when dose quintiles were analyzed separately (e.g., OR at fifth
dose quintile, 0.38; 95% CI, 0.19 to 0.77).

A subsequent Korean study by Shin and coworkers had a very similar design but ap-
peared to be in partial disagreement with the findings outlined above. The study included
358 cases and 360 controls; mushroom intake doses were separated into quartiles. A signif-
icant, dose-related inverse association between BC and dietary mushroom consumption
could be demonstrated by multivariate analysis in pre-menopausal (p < 0.05 for trend) but
not in post-menopausal women (p > 0.05 for trend) [133]. The authors also investigated
the relationship between the protective activity of mushrooms and the hormone status of
breast tumors in affected patients. In the total population, including both pre- and post-
menopausal women, a significant, dose-dependent inverse association between BC and
dietary mushroom consumption was found in estrogen and progesterone receptor positive
(ER+ PR+) patients (p < 0.001 for trend, multivariate analysis adjusted for confounding
factors) but not in ER-/PR- patients (p > 0.05 for trend, multivariate analysis). Interestingly,
significance was confirmed in ER+/PR+ pre-menopausal women but not in ER+/PR+
pre-menopausal subjects (p < 0.01 and p > 0.05 for trend, respectively, multivariate analysis).
In summary, a high-dose intake of mushrooms is inversely associated with the odds of BC
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in pre-menopausal Korean women. In addition, mushroom consumption may play a more
decisive role in patients with ER+/PR+ tumors. The aromatase inhibitory activity of certain
mushrooms may be involved in the latter effect.

Whereas investigations performed in Asia yielded significant results, large population
studies performed in Western countries (UK, USA) failed to demonstrate a link between
dietary mushroom intake and decreased cancer risk.

The UK Women’s Cohort Study (n = 35,372 at baseline) did not find a significant
inverse relation between mushroom consumption and BC hazard in the general population
(HR, 0.98, 95% CI, 0.79 to 1.22). Lack of an effect was confirmed in both pre-menopausal
(HR, 0.94; 95% CI, 0.51 to 1.75) and post-menopausal subgroups (HR, 1.03, 95% CI, 0.77
to 1.38) [40]. Similarly, a large prospective cohort study, including 68,327 women from
the Nurses’ Health Study (USA, 1986–2012) and 44,644 men from the Health Professionals
Follow-up Study (USA, 1986–2012), failed to demonstrate a decreased hazard for any cancer
(HR, 1.02; 95% CI, 0.97 to 1.07) in subjects consuming five or more servings of mushrooms
per week versus subjects who rarely consumed mushrooms (HR, 1.06; 95% CI, 0.98 to 1.14).
In addition, no significant effects on site-specific or sex-specific cancers (e.g., for breast
cancer, HR, 0.89, 95% CI, 0.77 to 1.04) were found [134].

The authors of both UK and USA studies concluded that the discrepancy between
Asian and Western studies ought to be investigated. Genetic factors, ethnicity factors,
the amount of mushroom consumed daily (higher in the East), the mushroom species
consumed in the East but not in the West, the use of fresh mushrooms in the East versus
processed mushrooms in the West, as well as cultural issues (cooking and preparation
procedures, preserving the integrity of bioactive compounds) may be responsible for the
differences between the results of studies performed in Eastern Asia and Western countries.
In our opinion, the objective limitation of these studies lays in the positive effects attributed
to the broad category of “mushrooms”. For the sake of advancement in the knowledge
of the nutraceutic properties of mushrooms, studies should- be aimed at assessing the
properties of specific mushroom species.

4.2. Effect of Fungal Extracts on Breast Cancer: Clinical Studies and Meta-Analyses

Table 2 summarizes the major findings from clinical studies focusing on treatment
with medicinal mushrooms in BC patients.

Table 2. Summary of the major findings of clinical studies performed on medicinal mushrooms.
(↑: increased; ↓: decreased; //: not available).

Species

Trial Design,
Trial Identifier (When
Available), Number of

Patients (n)

Symptomatic Effects,
Adverse Effects

Immune Cell Effects
(vs. Controls)

Cytokine Level
Effects

(vs. Controls)
Other Effects Reference

Agaricus sylvaticus
Randomized,
placebo-controlled,
double-blind trial, n = 46

↓ GI adverse effects
and anorexia vs.
placebo

// // // [135]

Antrodia cinnamomea

Randomized,
double-blind,
placebo-controlled trial,
clinicaltrials.gov
identifier: NCT01287286,
n = 37

↑ GI adverse effects
vs. placebo // //

Overall survival,
disease control rate,
quality of life,
adverse events: no
differences between
arms;
platelet counts ↓ in
AC arm; quality of
sleep ↑ in AC arm

[136]

Coriolus versicolor

Phase I, dose-escalation
trial,
clinicaltrials.gov
identifier:
NCT00680667, n = 11

Severe anxiety
(adverse effect)

↑ CD8+ T cells,
↑ CD19+ B cells;
CD16+/56+ NK cell
counts unchanged but
activity ↑

// // [137]

Cohort study, identifier
not available, n = 82 //

↑ CD8+, ↑ CD4+, ↑
B-cells, ↑ T-helper/T
suppressor cells ratio

↓ sIL-2R // [138]
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Table 2. Cont.

Species

Trial Design,
Trial Identifier (When
Available), Number of

Patients (n)

Symptomatic Effects,
Adverse Effects

Immune Cell Effects
(vs. Controls)

Cytokine Level
Effects

(vs. Controls)
Other Effects Reference

Ganoderma lucidum

Meta-analysis, n = 153 //
↑ CD3+, ↑ CD4+, ↑ CD8+
cells;
↑ NK cell activity

// // [139]

Randomized,
double-blind trial,
identifier not available,
n = 69 (breast cancer)

No serious adverse
effects

↑ CD3+, ↑ CD4+, ↑
CD3+/HLADR-cells; ↓
CD4+,
↓ CD25+, ↓ Treg
(CD4+/CD25+),
↓ CD3+/HLADR+ cells

↑ IL-12,
↓ IL-10 // [140]

Prospective observational
study, identifier not
available, n = 40

// //
↑ IFN-γ,
↓ IL-8,
↓ TNF-α

// [141]

Randomized controlled
study, identifier not
available, n = 48

Improvement of
fatigue, anxiety,
depression, QoL vs.
controls; social
functioning
unchanged

// ↓ IL-6, ↓ TNF-α // [142]

Population observational
study, identifier not
available, n = 4149

Improvement of QoL
and physical and
psychological
well-being

// // // [143]

Grifola frondosa Phase I/II trial, identifier
not available, n = 34

No serious adverse
effects

↑ CD4+/CD25+ T cells,
↑ CD3+/CD25+ T cells,
↑ CD45RA+/CD4+ cells,
↑ CD45RO+/CD8+ cells

↑ IL-10,
↑ IL-2 and,
↑ IFN-γ, ↑ TNF-α

// [144]

Lentinula edodes

Case series, add-on to
chemotherapy, identifier
not available, n = 10

//

Addition of LE to
adjuvant chemotherapy
caused sustained NK
activity and prevented
leukocyte drop

// // [145]

Case series; add-on to
chemotherapy, identifier
not available, n = 3

Improvement of QoL ↑ NK cell activity
↓ immunosup-
pressive acidic
protein

// [146]

Case series, add-on to
post-operative hormone
therapy, identifier not
available, n = 20

Improvement of QoL // ↑ IFNγ,
↑ IFNγ/L-10 // [147]

Valadares et al. reported the results of a randomized, double-blind, placebo-controlled
trial performed in 46 breast cancer patients (stages II and III) receiving a supplement of
Agaricus sylvaticus (2.1 g daily) during 3/6 cycles of chemotherapy. The authors reported
a protective effect of the mushroom supplement against various gastrointestinal adverse
events caused by chemotherapy compared to placebo. In particular, two patients (15.3%)
treated with A. sylvaticus reported nausea and vomiting, compared with 11 patients (84.62%)
in the placebo group. Patients subjected to three cycles of chemotherapy at baseline reported
poor appetite. The anorexant effect of chemotherapy was reported in 23.08% of patients
in the placebo group and in 53.85% of patients treated with A. sylvaticus. After 3 months,
30.77% of patients in the placebo group still reported a reduction in appetite, whereas this
effect was not reported in the cohort treated with A. sylvaticus [135].

Tsai and coworkers reported the results of a randomized, double-blind, placebo-
controlled trial performed on 37 patients affected by advanced cancers, including TNM
stage IV BC (n = 8). Breast cancer patients treated with adriamycin- or taxane-based
chemotherapy were randomized to placebo or 20 mL daily of an oral aqueous extract of
Antrodia Cinnamomea (AC) for 30 days [136]. No significant differences between treatment
arms were found with respect to the primary (overall survival) or secondary endpoints
(disease control rate, quality of life (QoL), adverse events). However, AC-treated patients
showed significantly lower platelet counts. The authors did not mention BC and suggested
that the latter effect may occur in patients with lung or gastric cancer. In addition, patients
using AC experienced better quality of sleep compared to placebo (p = 0.04).
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A phase I/II dose-escalating trial was performed in 34 BC patients to evaluate the
safety, tolerability, and immunological effects of a liquid standardized extract of maitake
administered at the daily doses of 0.2, 1, 3, 6, or 10 mg/kg for 3 weeks. The extract was
well tolerated, and no dose-limiting toxicity was found. Interestingly, the immunological
effects of maitake were documented. Blood analysis showed moderate increases of IL-
10 and IL-2, as well as IFN-γ and TNF-α upon stimulation with various factors (LPS,
PMA). Interestingly, efficacy followed a bell-shaped curve, peaking at intermediate doses
(5–7 mg/kg) and decreasing at higher doses. The authors explain that whereas the immune
stimulatory activity of IL-2 and IFN-γ may be functional in response to cancer, the anti-
inflammatory role of IL-10 may not play a relevant role in the antitumor effect of maitake.
Dose-dependent increases for CD4+ CD25+ T cells, CD3+ CD25+ T cells, CD45RA+ CD4+
cells, and CD45RO+ CD8+ cells were also reported [144].

Preliminary data from clinical trials suggest that Coriolus versicolor might become an
adjunct agent to standard therapy for BC. A mushroom-herbal combination of Yunzhi
(Coriolus versicolor) and Danshen (Salvia miltiorrhiza) was administered to 82 patients with
BC. Patients received oral Yunzhi polysaccharopeptide (PSP, 50 mg/kg body weight daily)
and Danshen (20 mg/kg body weight daily) for 6 months. Absolute counts of T-helper
lymphocytes (CD4+) and B-lymphocytes, the ratio of T-helper (CD4+)/T suppressor cells,
and the counts of cytotoxic lymphocytes (CD8+) were significantly elevated in patients
receiving the Yunzhi/Danshen combination. Moreover, plasma soluble IL-2 receptor (sIL-
2R) levels were significantly decreased [138]. These results indicate an overall improvement
in the immunological profile of enrolled patients. Subsequent studies confirmed the
immune-modulating activity of Coriolus versicolor. In particular, a phase 1 dose-escalating
trial aimed at testing safety, tolerability, and initial biological effects of CV was performed
on nine stage I, II, or III BC patients in the post-chemotherapy, post-radiotherapy setting.
The freeze-dried mycelial powder of CV was administered to three groups of three patients
at the daily doses of 3, 6, and 9 g. Treatment was well tolerated, although three out of
nine adverse events (anxiety, heartburn, and chest pain) were attributed to the mushroom
preparation. Interestingly, the two higher doses of the compound were associated with
a faster recovery of lymphocytes, and higher CD8+ T cell and CD19+ B cell counts when
compared to historical controls. In addition, a temporary increase in NK cell activity was
recorded in the 6 g dosage group [137].

Interestingly, a 2012 metanalysis by Eliza and coworkers showed that Coriolus versicolor
may be responsible for a 9% absolute reduction in 5-year mortality in patients affected
by various kinds of cancers, with a number-needed-to-treat equal to 11. This applied
to patients with breast, gastric, or colorectal cancer, but not to esophageal cancer and
nasopharyngeal carcinoma [148].

The mushroom Ganoderma lucidum (GL) is usually consumed by BC survivors and has
been tested in the frame of clinical trials focusing on breast, colon, gastrointestinal, and
nasopharyngeal cancer, mainly due to its activity on the immune system [149–151].

A meta-analysis showed that patients treated with GL in addition to radiotherapy
and chemotherapy were better responders to treatment when compared to chemother-
apy/radiotherapy alone (RR 1.5; p = 0.02). GL also caused increases in CD3+, CD4+, and
CD8+ cells, as well as modest increases in NK-cell activity [139].

Recently, a comprehensive randomized, double-blind trial investigated the changes in
the immunological profiles of 120 lung or postoperative BC patients (triple-negative stage
I–III) treated or not with 2000 mg of G. lucidum spore powder twice daily for 6 weeks [140].
The goal of the trial was to profile the T lymphocyte subsets and the cytokines associated
with an increased likelihood of benefitting from the immune-stimulating effects of G. lu-
cidum. Patients responding to GL showed higher levels of CD3+, CD4+, and CD3+/HLADR-
and lower levels of CD4+, CD25+, Treg (CD4+/CD25+), and CD3+/HLADR+ cells com-
pared to untreated subjects. IL-12 levels were significantly higher, and IL-10 levels were
lower during treatment. Moreover, immunosuppressive factors such as COX2 and TGF-β1
had lower prevalence in treated patients. Interestingly, GL was a possible response modifier
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when albumin-to-globulin and neutrophil-to-lymphocyte ratios were used as prognostic
predictors of overall survival and progression-free survival. The drug was well tolerated,
and no serious adverse events were reported [140].

Alterations of cytokine profiles were also reported by Nidhal and coworkers, who
performed an observational prospective study in 40 patients with advanced breast can-
cer treated with standard chemotherapy alone or combined with a GL preparation (one
gram capsule twice daily for 12 weeks). In the GL group, IFNγ increased significantly,
whereas TNF-α and IL-8 decreased significantly; no significant changes were observed in
the chemotherapy-alone cohort [141].

A randomized, placebo-controlled trial investigated the effectiveness of a spore pow-
der preparation of G. lucidum (1 g thrice daily for 4 weeks) in BC patients subjected to
endocrine therapy. The endpoints were alterations in cytokine levels (TNF-α, IL-6), cancer-
related fatigue, anxiety, depression, and quality of life. Serum TNF-α and IL-6 levels were
significantly lower in the GL patient arm compared to placebo. Total and subdomain
(fatigue, well-being) scores of the FACT-F (Functional Assessment of Cancer Therapy:
Fatigue) test were significantly improved in the GL arm at the end of treatment, whereas
no significant differences were found between baseline and at the end of 4 weeks in the
placebo group. HADS (Hospital Anxiety and Depression Scale) scores of anxiety and
depression after GL were lower than the scores before the intervention, but no significant
changes were found in the placebo group. Consistently, the EORTC QLQ-C30 (European
Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire C30)
‘physical function’ and ‘global quality of life’ domains were significantly improved after
the 4-week GL spore powder treatment. However, no significant changes were found in the
‘role functioning’ and ‘social functioning’ domains. Compared to patients in the placebo
group, the ‘fatigue’, ‘sleep disturbance’, and ‘appetite loss’ domains were significantly
improved in the GL treatment arm [142].

The effect of GL on the quality of life of breast cancer patients included in the Shanghai
Breast Cancer Survival Study (SBCSS) was investigated by Bao et al. [143]. Of the 4149 par-
ticipants who completed the 36-month survey, 58.8% and 36.2% reported G. lucidum use at
the 6- and 36-month surveys, respectively. The use of GL was not significantly associated
with improvements in QoL or psychological well-being at the end of a 36-month follow-up
period. However, higher scores for social well-being and material well-being but lower
scores for physical well-being were documented. In addition, patients using GL showed
higher scores for self-image, social support, and interpersonal relationships but lower
scores for sleep and energy, physical comfort, and eating functions.

In an early study, the L. edodes polysaccharide lentinan was safely administered to
patients affected by advanced or recurrent breast cancer and seemed to improve the prog-
nosis of the disease [152]. A group of ten BC patients was treated with cyclophosphamide,
epirubicin, and 5-fluorouracil every 21 days for two cycles. An L. edodes mycelial extract
was added to the therapeutic protocol during the second cycle of therapy. The L. edodes
mycelial extract caused sustained natural killer cell activity and attenuated the drop in
leukocyte counts [145].

Three patients undergoing postoperative adjuvant chemotherapy for BC underwent
a first protocol of chemotherapy, followed by a second treatment phase consisting of
chemotherapy to which an L. edodes mycelial extract was added. Increases in immuno-
suppressive acidic protein levels, NK cell activity, and quality of life of patients were
documented after the second “add-on” phase of treatment. Administration of the L. edodes
mycelial extract was well tolerated [146]. Twenty breast cancer patients received postop-
erative estrogen-alone hormone therapy for 4 weeks with no detectable alterations in the
quality of life or cytokine levels. When an L. edodes mycelial extract was added to the hor-
mone therapy in the subsequent 8 weeks, quality of life scores were significantly increased.
In a subgroup of six subjects regarded as having decreased immunity, the IFNγ/L-10 ratio
was significantly increased from 0.06 at Week 4 to 0.13 at Week 12, and the IFNγ production
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level was significantly increased from 17 at Week 4 to 46 at Week 12. In contrast, immune
parameters were unchanged in patients who had an IFNγ/IL-10 ≥ 0.2 at Week 4 [147].

In conclusion, it is emerging that certain medicinal mushrooms appear to improve
the immunological profile and alleviate the toxic and adverse effects of chemotherapy
or radiotherapy (i) by ameliorating some aspects of the quality of life of patients, (ii) by
accelerating the increase of B- and T-cell counts, (iii) by increasing the activity and counts
of innate immune cells, and (iv) by modifying the cytokine profile in treated patients,
and, in particular, by upregulating anticancer cytokines and/or downregulating cytokines
involved in cancer progression or metastasis.

5. Discussion

Edible/medicinal mushrooms, widely used in Asian countries for their nutritional
and health properties, have recently gained popularity in Europe, as well. Specifically,
several epidemiological studies indicated that mushroom intake can protect against cancer,
in particular, gastrointestinal and breast cancer. Furthermore, mushrooms have been used
as therapeutic agents for different types of cancer, including breast cancer [31,58,153].

The available evidence shows that mushrooms may contain compounds having the
potential to be used in both the prevention and treatment of cancer, as well as in the
stimulation and recovery of the immune function. The results reported so far, based on
experiments with tumor cell lines or animal models, have partially clarified the molecular
mechanisms involved in mushrooms’ anticancer activities. Although preclinical research
has given a host of quality data concerning the efficacy of mushrooms’ bioactive com-
pounds at the molecular and cellular levels, information about the translational potential
of these compounds in clinical practice is still insufficient. Indeed, whereas very few
phase-I/II studies provided data about the possible toxicity and initial therapeutic effect of
certain compounds, data on many other mushroom-derived products are lacking. Dose-
escalation trials assessing the maximum tolerated doses and the human pharmacokinetics
of promising compounds are warranted to uncover the full potential of mushroom therapy.

In addition, most clinical studies, both randomized and observational, have been
designed to investigate the short-term effects of intake of mushroom-derived compounds.
Thus, information on the long-term effects, whether beneficial or detrimental, of therapy
administered over extended periods of time is lacking.

Furthermore, most published studies include a small number of patients, and the
statistical power of the produced evidence is sometimes questionable. The majority of
published studies are observational, with a cohort or case-control design. The results of
these investigations are certainly useful, though randomized, double-blinded, adequately
powered controlled trials on sufficiently numerous populations of patients are warranted
before any conclusive evidence is drawn. In our opinion, special attention should be
devoted to investigating the effect of medicinal mushrooms such as L. edodes, G. lucidum,
G. frondosa, and C. versicolor on natural killer cell activity in cancer patients.

Systematic reviews and meta-analyses of available clinical data included a mixture of
randomized prospective and observational cohort studies. Such a strategy, unavoidable
in the absence of a sufficient number of randomized clinical trials, would result in a low
quality of the meta-analysis evidence according to the criteria fixed by the GRADE con-
sortium [154]. Optimally designed meta-analyses, including only randomized controlled
trials, will provide conclusive evidence about the full potential of medicinal mushrooms in
cancer, thus paving the way to new forms of cancer therapy.

Further studies are also warranted to investigate the reasons underlying the diverging
results of studies performed in Eastern Asian and Western countries [29]. As a matter of fact,
results from the available clinical studies appear to be rather preliminary and sometimes
give contrasting results, probably due to the lack of standardization in both methods of
extraction and the schedule of treatment.

Another issue to resolve is related to the procedures followed to prepare medicinal
mushrooms, which are various and often not described in detail. Full disclosure of the
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criteria whereby certain compounds are extracted and prepared is warranted. In this
respect, metabolomic engineering and technologies may be very useful in the optimization
and standardization of preparations [155].

In agreement with data previously reported by other authors [29], updated and
summarized in Table 3, few of the considered mushrooms seem to deserve further clinical
investigation to confirm their in vivo preclinical activity and to better understand the
mechanisms related to their effects on BC. Adequately powered controlled trials will greatly
expand our knowledge concerning this interesting and promising source of new agents.

Table 3. Score for the considered mushrooms related to their BC properties (*** more than 5 studies;
** 3–5 studies; * 1–2 studies; - no studies; modified from [29]).

Species
Type of Studies Strength of

RecommendationIn Vitro In Vivo Clinical Studies

Agaricus bisporum *** ** * **

Antrodia cinnamomea *** *** * **

Cordyceps sinensis ** * * *

Cordyceps militaris ** * - *

Coriolus versicolor *** *** *** ***

Ganoderma lucidum *** *** *** ***

Grifola Frondosa *** ** *** ***

Lentinula edodes *** ** *** ***

Pleurotus ostreatus *** ** - *
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