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Abstract: Doxorubicin (DOX) is a highly effective chemotherapy agent prescribed for cancer treatment.
However, the clinical use of DOX is limited due to off-target toxicity in healthy tissues. In this regard,
hepatic and renal metabolic clearance results in DOX accumulation within these organ systems.
Within the liver and kidneys, DOX causes inflammation and oxidative stress, which promotes
cytotoxic cellular signaling. While there is currently no standard of care to treat DOX hepatic- and
nephrotoxicity, endurance exercise preconditioning may be an effective intervention to prevent
elevations in liver alanine transaminase (ALT) and aspartate aminotransferase (AST) and to improve
kidney creatinine clearance. To determine whether exercise preconditioning is sufficient to reduce
liver and kidney toxicity resulting from acute exposure to DOX chemotherapy treatment, male and
female Sprague–Dawley rats remained sedentary or were exercise trained prior to saline or DOX
exposure. Our findings demonstrate that DOX treatment elevated AST and AST/ALT in male rats,
with no effects of exercise preconditioning to prevent these increases. We also showed increased
plasma markers of renin–angiotensin–aldosterone system (RAAS) activation and urine markers of
proteinuria and proximal tubule damage, with male rats revealing greater differences compared to
females. Exercise preconditioning showed improved urine creatinine clearance and reduced cystatin
c in males, while females had reduced plasma angiotensin II (AngII) levels. Our results demonstrate
both tissue- and sex-specific responses related to the effects of exercise preconditioning and DOX
treatment on markers of liver and kidney toxicity.

Keywords: hepatotoxicity; nephrotoxicity; anthracycline; exercise preconditioning

1. Introduction

Doxorubicin (DOX) is a first-line chemotherapy agent used to treat solid tumor and
hematological cancers [1,2]. DOX induces cancer cell death by destabilizing DNA and
disrupting replication and transcription and by causing cellular damage through the
generation of oxygen radicals [3]. Although DOX is a highly effective antineoplastic agent,
its clinical use is limited due to multi-organ toxic effects. Following administration, DOX
is rapidly cleared from the circulation and preferentially localizes within the liver and
kidneys [4]. In addition to its disposition within these tissues, the hepatic and renal systems
play a primary role in the metabolism and excretion of DOX [5,6]. Specifically, it is estimated
that greater than 50% of DOX is excreted by the hepatobiliary pathway within 7 days of
administration and ~12% is excreted in the urine, with the greatest portion retaining its
original structure or metabolized to doxorubicinol [7–9].

Drug-induced liver injury resulting from chemotherapy administration has been
confirmed using the Roussel Uclaf Causality Assessment Method (RUCAM) where elevated
circulating liver enzymes (i.e., cystatin c, albumin, aspartate aminotransferase, etc.) are
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associated with greater risk of hepatotoxicity [10,11]. Kidney toxicity was also established
as early as 1977 via a case study where DOX chemotherapy was associated with renal
failure [12]. The development of these toxicities requires greater understanding as off-target
organ dysfunction often delays or prevents continuation of cancer treatment [13].

While the exact mechanisms of DOX hepato- and nephrotoxicity remain unknown,
it is hypothesized that accumulation and metabolism of DOX within these organ systems
results in free radical damage, lipid peroxidation and apoptosis [14,15]. Specifically, in the
liver, literature shows that reactive oxygen species (ROS) are formed via redox cycling of
the DOX semiquinone or through NADPH oxidase [16], whereas kidney oxidative damage
likely occurs through the formation of a highly reactive iron-DOX complex [17,18]. In both
organs, altered antioxidant levels, mitochondrial damage and inflammation contribute to
tissue pathology [14,19,20].

The off-target toxicity of DOX to multiple organ systems necessitates a systemic
therapy that can preserve its anti-tumor efficacy while limiting its harmful effects. However,
there are currently no clinical therapies approved for the prevention or treatment of DOX
liver and kidney toxicity. In this regard, aerobic exercise has been hypothesized to modify
DOX cytotoxic signaling to reduce oxidative damage and inflammation [2]. To date,
limited work has been done focusing on the cytoprotective effects of exercise on these
tissues. Therefore, this study utilized a two-week exercise preconditioning intervention
to determine whether exercise prior to DOX exposure can elicit a phenotype that protects
against hepato- and nephrotoxicity. In addition, we determined the sex-specific responses
in the development of liver and kidney toxicity and investigated the signaling pathways
affected by exercise.

2. Results
2.1. General Effects of Exercise Preconditoning and DOX

All exercise-preconditioned rats completed the full ten days of training without incident.
Compared to sedentary (SED) rats, 10 days of exercise training (EX) resulted in a significant
reduction (p < 0.05) in body weight in males (SED = 365.4± 6.3 g; EX = 395.5± 6.3 g), whereas no
difference in body weight was seen in females following the exercise preconditioning protocol
(SED = 244.6 ± 2.8 g; EX = 242.8 ± 3.7 g). Final body weight taken two days following saline
or DOX treatment showed a significant main effect (p < 0.05) of both EX and DOX in males
(SED-SALINE: 398.6 ± 8.0 g; EX-SALINE: 375.9 ± 9.8 g; SED-DOX: 367.4 ± 8.7 g; EX-DOX:
375.9 ± 9.8 g). No effects of treatment were seen between groups for the females (SED-SALINE:
239.6 ± 7.2 g; EX-SALINE: 246.3 ± 5.0 g; SED-DOX: 236.3 ± 3.9 g; EX-DOX: 239.0 ± 5.3 g).

2.2. Preconditioning Exercise Alters Markers of Kidney Toxicity

Changes in kidney weight, circulating components of renin–angiotensin–aldosterone
system (RAAS) signaling and urine creatinine are all markers associated with DOX nephro-
toxicity [14,21–23]. In this study, kidney/tibia length did not differ between groups for either
males or females. Absolute kidney weight in males showed a significant main effect of EX
(p < 0.05) (SED-SALINE: 1.20 ± 0.03 g; EX-SALINE: 1.14 ± 0.04 g; SED-DOX: 1.15 ± 0.03 g;
EX-DOX: 1.06 ± 0.03 g), while no difference existed in absolute kidney weight for females
(SED-SALINE: 0.73 ± 0.02 g; EX-SALINE: 0.73 ± 0.02 g; SED-DOX: 0.72 ± 0.02 g; EX-DOX:
0.73 ± 0.02 g). Plasma levels of angiotensin-converting enzyme (ACE) and angiotensin II
(AngII) and urine levels of creatine were all affected by DOX exposure (Figure 1). Specifically,
measurement of ACE revealed main effects of DOX treatment in both sexes, and a main effect
of exercise in females. Multiple comparisons showed a significant increase in SED-DOX and
EX-DOX compared to SED-SALINE (p < 0.05) in males, and a significant increase in ACE
in EX-DOX compared to SED-SALINE and EX-SALINE in females (p < 0.05). AngII also
showed a main effect of DOX for both sexes. In males, multiple comparisons showed that
AngII was significantly elevated in the plasma of SED-DOX and EX-DOX rats compared
to SED-SALINE and EX-SALINE. In females, plasma AngII was significantly elevated in
SED-DOX rats compared to all other groups and in EX-DOX rats compared to SED-SALINE
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and EX-SALINE. Main effects of both DOX and exercise were present in males for urine
creatine, with SED-DOX significantly elevated compared to EX-SALINE (p < 0.05).
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Figure 1. (A,B) Kidney/tibia length, (C,D) plasma levels of angiotensin converting enzyme (ACE),
(E,F) plasma levels of angiotensin II (AngII), and (G,H) levels of urine creatinine from sedentary
(SED) or exercise-preconditioned (EX) male (left) and female (right) rats treated with doxorubicin
(DOX) or saline. Data are presented as mean ± SEM. Two-way ANOVA differences are indicated
below the graphs. Circles indicate individual data points. * = significant difference between groups
(p < 0.05), ** = significant difference between groups (p < 0.01), *** = significant difference between
groups (p < 0.001), **** = significant difference between groups (p < 0.0001).
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Multiplex analysis of urine from each treatment group was also performed to determine
changes to markers of nephrotoxicity (Figure 2). For males, a main effect of DOX existed
for clusterin, IFN-gamma-inducible protein 10 (IP-10), kidney-injury molecule-1 (KIM-1),
osteopontin (OPN), tissue inhibitor matrix metalloproteinase-1 (TIMP-1), vascular endothelial
growth factor (VEGF), albumin, α-1 acid glycoprotein (AGP), β-2-microglobulin (B2M), cys-
tatin c and neutrophil gelatinase-associated lipocalin (Lipocalin-2/NGAL) (p < 0.05). Cystatin
c also showed a main effect of EX (p < 0.05). In addition, multiple comparisons revealed a
significant increase in IP-10, AGP and Lipocalin-2/NGAL in SED-DOX and EX-DOX male
rats compared to SED-SALINE and EX-SALINE (p < 0.05). SED-DOX was significantly ele-
vated for clusterin, KIM-1 and cystatin c compared to EX-SALINE (p < 0.05). SED-DOX and
EX-DOX had higher levels of urine albumin and B2M compared to EX-SALINE (p < 0.05).
In addition, OPN was elevated in EX-DOX compared to EX-SALINE, TIMP-1 was elevated
in SED-DOX compared to SED-SALINE and VEGF was elevated in SED-DOX compared to
SED-SALINE and EX-SALINE (p < 0.05). Urine from female rats showed main effects of DOX
for clusterin, IP-10, OPN, TIMP-1, VEGF, AGP, B2M, cystatin c and Lipocalin-2/NGAL. Main
effects of EX were only seen for TIMP-1. Multiple comparisons showed a significant increase
in urine IP-10 in EX-DOX compared to SED-SALINE and EX-SALINE, in TIMP-1 in SED-DOX
compared to all other groups and in Lipocalin-2/NGAL in SED-DOX and EX-DOX compared
to both saline-treated control groups (p < 0.05).

2.3. Mechanisms of Exercise Protection against DOX Nephrotoxicity

Kidney protein expression of superoxide dismutase (SOD) 1 did not differ between
groups for males. Females showed a significant increase in SOD1 in the SED-SALINE
rats compared to the SED-DOX rats (p < 0.05). No difference existed between groups for
SOD2 for either sex. A significant main effect of exercise was seen for catalase expression in
both male and female rats, with EX-SALINE catalase expression significantly greater than
SED-DOX expression (p < 0.05). Measurement of glutathione peroxidase (GPX) 1 and GPX4
revealed a significant main effect of exercise but only in males (Figure 3). The expression
of heat shock protein 70 (HSP70) showed a main effect of DOX treatment in males and no
differences between groups for females. Finally, sirtuin (SIRT) 1 and SIRT3 expression was
not affected by either DOX or exercise for either sex (Figure 4).

2.4. Preconditioning Exercise Alters Markers of Liver Toxicity

Liver damage was evaluated by calculating the liver to tibia length ratio and mea-
suring the circulating levels of aspartate aminotransferase (AST) and alanine transami-
nase (ALT) [24]. Our results showed no effect of DOX or exercise on the ratio of liver
weight to tibia length. In addition, no differences were seen when comparing absolute
liver weight for males (SED-SALINE: 11.5 ± 0.43 g; EX-SALINE: 10.7 ± 0.36 g; SED-
DOX: 11.5 ± 0.43 g; EX-DOX: 10.6 ± 0.38 g) or females (SED-SALINE: 7.01 ± 0.30 g;
EX-SALINE: 7.87 ± 0.30 g; SED-DOX: 7.55 ± 0.35 g; EX-DOX: 7.30 ± 0.21 g). There was
a significant main effect of DOX to elevate AST and reduce ALT in the plasma of male
rats. These shifts resulted in an overall significant main effect of DOX to elevate the ratio
of AST to ALT in the male rats. Multiple comparisons revealed a significant increase in
AST and AST/ALT in SED-DOX compared to EX-SALINE and in EX-DOX compared
to SED-SALINE and EX-SALINE (p < 0.05). No significant differences were evident in
these enzyme markers of hepatotoxicity in females (Figure 5).
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Figure 2. Urine levels of clusterin, α-glutathione-S-transferases (GST-α), IFN-gamma-inducible
protein 10 (IP-10), kidney injury molecule-1 (KIM-1), osteopontin (OPN), tissue inhibitor matrix
metalloproteinase 1 (TIMP-1), vascular endothelial growth factor (VEGF), albumin, α-1 acid glyco-
protein (AGP), β-2-microglobulin (B2M), cystatin C and neutrophil gelatinase-associated lipocalin
(Lipocalin-2/NGAL). Data are presented as mean ± SEM. Two-way ANOVA differences are indicated
below the graphs. Circles indicate individual data points. * = significant difference between groups
(p < 0.05), ** = significant difference between groups (p < 0.01), *** = significant difference between
groups (p < 0.001), **** = significant difference between groups (p < 0.0001).
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Figure 3. Kidney protein expression of (A,B) superoxide dismutase (SOD) 1, (C,D) SOD2,
(E,F) catalase, (G,H) glutathione peroxidase (GPX) 1, and (I,J) GPX4 primary antioxidants from
sedentary (SED) or exercise-preconditioned (EX) male (left) and female (right) rats treated with
doxorubicin (DOX) or saline. Data are presented as mean ± SEM. Representative western blots are
shown to the right of the graphs. Two-way ANOVA differences are indicated below the graphs.
Circles indicate individual data points. * = significant difference between groups (p < 0.05).
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Figure 4. Kidney protein expression of (A,B) heat shock protein 70 (HSP70), (C,D) sirtuin (SIRT) 1,
and (E,F) SIRT3 from sedentary (SED) or exercise-preconditioned (EX) male (left) and female (right)
rats treated with doxorubicin (DOX) or saline. Data are presented as mean ± SEM. Representative
western blots are shown below the graphs. Two-way ANOVA differences are indicated below the
graphs. Circles indicate individual data points.
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Figure 5. (A,B) Liver/tibia ratio, (C,D) plasma levels of aspartate aminotransferase (AST), (E,F) plasma
levels of alanine transaminase (ALT), and (G,H) ratio of AST/ALT from sedentary (SED) or exercise-
preconditioned (EX) male (left) and female (right) rats treated with doxorubicin (DOX) or saline. Data
are presented as mean ± SEM. Two-way ANOVA differences are indicated below the graphs. Circles
indicate individual data points. * = significant difference between groups (p < 0.05). ** = significant
difference between groups (p < 0.01), *** = significant difference between groups (p < 0.001).
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2.5. Mechanisms of Exercise Protection against DOX Hepatotoxicity

In the liver, there was a significant increase in catalase in male EX-SALINE rats
compared to SED-SALINE and EX-DOX (p < 0.05), with no effect of treatment or activity
in the females. No differences were discerned between groups for SOD1, SOD2, GPX1 or
GPX4 protein expression for either sex (Figure 6). In males, HSP70 displayed a significant
main effect for DOX treatment to reduce protein expression with no effect for the females.
No differences were found in the hepatic protein expression of SIRT1 or SIRT3 for males or
females (Figure 7).
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Figure 6. Liver protein expression of (A,B) superoxide dismutase (SOD) 1, (C,D) SOD2, (E,F) catalase,
(G,H) glutathione peroxidase (GPX) 1, and (I,J) GPX4 primary antioxidants from sedentary (SED) or
exercise-preconditioned (EX) male (left) and female (right) rats treated with doxorubicin (DOX) or
saline. Data are presented as mean ± SEM. Representative western blots are shown to the right of the
graphs. Two-way ANOVA differences are indicated below the graphs. Circles indicate individual
data points. * = significant difference between groups (p < 0.05).
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Figure 7. Liver protein expression of (A,B) heat shock protein 70 (HSP70), (C,D) sirtuin (SIRT) 1,
and (E,F) SIRT3 from sedentary (SED) or exercise-preconditioned (EX) male (left) and female (right)
rats treated with doxorubicin (DOX) or saline. Data are presented as mean ± SEM. Representative
western blots are shown below the graphs. Two-way ANOVA differences are indicated below the
graphs. Circles indicate individual data points.

3. Discussion

DOX is a widely utilized and highly effective antineoplastic agent. However, multi-
organ toxicity severely limits its use [2,9]. The renal and hepatic systems are particularly
affected due to their role in metabolism and clearance of DOX. Specifically, the kidneys
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and liver have a high affinity for DOX, allowing for preferential accumulation in these
organs following systemic administration [6]. Although there is currently no standard
of care to prevent DOX toxicity in healthy organs, exercise can protect against cardiac
and skeletal muscle toxicity via redox-related mechanisms [5,16]. Therefore, utilizing a
preclinical model, we investigated the effects of aerobic exercise preconditioning on markers
of DOX-induced nephro- and hepatotoxicity. A detailed discussion of our findings follows.

3.1. DOX-Induced Nephrotoxicity and Exercise Preconditioning

DOX-induced damage to the kidneys results from the accumulation of potassium,
phosphate and uric acid as a result of tumor lysis and unaltered DOX and its metabo-
lites [25]. Independent of tumor breakdown products, DOX metabolism and excretion
through the urine over several days induces renal inflammation and oxidative dam-
age [14,26]. Activation of this pro-inflammatory phenotype was evident in the kidneys of
our DOX-treated rats as IP-10, OPN and lipocalin-2 were all elevated in the urine of both
male and female rats. Additional markers of renal dysfunction elevated in the urine of
both male and female rats included creatinine, TIMP-1, VEGF, B2M and cystatin c. These
markers increase in the urine as a result of both tubular damage and glomerulopathy [27,28].
Sex-specific responses differed when comparing the number of proteins elevated in the
urine of DOX-treated rats. Clusterin, KIM-1, albumin and AGP were only elevated in
males. These differences suggest that males may be more susceptible to renal dysfunction
following DOX treatment. Circulating markers of the RAAS are also associated with renal
failure, and both ACE and AngII were elevated in the plasma of male and female DOX-
treated rats [22]. Studies have shown that ROS production can induce overactivation of the
RAAS, which plays a role in the pathogenesis of renal toxicity, and administration of ACE
inhibitors and angiotensin receptor blockers provides therapeutic benefit [21,23].

Limited studies have addressed the potential benefit of exercise to combat DOX
nephrotoxicity. However, existing data support the postulate that exercise training provides
beneficial adaptations to reduce urine and plasma biomarkers of renal toxicity and improve
histological markers of damage [29–33]. Our results support an exercise effect to reduce the
level of circulating AngII in females only, urine creatinine and cystatin c in males only and
urine TIMP-1 in both males and females. Mechanisms for these reductions are potentially
related to reductions in oxidative damage to the kidneys via an exercise-induced increase
in catalase expression in both sexes and GPX1 in the males.

3.2. DOX-Induced Hepatotoxicity and Exercise Preconditioning

DOX metabolism in the liver is associated with the production of ROS, inflammation
and mitochondrial dysfunction [20,24]. Specific localization within liver mitochondria
results in oxidative damage, reduced oxidative phosphorylation and impaired ATP pro-
duction [34]. This reduces the hepatocytes’ ability to perform energy-dependent processes
required for DOX detoxification and elimination, and promotes cellular apoptosis [35,36].
Hepatocellular death results in the leakage of enzymes into circulation, and thus, liver
dysfunction can be assessed via the quantification of these biomarkers [15,37]. Specifically,
elevated circulating AST and ALT and an AST/ALT ratio greater than 1 are indicative of
hepatic damage [6]. Similar to previous reports, our results demonstrated a significant
effect of DOX administration to increase plasma levels of AST [38]. In contrast, we show an
effect of DOX to reduce ALT; however, the resulting AST/ALT ratio was elevated above 1 in
both the sedentary and exercise-trained DOX-treated groups, representing overall hepatic
impairment. Interestingly, this affect was only seen in the male rats, with no difference
between groups for AST, ALT or AST/ALT in females. Increasing work is needed to
understand these sex-specific responses as data suggest that DOX clearance is slower in
females compared to males and that females have greater susceptibility for drug-induced
liver injury [39,40].

While liver dysfunction is established in both clinical and preclinical evaluation of DOX
toxicity, no therapy exists to reduce this adverse effect. Exercise training has been evaluated
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for benefits to other organ systems in patients receiving DOX chemotherapy [2]. However,
no clinical report has evaluated whether exercise elicits beneficial effects to protect against
liver toxicity. Studies in rodents have shown improvements in mitochondrial function,
markers of oxidative stress and inflammation [20,41,42]. Only two studies to date have
evaluated the effects of exercise on AST and ALT in animals treated with DOX [43,44]. In
these studies, 12 weeks of treadmill exercise preconditioning or 5 weeks of strength training
concomitant to DOX treatment showed a reduction in circulating AST. Interestingly, ALT
was only reduced with the aerobic preconditioning exercise [44], while it was increased
with strength training [43]. These studies were performed in male rodents and support
our findings that markers of hepatotoxicity are increased in male rodents treated with
DOX. The difference in the exercise effects on circulating markers between the three distinct
exercise training protocols highlights the need for additional research to determine the
optimal exercise prescription for the prevention of DOX-induced liver dysfunction.

4. Materials and Methods
4.1. Experimental Animals

The University of Florida (UF) Institutional Animal Care and Use Committee (IACUC
approval #202011110) approved these experiments. This study was performed in accor-
dance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals. Male and female Sprague–Dawley rats (4–5 months old) were used in these exper-
iments and were obtained from Charles River Laboratories (Wilmington, MA, USA). Rats
were housed in pairs in the UF Animal Care Services vivarium. They were maintained on a
12:12 light dark cycle, monitored daily and provided rodent diet 2918 (Envigo, Indianapolis,
IN, USA) and water ad libitum.

4.2. Study Design

Rats were randomly assigned to sedentary (SED) or exercise preconditioning (EX)
groups. Exercise preconditioning consisted of five days of habituation to treadmill running
(30 m/min, 0% grade, 10, 20, 30, 40, 50 min on days 1–5). Following habituation, rats
rested for two days prior to initiation of a 10-day training protocol [45]. Each training
session was performed at 30 m/min, 0% grade for 60 min. Twenty-four hours after the last
training session or at an equal time for sedentary rats, each group was further divided to
receive either DOX (20 mg/kg I.P.) (Teva Pharmaceuticals, Parsippany, NJ, USA) or saline
(equal volumes to DOX) [45,46]. Forty-eight hours following DOX/saline exposure, rats
were euthanized. Blood was collected via K3EDTA tubes (454217, Greiner, Kremsmünster,
Austria), and plasma was separated using centrifugation at 500× g for 10 min at 4 ◦C. Urine
was collected using cytocentesis. The liver and kidneys were removed and weighed prior
to flash freezing in liquid nitrogen.

A sample size of n = 10/group was used to determine if differences existed be-
tween groups. This was chosen based on our previous experience with the experimental
model [20,45–47]. Prior to study initiation, there were no differences in body weight be-
tween groups for males or females (Males—SED-SALINE: 332.0 ± 10.3 g, EX-SALINE:
330.3 ± 10.3 g, SED-DOX: 330.8 ± 4.8 g, EX-DOX: 329.8 ± 6.0 g; Females—SED-SALINE:
224.8 ± 3.6 g, EX-SALINE: 224.8 ± 4.2 g, SED-DOX: 224.2 ± 3.6 g, EX-DOX: 222.5 ± 3.3 g).
No rats died as a result of any treatment. Two male rats, one SED-DOX and one EX-DOX,
were removed from the study due to misinjection.

4.3. Kidney Toxicity

Urine was centrifuged at 13,000 rpm for 10 min at 4 ◦C and assayed via Milliplex Rat
Kidney Toxicity Panel 1 (RKTX1MAG-37K; clusterin, GSTα, IP-10, KIM-1, OPN, TIMP-1
and VEGF) and Milliplex Rat Kidney Toxicity Panel 2 (RKTX1MAG-37K; albumin, AGP,
B2M, Cystatin C, EGF, Lipocalin-2/NGAL) (EMD Millipore Corporation, Billerica, MA,
USA) following the manufacturer’s instructions. Urine creatinine levels were quantified
via a Creatinine Urinary Detection Kit (EIACUN, ThermoFisher, Waltham, MA, USA)
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following the manufacturers’ instructions and by a blinded researcher. Values below the
lower limit of quantification (LLOQ) were removed from the analysis.

4.4. Plasma Analysis

Plasma levels of ACE (MBS2020292, MyBioSource, San Diego, CA, USA), AngII (CSB-
E04494r, Cusabio, Houston, TX, USA), ALT (ab234579, Abcam, Waltham, MA, USA) and
AST (ab263883, Abcam, Waltham, MA, USA) were measured via ELISA according to
manufacturer’s instructions by a blinded researcher.

4.5. Western Blot Analysis

Liver and kidney tissue were homogenized 1:10 (wt/vol) in 5 mM Tris (pH 7.5) and
5 mM EDTA (pH 8.0) with a protease inhibitor cocktail (P8340, Sigma-Aldrich, St. Louis,
MO, USA) and centrifuged at 1500× g for 10 min at 4 ◦C. Supernatant was separated from
the pellet, and supernatant protein content was assessed using the Bradford method (B6916,
Sigma-Aldrich, St. Louis, MO, USA). A total of 30–40 µg of protein was separated on
4–20% precast gels (5671095, Bio-Rad, Hercules, CA, USA) and transferred to nitrocellulose
membranes (1620112, Bio-Rad, Hercules, CA, USA), followed by blocking in 5% non-fat
milk, washing in PBST and a minimum of one overnight incubation at 4 ◦C with primary
antibodies directed against SOD1 (1;1:000; sc-11407), HSP70 (1:000; sc-32239) (Santa Cruz
Biotechnology, Dallas, TX, USA), SOD2 (1:1000; ab68155), catalase (1:000; ab52477), GPX1
(1:000; ab22604), GPX4 (1:1000; ab125066) (Abcam, Waltham, MA, USA), SIRT1 (1:000;
8469S), β-actin (1:500; #4967) (Cell Signaling Technologies, Danvers, MA, USA) and SIRT3
(1:100; 10099-1-AP) (Proteintech, Rosemont, IL, USA) diluted 1:1 in Odyssey blocking
buffer (LI-COR Biosciences, Lincoln, NE, USA) and PBS. Membranes were exposed to
rabbit AlexaFluor 680 IgG or 800 IgG (LI-COR) secondary antibodies. Imaging and analysis
were performed using the Odyssey CLx imaging system and Image Studio software v5.4
(LI-COR). Western blots were loaded in random order and performed by a researcher
blinded to the experimental groups.

4.6. Statistical Analysis

All data was tested for normal distribution, followed by square root transformation on
data sets that did not meet this assumption. Comparison between groups were determined
via two-way analysis of variance (ANOVA) to determine whether main effects existed
for treatment and activity. When significant interactions were present, a Tukey multiple
comparisons test was performed post hoc. Significance was established at p < 0.05. Data
are presented as mean ± standard error.

5. Conclusions

These data demonstrate that DOX-induced damage to the liver and kidneys resulted
in increased RAAS system activation and circulating levels of pro-inflammatory proteins.
While previous work has shown that exercise preconditioning may prevent DOX tissue
toxicity by increasing antioxidant capacity, HSP70 and SIRT1/3, our data show limited
effects of exercise to upregulate the expression of these proteins. Additional work is needed
to determine the precise mechanisms by which DOX elicits hepato- and nephrotoxicity and
the optimal exercise prescription to confer protection.
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