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Abstract: Influenza viruses are respiratory pathogens that are major threats to human health. Due to
the emergence of drug-resistant strains, the use of traditional anti-influenza drugs has been hindered.
Therefore, the development of new antiviral drugs is critical. In this article, AgBiS2 nanoparticles were
synthesized at room temperature, using the bimetallic properties of the material itself to explore its
inhibitory effect on the influenza virus. By comparing the synthesized Bi2S3 and Ag2S nanoparticles, it
is found that after adding the silver element, the synthesized AgBiS2 nanoparticles have a significantly
better inhibitory effect on influenza virus infection than Bi2S3 and Ag2S nanoparticles. Recent studies
have shown that the inhibitory effect of AgBiS2 nanoparticles on the influenza virus mainly occurs in
the stages of influenza virus-cell internalization and intracellular replication. In addition, it is found
that AgBiS2 nanoparticles also have prominent antiviral properties against α and β coronaviruses,
indicating that AgBiS2 nanoparticles have significant potential in inhibiting viral activity.

Keywords: nanoparticles; influenza virus; viral inhibition; virus-cell internalization; intracellular
replication

1. Introduction

The influenza virus is a kind of respiratory pathogen. After a mild infection, it can
cause symptoms, such as runny nose, fever, and cough. In severe cases, it can cause
pneumonia, which is one of the major disease endangering the life and safety of the patient.
The US Food and Drug Administration (FDA) has only approved two types of drugs
to treat influenza viruses, namely M2 protein ion channel blockers and neuraminidase
inhibitors [1]. With the long-term use of drugs, drug-resistant strains have emerged which
have restricted the use of these two types of anti-influenza virus drugs. This has become
a public health problem worldwide. On the other hand, vaccines for influenza viruses
often fail as the virus mutates. Therefore, it is necessary to find new anti-influenza virus
drugs or broad-spectrum antiviral drugs with different antiviral mechanisms to replace the
traditional drugs.

In recent years, nanomaterials have been rapidly developed and are widely used
in biotherapy. In addition, with the deepening of research, it has been found that metal
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nanomaterials have antibacterial [2], anti-tumor [3], anti-virus [4], and anti-parasitic prop-
erties [5]. Studies have found that Ag and Au nanoparticles have prominent antiviral
properties. Their action occurs before the virus invades the cell and during the process
of crossing the cell membrane. However, some things could be improved in the antiviral
materials reported at this stage. First of all, the inhibitory effect of nanomaterials is mainly
to block virus adsorption and entry into cells, and there is no apparent inhibitory effect
in the late stage of virus replication. Secondly, the application of single metal has certain
limitations. Therefore, multi-metal nanomaterials are used in antiviral therapy to enrich the
characteristics of nanomaterials, improve their antiviral performance, and show excellent
antiviral capabilities [6,7].

Researchers have found that bismuth compounds have good photothermal conversion
ability in the near-infrared region in tumor treatment, so they can be used as a photothermal
treatment of tumor reagents and can achieve ideal therapeutic effects. Regarding antibacte-
rial properties, studies have found that the bismuth ions in metallothionein in organisms
can interact strongly with cysteine, providing hope for applying bismuth compounds to
inhibit bacteria and viruses [8]. At this stage, bismuth coordination compounds, such as bis-
muth subsalicylate and ranitidine bismuth citrate, can form a protective film in the stomach,
prevent gastric acid and protease from harming the stomach, and inhibit Helicobacter pylori.
It is widely used to treat gastric ulcers [9,10]. In addition, research has shown that ranitidine
bismuth citrate can play an essential inhibitory role in the late stage of the severe acute
respiratory syndrome (SARS) virus replication cycle through the coordination of bismuth
ions [11]. With the outbreak of the coronavirus disease 2019 (COVID-19), many drugs
have been used to restrain or kill the new coronavirus. Studies have shown that bismuth
salt inhibits the NTPase and RNA helicase of the new coronavirus type 2 [12]. Moreover,
studies have found that ranitidine bismuth citrate, used to treat stomach diseases, can
inhibit the replication of new coronavirus type 2 and reduce the symptoms of pneumonia
in mice [13].

In addition, Ag also plays a vital role in the field of anti-virus. Park et al. synthesized a
kind of magnetic hybrid colloid loaded with Ag nanoparticles of different sizes. Using the
interaction between Ag and biological macromolecules, Park explored the inhibitory effect
of those nanoparticles on bacteriophages, noroviruses, and adenoviruses. The results show
that Ag nanoparticles are combined with sulfhydryl-containing proteins on the virus’s
surface, thereby destroying the virus envelope and killing the virus. Therefore, Ag is
widely used to prepare antibacterial and antiviral materials due to its good bactericidal and
antiviral properties [14].

We synthesized Bi-based nanomaterials and explored their antiviral potential. Their
inhibitory effect on influenza virus infection at the cellular level was tested. Nanomate-
rials were added at different stages of virus-infected cells, and the inhibition effect was
evaluated via TCID50, fluorescent quantitative PCR (qRT-PCR) and indirect immunofluo-
rescence methods. Furthermore, the antiviral effect of bimetallic nanomaterial AgBiS2 was
intensively investigated. Our research may provide simple, green, efficient, and low-cost
antiviral nanomaterials for application.

2. Results
2.1. Material Characterization

Three kinds of nanoparticles (AgBiS2, Bi2S3, and Ag2S) are rapidly synthesized at room
temperature, and the synthesized nanoparticles are tested and characterized using TEM and
XRD (Figure 1). As shown in Figure 1a, the experimentally synthesized AgBiS2 material is
irregularly granular and crystalline, with an average particle size of 18.6 ± 0.3 nm, uniform
particle size, and good dispersion. The XRD test of the experimentally synthesized AgBiS2
shows that the XRD diffraction peaks of AgBiS2 nanoparticles are consistent with the
standard card JCPDF 89-2045 (Figure 1d). These data indicate the successful synthesis
of AgBiS2 nanoparticles. As shown in Figure 1b, the shape of Bi2S3 nanoparticles is
similar to that of mulberries, with irregular shapes and a particle size of about 40 nm. In
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addition, XRD analysis shows that the diffraction peaks of the experimentally synthesized
Bi2S3 nanoparticles are consistent with the standard card JCPDF 75-1036 (Figure 1e). As
shown in Figure 1c, the experimentally synthesized Ag2S nanoparticle is spherical with an
average particle size of 64 nm. TEM shows that part of Ag2S is connected with multiple
morphologies because PVP wraps the outer surface. Additionally, the comparison of the
Ag2S standard card (JCPDF 89-3840) shows that the XRD diffraction peaks of the test
group match the standard card (Figure 1f). In summary, the synthesis of experimental
nanomaterials is successful.
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In order to verify the successful synthesis of AgBiS2 nanoparticles, the synthesized
material was subjected to high-angle circular dark scene scanning (mapping). It can be
observed from Figure 2 that the distribution of the three elements of Bi, S, and Ag in
nanoparticles further demonstrates the successful synthesis of AgBiS2 nanoparticles.
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After synthesizing the three kinds of nanomaterials, their chemical properties were
tested. The analysis shows (Figure 3a) that the hydrodynamic diameters of AgBiS2, Bi2S3,
and Ag2S are 43.3 nm, 52.1 nm, and 76.3 nm, respectively, based on the hydrated particle
size (DLS).
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As shown in Figure 3b, the zeta potentials of AgBiS2, Bi2S3, and Ag2S in an aqueous
solution are−12.56 mV,−8.03 mV, and−20.5 mV, respectively. The zeta potential of AgBiS2
is between Bi2S3 and Ag2S. With the addition of Ag, the zeta potential value decreased
from −20.5 mV to −12.56 mV. The infrared analysis (IR) of the synthesized nanoparticles
and PVP, as shown in Figure 3c, highlights that the stretching vibration peak of the amino
group (N-H) of PVP was around 3400 cm−1, and that the stretching vibration peak of
the carbonyl group (C=O) was at 1685 cm−1. The alkyl group (C-H) was stretched and
flexed by the nanoparticles at 2871 cm−1, the alkyl group (C-H) at 3027 cm−1 was the
stretching vibration peak, and at 896 cm−1 the alkyl group (C-H) was the rocking vibration
peak [15,16]. Thermogravimetric analysis (TG) shows that the weight of Bi2S3 begins to
decrease at 200–300 ◦C (Figure 3d). This stage indicates that the loss of unstable oxygen
photo energy groups on the material leads to a decrease in the weight of the material. The
decrease in weight at 300–350 ◦C is attributed to the carbonization of the PVP material
wrapped in the outer layer, which separates the PVP wrapped in the outer layer from
the Bi2S3 inside. The decrease in weight at 450–550 ◦C is attributed to the collapse of the
material skeleton. For AgBiS2, the 3.46% weight loss at 300–350 ◦C is lower than that of
Bi2S3 at 5.13%. This indicates that in the synthesized materials, the amount of PVP wrapped
on the outer surface of Bi2S3 is higher than that of AgBiS2.

2.2. Cytotoxicity Test

Good biological safety is the prerequisite for using nanoparticle in biological therapy.
The biocompatibility of synthetic nanoparticle is evaluated by studying the toxicity of
three nanoparticles to MDCK cells. As shown in Figure 4, the MTT method detects the cell
viability of the three nanoparticles incubating with cells for 24 and 48 h. It is found that
when the AgBiS2 concentration reaches 150 µg/mL, the survival rate of MDCK cells after
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48 h of co-culture is still higher than 90%, indicating that AgBiS2 has lower cytotoxicity than
Ag2S and Bi2S3. However, when Ag2S and Bi2S3 were co-cultured with cells for 48 h, the
cell survival rate was higher than 90%, while the concentration was lower than 100 µg/mL.
The above results show that the biological safety of AgBiS2 is significantly higher than that
of Ag2S and Bi2S3, and that further biological experiments should be carried out within the
biological safety concentration of each group of materials.
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2.3. Antiviral Effect Evaluation Experiment
2.3.1. Direct Inactivating Group

Firstly, the direct killing of the materials against viruses was tested. Different con-
centrations of nanoparticles and viruses were incubated at room temperature for 1 h. The
incubated virus solution was used to infect cells, and then the relative content of the virus
was tested via RT-qPCR after 48 h of co-culture [17]. The results are shown in Figure 5.
Although AgBiS2, Ag2S, and Bi2S3 nanoparticles have weak infection inhibition abilities
against the influenza virus, the antiviral effects of these three types are not obvious. The
infection inhibition rate against the virus was about 20%. It shows that the three kinds of
nanoparticles cannot kill the virus through interaction with the virus.
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Figure 5. RT-qPCR analysis of (a) AgBiS2, (b) Ag2S, and (c) Bi2S3 nanoparticles’ direct inactivating
effects on influenza virus B. The inhibitory effect of the control group was 0% which was not shown
in the figure.

2.3.2. Co-Cultivation Inhibition Group

In order to verify whether nanoparticles interfere with the process of virus adsorption
to cells, nanoparticles and influenza viruses were incubated with the cells for an hour at
the same time. After washing off unabsorbed influenza viruses and nanoparticles, the
RT-qPCR tests were performed after 48 h of incubation [18]. As shown in Figure 6, the
virus suppression effect of AgBiS2 and Ag2S is higher than the Bi2S3 group, and the best
suppression effect of the Ag2S group is 71.45%. Among them, Ag2S shows a good antiviral
effect at a concentration of 10 µg/mL. The inhibition rate of the influenza virus reached
47.69%, which is significantly higher than 40.4% in the AgBiS2 group and 14.79% in the
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Bi2S3 group. With the increase in the nanoparticles’ concentration, the viral inhibitory
effect is improved and tends to be flat. The above results show that Ag2S exhibits the best
influenza virus inhibitory effect among the three nanoparticles when the nanoparticles and
influenza virus are added to the cell together. The antiviral effect of AgBiS2 is the second
best. However, Bi2S3 shows very weak antiviral ability. By comparing the three kinds of
nanoparticles, it is found that in the presence of Ag ions, the process of virus adsorption
to cells will be significantly interfered, thereby reducing the amount of influenza virus
adsorbed to cells and achieving the effect of inhibiting influenza virus infection.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 18 
 

 

2.3.2. Co-Cultivation Inhibition Group 
In order to verify whether nanoparticles interfere with the process of virus adsorp-

tion to cells, nanoparticles and influenza viruses were incubated with the cells for an hour 
at the same time. After washing off unabsorbed influenza viruses and nanoparticles, the 
RT-qPCR tests were performed after 48 h of incubation [18]. As shown in Figure 6, the 
virus suppression effect of AgBiS2 and Ag2S is higher than the Bi2S3 group, and the best 
suppression effect of the Ag2S group is 71.45%. Among them, Ag2S shows a good antiviral 
effect at a concentration of 10 µg/mL. The inhibition rate of the influenza virus reached 
47.69%, which is significantly higher than 40.4% in the AgBiS2 group and 14.79% in the 
Bi2S3 group. With the increase in the nanoparticles’ concentration, the viral inhibitory ef-
fect is improved and tends to be flat. The above results show that Ag2S exhibits the best 
influenza virus inhibitory effect among the three nanoparticles when the nanoparticles 
and influenza virus are added to the cell together. The antiviral effect of AgBiS2 is the sec-
ond best. However, Bi2S3 shows very weak antiviral ability. By comparing the three kinds 
of nanoparticles, it is found that in the presence of Ag ions, the process of virus adsorption 
to cells will be significantly interfered, thereby reducing the amount of influenza virus 
adsorbed to cells and achieving the effect of inhibiting influenza virus infection. 

 
Figure 6. RT-qPCR analysis of (a) AgBiS2, (b) Ag2S, and (c) Bi2S3 nanoparticles and influenza virus B 
co-cultivation of the inhibitory effects. The inhibitory effect of the control group was 0% which was 
not shown in the figure. 

2.3.3. Nanoparticle Preculture Inhibition Group 
The preliminary exploration shows that the three kinds of nanoparticles can play a 

blocking role in the process of virus adsorption into cells. To further determine the anti-
viral effects of the three nanoparticles in the cell, pre-cultivating the nanoparticles at dif-
ferent concentrations with the cells was carried out for 3 h before incubating with the vi-
ruses. After the virus and cells were co-cultured for 1 h, the unabsorbed viruses were 
washed away. After 48 h of culture, the inhibitory effect of different materials on the in-
fluenza virus was determined via RT-qPCR (Figure 7). When the nanoparticles entered 
the cells earlier than the viruses, the degree of intervention of the nanoparticles on the 
influenza virus replication inside the cells was examined. As shown in Figure 7a, AgBiS2 
exhibits a significant inhibitory effect on influenza viruses at low concentrations. As the 
concentration of AgBiS2 increases, the inhibition rate reaches 78.78%. The maximum inhi-
bition rate is significantly higher than 64.24% in the Ag2S group and 48.53% in the Bi2S3 
group (Figure 7b,c). It indicates that AgBiS2 can interfere with the intracellular replication 
process of the virus. The reason is that Bi3+ and Ag+ have an affinity for the biological mac-
romolecular protein of viruses and can bind to the biological protein through coordination 
or chemical reaction so that the protein molecules can be changed in conformation and 
lose the biological activity [8,19]. Among them, the virus suppression effect of the bime-
tallic AgBiS2 nanoparticles was significantly better than that of the single metal Ag2S and 
Bi2S3 nanoparticles. 

Figure 6. RT-qPCR analysis of (a) AgBiS2, (b) Ag2S, and (c) Bi2S3 nanoparticles and influenza virus B
co-cultivation of the inhibitory effects. The inhibitory effect of the control group was 0% which was
not shown in the figure.

2.3.3. Nanoparticle Preculture Inhibition Group

The preliminary exploration shows that the three kinds of nanoparticles can play
a blocking role in the process of virus adsorption into cells. To further determine the
antiviral effects of the three nanoparticles in the cell, pre-cultivating the nanoparticles
at different concentrations with the cells was carried out for 3 h before incubating with
the viruses. After the virus and cells were co-cultured for 1 h, the unabsorbed viruses
were washed away. After 48 h of culture, the inhibitory effect of different materials on
the influenza virus was determined via RT-qPCR (Figure 7). When the nanoparticles
entered the cells earlier than the viruses, the degree of intervention of the nanoparticles
on the influenza virus replication inside the cells was examined. As shown in Figure 7a,
AgBiS2 exhibits a significant inhibitory effect on influenza viruses at low concentrations.
As the concentration of AgBiS2 increases, the inhibition rate reaches 78.78%. The maximum
inhibition rate is significantly higher than 64.24% in the Ag2S group and 48.53% in the
Bi2S3 group (Figure 7b,c). It indicates that AgBiS2 can interfere with the intracellular
replication process of the virus. The reason is that Bi3+ and Ag+ have an affinity for
the biological macromolecular protein of viruses and can bind to the biological protein
through coordination or chemical reaction so that the protein molecules can be changed in
conformation and lose the biological activity [8,19]. Among them, the virus suppression
effect of the bimetallic AgBiS2 nanoparticles was significantly better than that of the single
metal Ag2S and Bi2S3 nanoparticles.
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2.3.4. Virus Post-Infection Inhibition Group

To explore the contribution of nanoparticles’ interference to the transmembrane pro-
cess of the influenza virus, after the virus was adsorbed on the cell surface, the nanoparticles
were added and cultured for 48 h. RT-qPCR shows that adding AgBiS2, Ag2S, and Bi2S3
enhances the inhibitory effect of the influenza virus (Figure 8). The comparison of the
inhibitory effects of the three nanoparticles revealed that the maximum inhibitory rate of
AgBiS2 on the influenza virus was 91.72%, which is significantly higher than the inhibitory
effects of the Ag2S and Bi2S3 groups. In this virus post-infection group, nanoparticles par-
ticipate in the virus-cell internalization process in the early stage and the virus intracellular
replication process in the later stage. Referring to the results of the material preculture
group, AgBiS2 and Ag2S can interfere with the replication stage of the influenza virus and
suppress virus propagation. In the virus preculture group, nanoparticles affect both the
transmembrane and virus replication processes in cells. Both AgBiS2 and Ag2S shows
the inhibiting effect on the virus. However, the inhibiting effect of AgBiS2 is higher than
that of Ag2S, which indicates that AgBiS2 plays an inhibitory role in the process of virus
transmembrane due to the introduction of Bi3+. It can also be mutually confirmed by
comparing the virus inhibition effects of Bi2S3 between the virus post-infection inhibition
group and the nanoparticle preculture inhibition group.
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2.4. TCID50 Test for Virus Activity

After treatment in each experimental group, the virus-containing supernatant was
collected, and the TCID50 method was used to detect the virus titer and verify whether the
virus in the supernatant was living. After the influenza virus was cultured for six days, the
TCID50 of the influenza virus was measured via hemagglutination assay.

For AgBiS2 nanoparticles, as shown in Figure 9, by comparing the four different inhibi-
tion pathways, it was found that after AgBiS2 nanoparticles treatment, the influenza virus
titer of the group (d) decreases most significantly with 1.58 lg (TCID50), followed by 1.1 lg
(TCID50) of the group (c). It indicates that the main inhibitory effect of AgBiS2 nanoparticles
on the influenza virus occurs during the cellular internalization and intracellular replication
stages. These data further confirm the results of RT-qPCR detection.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 18 
 

 

For AgBiS2 nanoparticles, as shown in Figure 9, by comparing the four different inhi-
bition pathways, it was found that after AgBiS2 nanoparticles treatment, the influenza vi-
rus titer of the group (d) decreases most significantly with 1.58 lg (TCID50), followed by 
1.1 lg (TCID50) of the group (c). It indicates that the main inhibitory effect of AgBiS2 nano-
particles on the influenza virus occurs during the cellular internalization and intracellular 
replication stages. These data further confirm the results of RT-qPCR detection. 

 
Figure 9. The TCID50 method is used to detect the influenza B virus titer of AgBiS2 (a) direct inacti-
vating group, (b) co-cultivation inhibition group, (c) nanoparticle preculture inhibition group, and 
(d) virus post-infection inhibition group. 

For Ag2S nanoparticles, the results of the RT-qPCR test show that the inhibitory effect 
of Ag2S on the influenza virus is lower than that of AgBiS2. TCID50 is used to determine 
the live virus in the virus-containing supernatant. It is found that the Ag2S-group (c) has 
the best inhibitory effect, and the titer of the influenza virus decreases by 1.14 lg (TCID50) 
(Figure 10), but it is lower than the inhibitory effect of the AgBiS2-group (d) (Figure 9). It 
indicates that the main inhibitory stage of Ag2S nanoparticles against influenza viruses 
occurs in the virus’s intracellular replication process. 

Figure 9. The TCID50 method is used to detect the influenza B virus titer of AgBiS2 (a) direct
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and (d) virus post-infection inhibition group.
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For Ag2S nanoparticles, the results of the RT-qPCR test show that the inhibitory effect
of Ag2S on the influenza virus is lower than that of AgBiS2. TCID50 is used to determine
the live virus in the virus-containing supernatant. It is found that the Ag2S-group (c) has
the best inhibitory effect, and the titer of the influenza virus decreases by 1.14 lg (TCID50)
(Figure 10), but it is lower than the inhibitory effect of the AgBiS2-group (d) (Figure 9). It
indicates that the main inhibitory stage of Ag2S nanoparticles against influenza viruses
occurs in the virus’s intracellular replication process.
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Figure 10. The TCID50 method is used to detect the influenza B virus titer of Ag2S (a) direct inacti-
vating group, (b) co-cultivation inhibition group, (c) nanoparticle preculture inhibition group, and
(d) virus post-infection inhibition group.

For Bi2S3 nanoparticles, detection of the influenza virus titer of each experimental
group shows that the virus titer of the group (d) decreases. It shows an inhibitory effect on
the influenza virus at a lower concentration. The inhibitory effect is low for group (a) and
group (b) (Figure 11). The above conclusions are consistent with the results of RT-qPCR.
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and (d) virus post-infection inhibition group.

2.5. Indirect Immunofluorescence Experiment

The viruses mainly invade cells by the fusion of virus surface proteins and cell surface
receptors. After the virus is adsorbed on the cell surface, part of the virus antigen protein
will be exposed to the cell’s outer layer. As a standard virologic technique, the indirect
immunofluorescence assay (IFA) demonstrates the influenza viral antigens expressed in
infected cells. The virus antigen can be detected to indirectly determine the degree of
infection of the virus to the cell. At this time, the indirect immunofluorescence method can
determine the number of virus-infected cells [19–21].

Indirect immunofluorescence has been extensively used as a confirmatory assay in
viral research. Here, IFA was performed to study the inhibitory impact of nanoparticles on
the expression of influenza virus HA antigen. After pre-cultivating the virus and cells for
1 h, AgBiS2 solution at different concentrations (0, 50, and 150 µg/mL) was added, and the
cells were fixed on the glass bottom 96-well plate after 24 h. As shown in Figure 12, using
a rotating disc confocal microscope it is observed that when the concentration of AgBiS2
nanoparticles is 0 µg/mL; the fluorescence intensity of the virus-positive control group
was higher. When the concentration of AgBiS2 nanoparticles is increased to 50 µg/mL, it is
found that the HA intensity reduced significantly compared with the positive control group,
indicating that AgBiS2 inhibited the process of virus infection. As the concentration of
AgBiS2 increased to 150 µg/mL, the fluorescence intensity of HA protein further decreased
compared with the 50 µg/mL group. It indicates that AgBiS2 nanoparticles have an
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inhibitory effect on influenza virus-infected cells, and as the concentration of the added
nanomaterial increases, the inhibitory effect increases.
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Figure 12. The indirect immunofluorescence assay detects the influenza B virus HA expression
affected by AgBiS2 at the concentration of 0, 50, and 150 µg/mL, and the virus post-infection group
are treated for 24 h. DAPI is a nuclear dye, and T-62 is a fluorescent primary antibody to the influenza
virus HA antigen.

2.6. Inhibitory Effect on Influenza A Virus, α and β Coronaviruses

To verify the broad-spectrum antiviral properties of AgBiS2 nanomaterials, we ex-
plored the antiviral effect of AgBiS2 nanomaterials on influenza virus A, α and β coron-
aviruses. The virus post-infection inhibition group approach was applied. After culturing
the AgBiS2 nanomaterials with the infected cells for 48 h, it is observed from Figure 13a
that the inhibitory effect on influenza A is significantly increased with the increased con-
centrations of AgBiS2 nanomaterials. The highest inhibition rate at 100 µg/mL was 90.25%.
In addition, we verified the infection-inhibitory effect of AgBiS2 nanomaterials on β coro-
navirus OC43 and α coronavirus 229E. Figure 13b,c show that the AgBiS2 nanomaterials
also have a significant inhibitory effect on coronavirus. As the concentration of AgBiS2
nanomaterials increased, the inhibition effect was the highest at 100 µg/mL, 88.25% and
86.06% for β coronavirus OC43 and α coronavirus 229E, respectively. It indicates that
AgBiS2 nanomaterials have broad-spectrum and excellent antiviral properties.
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3. Discussion

The research on nanomaterials has become one of the emerging hot spots, greatly
expanding its application [22,23]. However, the application of metal nanomaterials was
limited due to their poor biological safety for a long time [24]. As the preparation of
nanomaterials is improved by adjusting the proportion of raw materials and exploring the
appropriate reaction conditions, nanomaterials with small sizes, high specific surface area,
adjustable particle size and flexible surface functionalization are developed [25]. Moreover,
with the development of metal nanomaterials in anti-tumor research, metal nanomaterials
have shown extensive application prospects in the biological field [3,26]. Furthermore, with
the recent outbreak of novel coronavirus, researchers are paying attention to treating viral
infectious diseases with metal-based nanomaterials [12,13,20].

In this study, we screened the bismuth-based nanomaterials with anti-virus activity,
especially the inhibitory effect on the influenza B virus, and explored the possible inhibitory
stages. The virus replication was inhibited by PVP-coated AgBiS2 nanomaterials, which is
quite similar to Hongze Sun’s lab results, wherein the suppressive effect on SARS-CoV-2
by metallodrug ranitidine bismuth citrate was demonstrated [13]. The three inhibition
pathways of metal nanomaterials as antiviral therapeutic materials against viral infections,
including direct inactivation [14,21,27,28], inhibition of virus adsorption and entry [29–31],
and intracellular virus suppression [18,19], are very common [32]. However, further
study on the mechanism of AgBiS2

′s antiviral effect will identify the related molecules
and pathways.

Pure bismuth and unmodified bismuth compound, or their nano crystallized materi-
als, have poor solubility, so we used the PVP-coated AgBiS2 with good biocompatibility
which enhanced the nanomaterial’s solubility and its internalization into cells [33,34].
Jiangfeng Du’s work shows that poly(vinylpyrrollidone)- and selenocysteine-modified Bi2
Se3 nanoparticles (PVP-Bi2 Se3@Sec NPs) are in vivo, in vitro low toxicity and biodegrad-
able with dramatic biological effect [33]. Similarly, it is indicated that PEGylation effectively
reduces cytotoxicity and increases zinc oxide nanoparticles’ antiviral activity against her-
pes simplex virus type 1 [34]. Meanwhile, a kind of iron oxide nanoparticles (IO-NPs)
developed to fight against the H1N1 influenza A virus was evaluated via MTT and TCID50
and proven to have excellent performance [29]. In addition, the functional modification of
nanomaterials was carried out based on the characteristics of virus receptors on the cell
surface [25,35]. The strategy proved very effective.

We propose that PVP-AgBiS2 nanomaterials internalized into cells affect the pivotal
enzymes related to virus replication. The enzyme motif analysis may help us speculate the
interaction model between bismuth and enzymes. A functional study will be performed to
elucidate the mechanism of bismuth’s effect on enzymes in viral replication. Hopefully, the
in-depth understanding will helpfully reveal the target of bismuth during its inhibition of
virus propagation.
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4. Materials and Methods
4.1. Synthesis of Nanoparticles
4.1.1. Synthesis of Bi2S3 Nanoparticles

We dissolved 121 mg of Bi(NO3)3·5H2O in 20 mL ethylene glycol, added 300 mg of
PVP-k30, and stirred it with ultrasonic until dissolved. In addition, we weighed 20 mg
of thiourea, added it to 3 mL of ethylene glycol and 2 mL of ethanol, and dissolved it
by ultrasound. Then, we added dropwise the thiourea solution to the Bi(NO3)3 solution,
stirred rapidly for 15 min, centrifuged and washed with ethanol and ultrapure water
several times, and then dispersed in PBS (pH = 7.4) for later use.

4.1.2. Synthesis of Ag2S Nanoparticles

We weighed 40 mg of AgNO3, dissolved it in 20 mL of ethylene glycol, stirred it to
dissolve properly, and then added 300 mg of PVP-k30 to dissolve ultrasonically. Another
20 mg of thiourea was dissolved in 3 mL of ethylene glycol and 2 mL of ethanol ultrasoni-
cally. Then, this mixture was added to the AgNO3 solution and stirred rapidly for 15 min,
and the centrifugal washing step was the same as the synthesis of bismuth sulfide above.

4.1.3. Synthesis of AgBiS2 Nanoparticles

We took 61 mg of Bi(NO3)3·5H2O and 21 mg of AgNO3 to dissolve them in 20 mL of
ethylene glycol, and then added 300 mg of PVP-k30 through ultrasonic blending. Then, we
added 20 mg of thiourea, and the other operations were the same as the synthesis of bismuth
sulfide above. Bi(NO3)3·5H2O, PVP-k30, AgNO3, thiourea, ethanol, and ethylene glyco
were purchased from Sinopharm Group Chemical reagent Co., LTD., Shanghai, China.

4.2. Characterization of Nanoparticles

We observed the morphology and structure of the synthesized nanoparticles through
transmission electron microscopy (TEM, HT7800; Hitachi High-Tech, JPN, Tokyo, Japan)
and obtained the energy spectrum data of the material through energy dispersion spec-
troscopy (EDS, Ultra55; Zeiss, GER, Oberkochen, Germany); Use Zeta potential measuring
instrument (Nano-zs90; Malvern, UK) to determine the particle size distribution (DLS) and
zeta potential of nanoparticles.

4.3. Cultivation of Cells and Viruses

Madin–Darby canine kidney (MDCK) cells (ATCC, CCL-34), an immortal human
hepatic cell line HuH-7 (JRCB0403) and RD cells (ATCC, CCL-136), preserved by the Institut
Pasteur of Shanghai, Chinese Academy of Sciences, were used as host cells for influenza
viruses, coronavirus 229E and OC43, respectively. The cells were cultured in EMEM (ATCC,
302003) supplemented with 10% fetal bovine serum (FBS, Gibco™ 10099141C, Thermo
Fisher Scientific Inc., Waltham, MA) and 1% penicillin-streptomycin (PS) in an incubator
with 5% CO2 at 37 ◦C. Influenza virus B/Mass/3/66 (ATCC, VR-523), influenza A Virus
A/WS/33 (ATCC, VR-825), human coronavirus 229E (ATCC, VR-740) and OC43 (ATCC,
VR-1558) were deposited by the Institut Pasteur of Shanghai, Chinese Academy of Sciences.
The virus titer was determined using the 50% cell culture infectious dose (TCID50) endpoint
dilution assay, and calculated according to the Reed–Muench formula [36].

4.4. Cytotoxicity Test

The biological cytotoxicity of the prepared nanoparticles was evaluated via the MTT
assay. First, the MDCK cells were seeded in a 96-well flat-bottom plate at a density of
104 cells/well, and were next cultured overnight in a 37 ◦C, 5% CO2 incubator. Then, the
cells grew about 80–90% of the density, aspirated the culture medium in the wells, and then
we washed the plates twice with PBS and added 100 µL of serum-free medium to each well
of nanoparticles at different concentrations (0, 10, 20, 50, 100, 150, and 200 µg/mL) with a
blank control, and applied six replicate wells for each concentration, and placed them in a
37 ◦C, 5% CO2 incubator. After 24 or 48 h, we aspirated and discarded the cell supernatant,
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washed the plates twice with PBS, and added 100 µL of new serum-free medium. Then, we
added 25 µL of MTT (5 µg/mL), put the plates in the incubator for 4 h, added 100 µL of 10%
SDS extraction buffer, and measured the absorbance at 570 nm after overnight incubation.

The following formula was used to calculate the nanomaterial’s cytotoxicity (percent
coefficient of variation, CV%). CV% = ODs−ODm

ODn−ODm × 100%. Among them, ODs is the
absorbance of the experimental group, ODn is the absorbance of the control group, and
ODm is the absorbance of the blank group.

4.5. TCID50 Assay for Determination of Virus Titer

MDCK/HuH-7/RD cells were cultured overnight in 96-well flat-bottom plates at
2×104 cells/well. Then, we discarded the supernatant, washed the plates twice with PBS,
and added a series of virus dilutions in 100 µL of virus infection medium (from 10 to
106 dilutions), ten replicates for each dilution, and two 96-well plates in parallel. Then,
we placed the 96-well flat-bottom plates in a 35 ◦C (for influenza viruses) and 37 ◦C (for
coronaviruses), 5% CO2 incubator for 6 days. After that, we transferred 50 µL influenza
virus culture supernatant to each well from the 96-well flat-bottom plates to new U-shaped
96-well plates, gently mixed with 50 µL of 1% chicken red blood cells and then recorded the
number of non-agglutinate wells after standing for about 30 min. Meanwhile, cytopathic
effects (CPE) of coronaviruses were measured using crystal violet staining. The TCID50
was calculated according to the Reed–Muench formula, and a titer of 100 TCID50/mL was
used for in vitro cell experiments.

4.6. Virus Inhibition Test
4.6.1. Direct Inactivating Experiment

MDCK cells were cultured overnight in 96-well plates at a density of 2 × 104 cells/well.
We used a serum-free medium to prepare the virus with a final concentration of 100 TCID50/mL
and materials of different concentrations (0, 10, 20, 50, 100, and 150 µg/mL). Then, we
mixed the solution, and incubated at room temperature for one hour. Subsequently, we
discarded the supernatant, washed the plates twice with PBS, added 100 µL/well of the
viral material mixture and incubated the 96-well plates at 35 ◦C for 1 h. Then, we washed
the plates twice with PBS, added 100 µL/well of viral infection base and incubated at 35 ◦C
for 48 h. Finally, the supernatant was collected from each well and the viral RNA extraction
from the supernatant was carried out for RT-qPCR and TCID50 detection [18].

4.6.2. Co-Cultivation Inhibition Experiment

MDCK cells were cultured overnight in 96-well plates at a density of 2× 104 cells/well.
Then, we used a serum-free medium to prepare 200 TCID50/mL virus and nanomaterial
dilutions of different concentrations. We discarded the cell supernatant, washed the plate
twice with PBS, and added the final concentration of 100 TCID50/mL virus mixed with 0,
10, 20, 50, 100, and 150 µg/mL of material diluent. We placed the 96-well plate at 35 ◦C for
1 h, then washed the plates twice with PBS, added 100 µL/well of viral infection medium
and incubated at 35 ◦C for 48 h. Finally, we collected the supernatant for each well and
extracted the viral RNA from the supernatant for RT-qPCR and TCID50 detection.

4.6.3. Nanoparticle Preculture Inhibition Experiment

MDCK cells were cultured overnight in 96-well plates at a density of 2× 104 cells/well.
We used a serum-free medium to prepare material dilutions with 0, 10, 20, 50, 100, and
150 µg/mL concentrations. Then, we discarded the cell supernatant, washed the plate
twice with PBS, added 100 µL/well of material diluent and incubated it at 37 ◦C for 3 h.
Next, we washed the plates twice with PBS, added 100 µL/well of 100 TCID50/mL virus
solution and incubated at 35 ◦C for 1 h. Again, we washed the plates twice with PBS,
added 100 µL/well of viral infection medium and incubated at 35 ◦C for 48 h. Finally, we
collected the supernatant for each well and extracted the viral RNA from the supernatant
for RT-qPCR and TCID50 detection.
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4.6.4. Virus Post-Infection Inhibition Experiment

MDCK cells were cultured overnight in 96-well plates at a density of 2× 104 cells/well.
We discarded the cell supernatant, washed the plate twice with PBS, added 100 µL/well
of 100 TCID50/mL virus solution prepared with a serum-free medium, and incubated at
35 ◦C for 1 h. Then, we discarded the cell supernatant, washed the plates twice with PBS
and add 100 µL/well of material dilutions prepared with viral infections at concentrations
of 0, 10, 20, 50, 100, and 150 µg/mL, and incubated at 35 ◦C for 48 h. Then, we collected the
supernatant for each well and extracted the viral RNA from the supernatant for RT-qPCR
and TCID50 detection, respectively.

4.7. Real-Time Fluorescent Quantitative PCR (RT-qPCR) Experiment

In order to determine the RNA content of the virus, a real-time fluorescent quan-
titative PCR was established. The virus’s total RNA was extracted using a viral RNA
extraction kit. We used the one-step fluorescence quantitative PCR kit for RT-qPCR detec-
tion. The procedure was as follows: 50 ◦C, 15 min for reverse transcription; 95 ◦C, 2 min
with 45 cycles of 15 s; and 60 ◦C, 45 s. The forward primer sequence for the influenza
B virus NS2 gene amplification was 5′-TCCTCAACTCACTCTTCGAGCG-3′, the reverse
primer sequence was 5′-CGGTGCTCTTGACCAAATTGG-3′, and the probe sequence was
5′-CCAATTCGAGCAGCTGAAACTGCGGT-3′. The forward primer sequence for the in-
fluenza A virus M1 gene amplification was 5′-GACCRATCCTGTCACCTCTGAC-3′, the
reverse primer sequence was 5′-AGGGCATTYTTGACAAAKCGTCTA-3′, and the probe
sequence was 5′-TGCAGTCCTCGCTCACTGGGCACG-3′. The forward primer sequence
for human coronavirus 229E N gene amplification was 5′-TCCTTCCCGGTCTCAGTCG-3′,
the reverse primer sequence was 5′-CTGTCACTTGAAGGATTCCGAG-3′, and the probe se-
quence was 5′-TCGCGGTCGTGGTGAATCCAAACCTCA-3′. The forward primer sequence
for human coronavirus OC43 N gene amplification was 5′-TCGTTCTGGTAATGGCATCCT-
3′, the reverse primer sequence was 5′-CTGATGGTTGCTGAGAGGTAG-3′, and the probe
sequence was 5′-CTAAACTGGTCGGACTGATCGGCCCA-3′.

4.8. Indirect Immunofluorescence (IFA) Assay

We used IFA to detect the inhibitory effect of nanomaterials on the spread of viral infec-
tions and glass-like 96-well plates to culture MDCK cells at a density of 2 × 104 cells/well.
The next day, we discarded the cell supernatant, washed twice with PBS, and added
100 µL/well of 100 TCID50/mL virus solution, which was prepared with a serum-free
medium and incubated at 35 ◦C for 1 h. Then, we washed the plates twice with PBS, added
the AgBiS2 solutions of different concentrations (0, 50, 100, and 150 µg/mL), which were
prepared using the virus infection base medium, and cultured at 35 ◦C for 24 h. Then, we
discarded the cell supernatant, added 50 µL/well of 4% paraformaldehyde to fix the cells
at room temperature for 5 min, and blocked by adding 1% BSA solution at 4 ◦C overnight.
According to the operating instructions of the influenza B virus (B/Florida/4/2006), we
added the primary antibody diluted 1:800 Hemagglutinin/HA Antibody (11053-T62 kit),
and then added the secondary antibody (Goat-Anti-Rabbit lgG H&L (Alexa Fluor 488)
ab150077) diluted 1:500, finally added DAPI reagent and transferred the plates to an
inverted fluorescence microscope for observation.

5. Conclusions

In this work, AgBiS2 nanoparticles were synthesized by doping with the bimetal
method at room temperature. By comparing the synthesized Bi2S3 and Ag2S nanoparticles,
the excellent inhibitory ability of AgBiS2 nanoparticles on influenza virus B is explored.
The cytotoxicity test shows that the three nanoparticles have good biological safety. Then,
the inhibitory effect of nanoparticles on influenza virus B was determined via RT-qPCR,
TCID50, IFA, and other assays. By comparing the inhibitory effect of synthesized Bi2S3,
Ag2S and AgBiS2 nanoparticles, it is found that the maximum non-toxic concentration of
AgBiS2 nanoparticles is higher than that of Bi2S3 and Ag2S. In addition, AgBiS2 shows
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an excellent inhibitory effect on influenza virus B, and the inhibitory process occurs at
the stages of influenza virus cell internalization and intracellular replication. The optimal
inhibition stage of Ag2S mainly occurs in the process of virus intracellular replication,
while the main inhibition stage of Bi2S3 to influenza virus occurs in the stage of virus-
cell internalization and intracellular replication. It shows that bimetallic nanoparticles
have better antiviral effects than single metallic materials. Furthermore, we also verify
the excellent antiviral properties of AgBiS2 nanomaterials against influenza virus A and
coronaviruses. In this paper, bismuth-based nanomaterials have been applied for the first
time to inhibit influenza virus infection, and AgBiS2 nanoparticles with strong inhibitory
effects on influenza virus A, B, and α, β coronavirus have been screened out. Therefore,
with future in-depth research, application potential of bismuth-based nanomaterials in the
antiviral field could be further demonstrated.
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