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Abstract: Long non-coding RNAs (lncRNAs) are emerging as a critical regulator in controlling
the expression level of genes involved in cell differentiation and development. Primordial follicle
activation (PFA) is the first step for follicle maturation, and excessive PFA results in premature ovarian
insufficiency (POI). However, the correlation between lncRNA and cell differentiation was largely
unknown, especially during PFA. In this study, we observed the expression level of lncRNA was
more specific than protein-coding genes in both follicles and granulosa cells, suggesting lncRNA
might play a crucial role in follicle development. Hence, a systematical framework was needed to
infer the functions of lncRNAs during PFA. Additionally, an increasing number of studies indicate
that the subpathway is more precise in reflecting biological processes than the entire pathway.
Given the complex expression patterns of lncRNA target genes, target genes were further clustered
based on their expression similarity and classification performance to reveal the activated/inhibited
gene modules, which intuitively illustrated the diversity of lncRNA regulation. Moreover, the
knockdown of SBF2-AS1 in the A549 cell line and ZFAS1 in the SK-Hep1 cell line further validated
the function of SBF2-AS1 in regulating the Hippo signaling subpathway and ZFAS1 in the cell
cycle subpathway. Overall, our findings demonstrated the importance of subpathway analysis
in uncovering the functions of lncRNAs during PFA, and paved new avenues for future lncRNA-
associated research.

Keywords: lncRNA; subpathway; target gene cluster; primordial follicle activation; premature
ovarian insufficiency

1. Introduction

Follicle maturation refers to the development of primordial follicles into preovu-
latory follicles, where follicles and granulosa cells undergo extensive gene expression
changes [1–3]. Primordial follicles form around birth and are non-renewable. The major-
ity of primordial follicles maintain a dormant state. Primordial follicle activation refers
to the process by which primordial follicles change from a quiescent to a growing state,
i.e., the transition from a primordial follicle to a primary follicle. Primordial follicle activa-
tion (PFA) is a prerequisite for folliculogenesis, which refers to the process where follicle
size enlarges, and the morphology of granulosa cells becomes cuboidal [4]. Researchers
have indicated that excessive activation of the primordial follicles resulted in premature
ovarian insufficiency (POI) and, ultimately, female sterility [5]. Studies indicate that POI
patients still have some residual primordial follicles in their ovaries, which provides a new
direction for the treatment by promoting the activation of these primordial follicles [6,7].
Therefore, understanding the mechanisms driving PFA is of particular importance.
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Long non-coding RNAs (lncRNAs) are operationally defined as non-coding RNA
transcripts longer than 200 nucleotides (nt). LncRNAs are involved in cell commitment
by regulating the expression of certain genes [8,9]. Increasing studies have indicated that
lncRNAs showed higher lineage specificity in multiple human organs than protein-coding
genes [10]. However, limited reports focus on lncRNA during PFA. Therefore, there is
an urgent need to develop computational approaches to explore the function of lncRNA
during PFA.

LncRNA exerts its function by regulating hundreds or even thousands of target genes,
while these target genes may have opposite expression patterns under certain biological
contexts [11,12]. Therefore, it is necessary to divide target genes into different groups based
on their expression value.

Pathway analysis is widely used to interpret relevant biological changes under certain
contexts [13,14]. However, the entire pathway is often too large to accurately elucidate
relevant biological regulation. A local region with specific biological functions is defined as
a subpathway and may be more suitable for uncovering relevant biological events. Recently,
a growing body of research indicated that subpathway analysis was more effective in
elucidating the pathogenesis of disease and identifying cancer risk gene markers [15–17].
However, the application of subpathways to elucidate the mechanism of reproductive cell
development is still lacking. Moreover, there were limited subpathway analysis studies at
the single-cell level.

Collectively, to further improve our understanding of lncRNAs involved in stepwise
and follicle maturation, a subpathway and target gene cluster-based approach was ap-
plied to predict lncRNA–subpathway connections, which provides new insight into the
underlying mechanisms of lncRNAs during PFA more precisely.

2. Results
2.1. LncRNAs Improve Cell Type Classification during Human Follicle Maturation

We obtained follicles and corresponding granulosa cells from the primordial to pre-
ovulatory stages in GSE107746 [1]. In order to reveal whether lncRNA is cell-specific during
follicle maturation, we performed UMAP analysis to visualize the distribution of follicles
and granulosa cells from the primordial to preovulatory stages based on protein-coding
genes and lncRNAs. We observed that the lncRNA signature displayed higher cell type
specificity than protein-coding genes (Figure 1A). The standard deviation (sd) value of
lncRNAs was lower than that of protein-coding genes, indicating that the expression pat-
tern of lncRNA was more consistent in cells (Figure 1B). The number of expressed lncRNAs
gradually increased in follicles from the primordial to preovulatory stages (see the method
in Figure 1C). In order to rule out the effects of follicular size on the number of expressed
protein-coding genes and lncRNAs, the attribute of nFeature_RNA of was calculated,
and we found that the number of expressed lncRNAs was independent of follicular size
(Figure S1A). In addition, there were fewer overlapping lncRNAs between the follicles
and corresponding granulosa cells from the primordial to preovulatory stages (Figure 1D).
Collectively, lncRNA showed higher cell type specificity than protein-coding genes during
follicle maturation.

2.2. Distinct Transcriptomic Expression of lncRNAs during PFA

PFA is a crucial step for female fertility [18], and excessive PFA results in POI. In-
creasing evidence indicates that PFA is a tightly controlled process [19,20]. However, the
exact mechanism of controlling the selective activation of primordial follicles mediated
by lncRNAs is unknown. According to Figure S1B, from primordial to primary stages,
unions of 648 expressed lncRNAs in follicles and 170 lncRNAs in granulosa cells were
acquired. By comparing the expression level of lncRNA between follicles and granulosa
cells, we identified 65 upregulated lncRNAs in follicles and 22 upregulated lncRNAs in
granulosa cells during PFA (Figure 2A, Table S1). For example, SBF2-AS1, MRVI1-AS1,
CASC8, TEX41, CYP1B1-AS1, and OIP5-AS1 were mainly expressed in follicles, whereas
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WT1-AS, THAP9-AS1, GAS5, MALAT1, ZFAS1, MIR22HG, and SNHG8 had higher ex-
pression level in granulosa cells. Among them, CASC8 was specifically expressed in MII
oocytes [21]. Moreover, across nine GTEx tissues (heart, liver, spleen, lung, kidney, testis,
vagina, uterus, and ovary), we noticed that the majority of these lncRNAs were expressed
in ovary tissues (Figure 2B). Hence, the expression of these lncRNAs at the single-cell and
bulk levels provided a prelude to indicate the importance of lncRNA during PFA.
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Figure 1. The specificity of lncRNAs during human follicle maturation. (A) The left panel shows the 
development of human follicle maturation. The right panel shows the UMAP plot of follicles and 
granulosa cells by protein-coding genes or lncRNAs. (B) Standard deviation analysis showing the 
distribution differences in each cell type by protein-coding genes and lncRNAs. (C) The number of 
expressed protein-coding genes and lncRNAs. (D) Upper Venn diagrams show the overlapped 
protein-coding genes between follicles and granulosa cells, and bottom Venn diagrams show the 
overlapping lncRNAs. From primordial to preovulatory stages, the turquoise1, dark green, 
darkkhaki, hotpink and royalblue1 colors indicate follicles. The strong orange, darkcyan, 
burlywood4, snow4 and slateblue colors indicate granulosa cells. 
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Figure 1. The specificity of lncRNAs during human follicle maturation. (A) The left panel shows
the development of human follicle maturation. The right panel shows the UMAP plot of follicles
and granulosa cells by protein-coding genes or lncRNAs. (B) Standard deviation analysis showing
the distribution differences in each cell type by protein-coding genes and lncRNAs. (C) The number
of expressed protein-coding genes and lncRNAs. (D) Upper Venn diagrams show the overlapped
protein-coding genes between follicles and granulosa cells, and bottom Venn diagrams show the
overlapping lncRNAs. From primordial to preovulatory stages, the turquoise1, dark green, darkkhaki,
hotpink and royalblue1 colors indicate follicles. The strong orange, darkcyan, burlywood4, snow4
and slateblue colors indicate granulosa cells.
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Figure 2. Dynamic expression of lncRNAs in follicles and granulosa cells during PFA. (A) The left
heat map shows the typical differentially expressed lncRNAs (Wilcox test, Bonferroni adjust p < 0.05,
see Table S1). Red and green represent an increase and the decrease in the lncRNA expression levels,
respectively. The bar on the top indicates cell types using lime green (follicles) and grey (granulosa
cells). Right dot plot shows the expression pattern in follicles and granulosa cells during PFA.
(B) The expression level of lncRNAs across 9 tissues in GTEx project.

2.3. Identifying Primordial Follicle Activation Associated lncRNA Clusters

LncRNAs play crucial roles in gene regulation at post-transcriptional levels [22,23].
In this study, bioinformatics analysis used the competitive endogenous RNA (ceRNA)
theory to infer the lncRNA target genes. During PFA, a total of 97 lncRNA-associated target
gene pairs in follicles and 47 lncRNA-corresponding target gene pairs in granulosa cells
were identified (see details in Section 4). Given the expression diversity of target genes,
we applied a four-step computational framework that divided lncRNA target genes into
different clusters based on the genes’ PCC similarity and classification performance (AUC
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value) during PFA (Figure 3A). The number of lncRNA target gene clusters varied from
1 to 6 in follicles and 1 to 11 in granulosa cells during PFA (Figure 3B). LncRNA target
genes for each cluster were indicated. For example, SBF2-AS1 was highly expressed in
primordial follicles and primary follicles. There were five target gene clusters of SBF2-AS1.
Among these clusters, PTGS2 in cluster 1 played a crucial role in the acquisition of oocyte
competence [10]. IGF1R and KIT in cluster 2 were fertility-associated genes. In addition,
ZFAS1 was mainly expressed in granulosa cells with three target gene clusters (Figure S2).
Target genes in cluster 1 were mainly activated in primary granulosa cells, and genes like
BECN1, CDKN1B, EIF2B2, and MTRR were POI-related genes [24]. These results suggested
that grouping lncRNA target genes into different clusters was beneficial for further analysis
of follicle maturation-associated functional gene modules.
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2.4. Differences between Subpathway and Pathway during Follicle Maturation

Pathway identification may improve our understanding of lncRNA function. However,
the traditional biological pathway is complex and covers multiple genes. A growing number
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of studies have indicated that the cell fate transition was often caused by changes in local
regions (subpathways) within the biological pathway rather than the whole pathway [25,26].
However, the detailed mechanism of subpathway activation required further investigation.

In this study, 725 subpathways were identified from 238 pathways by the R package
psSubpathway (Figure 4A). Each pathway contained 1–20 subpathways, which consisted of
3 to 399 genes. Then, a total of 210 subpathways in follicles and 234 subpathways in granu-
losa cells were significantly activated during PFA ((Formula (2) in Materials and Methods,
p < 0.05). Studies have reported that the “cell cycle pathway”, “mTOR signaling pathway”,
“ErbB signaling pathway”, and “FoxO signaling pathway” were associated with follicle
growth [1,27–30]. Comparing the ssGSEA (single sample Gene Set Enrichment Analysis)
score and pathway specificity score between pathway and corresponding subpathways,
we observed high heterogeneity of activation among the pathway and corresponding
subpathways in follicles, which was low in granulosa cells (Figures 4B and S3). We noticed
that the expression level of ligand/receptor was relatively conserved in granulosa cells in
Zhang et al.’s study [1], and the UMAP distribution of granulosa cells was adjacent from
the primordial to preovulatory stages using protein-coding genes (Figure 1A), suggesting
that the differentiation of granulosa cells did not change much. Hence, we hypothesized
that the activation pattern of the subpathway in granulosa cells showed lower heterogene-
ity, suggesting that the transcriptome changes in granulosa cells were relatively stable in
inducing follicle maturation. In summary, these results indicated that it is more precise to
depict the follicle fate transition using subpathways.

2.5. The lncRNA–Subpathway Network and Its Characteristics during Primordial
Follicle Activation

After identifying the subpathways dynamically activated during PFA, we investigated
whether the expressed lncRNA-target gene clusters work together to regulate a specific
subpathway. In this study, a hypergeometric test was used to measure the statistical sig-
nificance of shared protein-coding genes between subpathway genes and lncRNA target
cluster genes. Then, 91 lncRNAs involved in 210 dynamic subpathways were obtained
in follicles, and 17 lncRNAs participating in 234 dynamic subpathways were identified
in granulosa cells. We observed subpathways associated with MAPK, Insulin, Ras, Au-
tophagy, Hippo, Cell cycle, and mTOR were activated in follicles and granulosa cells
during PFA (Figure 5A). When further ranking these lncRNAs by Formula 5 based on the
hypergeometric p-value and the corresponding number of dynamic subpathways, the top
20 lncRNAs (20/91) in follicles (Table S2) and 17 lncRNAs in granulosa cells are shown
in Figure 5B. The overlapping genes of lncRNA target genes with subpathway genes and
POI genes are illustrated (Figure 5C). We found lncRNAs regulated genes involved in the
POI phenomenon, reflecting how these lncRNAs might play an important role in female
fertility. Among these POI-related genes in Figure 5C, CDKN1B, FMR1, FOXO3, NOBOX,
and LARS2 was candidate pathogenesis for POI [31–35]. Moreover, we observed the target
genes of CASC8 were associated with “Thermogenesis” by regulating ACTL6A. FGD5-AS1
was involved in the “MAPK_signaling_pathway (04010_21)” by regulating MAPK genes
like CRKL, HSPA8, MAPK8, MAX, and NFATC3. FGD5-AS1 affected the expression of
POI-related genes (EIF2B2, EXO1, FMR1, and FOXO3). These findings provided detailed
lncRNA–subpathway connections during PFA.
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Figure 4. The dynamics of subpathways in follicles from primordial to preovulatory stages.
(A) Identification of subpathway by k-clique algorithm. The left histogram is the distribution
of the number of genes among 725 subpathways ranging from 3 to 399. The middle histogram
is the number of subpathways among each pathway ranging from 1 to 20. The right table lists
corresponding subpathways for a given pathway. (B) The difference between “Cell cycle”, “mTOR
signaling pathway”, “ErbB signaling pathway”, and “FoxO signaling pathway” and their correspond-
ing subpathways in follicles from primordial to preovulatory stages. Take “Cell cycle” pathway as
example; the left heat map shows the ssGSEA score between “Cell cycle” pathway and 5 subpathways
(04110_3, 04110_4, 04110_6, 04110_8, and 04110_9). The right line chart indicates the dynamic change
in pathway specificity; red line represents the entire pathway, whereas other color lines represent
corresponding subpathways.
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2.6. Validating the Function of lncRNAs Based on Subpathway Genes after lncRNA Knockdown

In our study, SBF2-AS1 was associated with the “Hippo signaling pathway (04390_1)”
and “Regulation of actin cytoskeleton (04810_13)”. ZFAS1 was associated with the “mTOR
signaling subpathway (04150_16)” and “Cell cycle (04110_3)” (Figure 5C). In Figure 2B,
we can observe that SBF2-AS1 and ZFAS1 were not only expressed in ovarian tissues but
also in liver and lung tissues. Through comprehensively searching and reviewing currently
available lncRNA knockdown datasets, we obtained SBF2-AS1 knockdown data in the
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human A549 cell line (GSE103016) and ZFAS1 knockdown data in the human SK-Hep1 cell
line (GSE104226) [36]. To further validate the potential function of SBF2-AS1 and ZFAS1,
we explored the expression level of subpathway genes after the lncRNA knockdown
(Figure 6). Consistently, we noticed that the knockdown of SBF2-AS1 and ZFAS1 induced
down-regulation of corresponding subpathway genes. For example, DLG3, FBXW11, BTRC,
PPP2R2A, RASSF6, and YAP1 belonged to the Hippo signaling pathway (04390_1). These
genes were down-regulated after SBF2-AS1 knockdown, among which PPP2R2A and
RASSF6 were target genes of SBF2-AS1 during PFA. These results confirmed the inferred
connection between lncRNAs and subpathways.
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3. Discussion

LncRNAs are non-coding transcripts that have been studied extensively in the process
of cell development [37]. Human follicles were divided into five stages based on follicular
size and granulosa cell numbers, i.e., primordial follicles, primary follicles, secondary folli-
cles, antral follicles, and preovulatory follicles [38,39]. PFA is necessary for follicle growth.
However, systematic analysis of lncRNAs involved in PFA is still poorly understood. In
this study, a comprehensive analysis of the expression level of lncRNAs and protein-coding
genes in follicles and granulosa cells, we noticed that lncRNAs were more cell type-specific
than protein-coding genes. Additionally, a growing number of studies have investigated
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the biological changes based on subpathways, which provided a clearer and more defined
window to understand the biological process of follicle maturation. To decode the lncRNA
mechanism during PFA, we obtained subpathways and further grouped lncRNA target
genes into different clusters, where each gene cluster exhibited consistent expression pat-
terns and high classification ability during PFA. The connection between subpathway genes
and lncRNA was inferred based on enrichment analysis during PFA.

The development of follicle maturation is associated with multi-factorial and complex
steps. Numerous crucial lncRNAs that modulated cell proliferation and differentiation
have been identified. For example, SBF2-AS1 and MRVI1-AS1 were upregulated and
expressed in follicles, whereas WT1-AS and ZFAS1 were highly expressed in granulosa
cells during PFA (Figure 2A). Chen et al. found that the silencing of SBF2-AS1 reduced the
proliferative ability of esophageal squamous cell carcinoma (ESCC) [40]. Tuo et al. observed
that MRVI1-AS1 promoted the progression of hepatocellular carcinoma (HCC) [41]. Lou
et al. reported that the G1-S phase transition increased after the knockdown of GAS5 in
prostate cancer [42]. O’Brien indicated that the knockdown of ZFAS1 was associated with
decreased cellular proliferation [43]. However, more studies are still required to ascertain
lncRNA function during PFA. In this study, we investigated the development of follicles
and granulosa cells by performing UMAP analysis and found that lncRNAs could more
effectively discriminate cell type than protein-coding genes. We revealed the dynamic
expression of lncRNAs in follicles and granulosa cells during PFA (Figure 2A), suggesting
the complexity of lncRNAs in related biological processes. For example, we observed that
SBF2-AS1, MRVI1-AS1, and CASC8 were highly expressed in follicles, whereas WT1-AS,
THAP9-AS1, and GAS5 were upregulated in granulosa cells. SBF2-AS1 was found to be
associated with cell proliferation and epithelial-to-mesenchymal transition (EMT) [44–46].
Wang et al. found the overexpression of GAS5 contributed to increased expression levels of
IL-6 in human granulosa cells (KGN) [42]. Moreover, we divided lncRNA target genes into
different clusters based on genes’ PCC similarity and classification performance. Distinct
expression patterns of genes in each cluster suggested the functional diversity of lncRNAs
in regulating gene expression.

Additionally, a body of studies reported that subpathways were more suitable for
interpreting underlying biological processes. In this study, we obtained subpathways and
first visualized the heterogeneity of activation patterns among pathways and subpathways
using the ssGSEA score and specificity score. We noticed that the activation pattern of the
subpathway in follicles showed higher heterogeneity than that in granulosa cells. Although
subpathway activation had individual differences, some subpathways associated with cell
cycle, mTOR, and Hippo were co-activated between granulosa cells and follicles during
PFA. The predicted connection between lncRNAs and subpathways was further validated
by lncRNA knockdown cell lines.

Currently, the rate of infertility is high all over the world. Oocyte maturation failure
is a contributing factor to female infertility [47]. In vitro maturation (IVM) and ovarian
stimulation technology have been proposed to treat oocyte maturation failure by activating
dormant ovarian follicles to generate mature eggs for successful reproduction [48–51]. In
this study, we found lncRNAs played an important role in PFA, offering a new avenue for
inducing follicle maturation.

In summary, based on subpathway specificity and target gene expression consistency,
we built a systematic approach to uncover lncRNA functions during PAF (Figure 7). Our
subpathway analysis seemed to be the first implementation associated with follicle mat-
uration. In parallel, the pipeline is also suitable for analyzing lncRNA functions in other
patterns of cell fate determination.
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4. Materials and Methods
4.1. Data Collection and Pre-Processing

The expression dataset of human ovarian follicles and matched granulosa cells from
primordial to preovulatory stages at single cell level was downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/, accessed on
15 September 2022) under accession number GSE107746 [1], including primordial follicles
(n = 17), primary follicles (n = 25), secondary follicles (n = 12), antral follicles (n = 23),
preovulatory follicles (n = 3), primordial granulosa cells (n = 8), primary granulosa cells (n = 15),
secondary granulosa cells (n = 6), antral granulosa cells (n = 24), and preovulatory granulosa
cells (n = 18). In this study, 18,797 protein-coding genes and 13,870 lncRNAs were annotated
in GTF file downloaded from GENCODE database (https://www.gencodegenes.org/, v19,
accessed on 10 March 2023). Fragments per kilobase of transcript per million mapped reads
(FPKM) values of protein-coding genes and lncRNAs were normalized by log2(FPKM + 1).

https://www.ncbi.nlm.nih.gov/geo/
https://www.gencodegenes.org/
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The raw count datasets of 9 human tissues (heart, liver, spleen, lung, kidney, testis,
vagina, uterus, and ovary) were downloaded from the Genotype-Tissue Expression (GTEx)
database (v8, accessed on 29 March 2022) [52]. The read count datasets were normalized by
log2(Count + 1).

4.2. Cell Clustering Analysis

R package “Seurat” v3.2.1 was used to analyze the transcriptome data of human ovar-
ian follicles and matched granulosa cells [53]. UMAP (Uniform Manifold Approximation
and Projection) was applied to reduce the dimensionality. We calculated the nFeature_RNA
and standard deviation (sd) attributes in each cell based on the expression of protein-coding
genes and lncRNAs, respectively.

4.3. Identifying Follicle Maturation Associated Protein-Coding Genes and lncRNAs

To identify protein-coding genes and lncRNAs associated with follicle maturation,
two filtering criteria were applied: (1) protein-coding genes/lncRNAs with an average
expression value ≥ 1 in any cell type and (2) expressed in ≥70% cells of any follicle or
granulosa cell type. Then, from primordial to preovulatory stages, we identified unions of
7730 protein-coding genes and 1497 lncRNAs in follicles, unions of 6522 protein-coding
genes, and 729 lncRNAs in granulosa cells. Function ‘FindMarkers’ in Seurat with “wilcox”
test differential expression analysis method was used to obtain differentially expressed
lncRNAs (Bonferroni adjusted p < 0.05).

4.4. Identification of lncRNA Target Gene Cluster

The 743,029 miRNA–mRNA and 31,344 miRNA–lncRNA interaction pairs in our study
were obtained from miRNet database (https://www.mirnet.ca/, accessed on
21 March 2023) [54]. Then, to explore competitive interaction between lncRNA and mRNA,
hypergeometric test was used to measure the significance of shared miRNAs between
lncRNA and mRNA as follows:

p = 1−∑r−1
i=1

(
t
i

)(
m− t
n− i

)
(

m
n

) (1)

where m represents the total number of miRNAs in miRBase v22; t represents the number
of miRNAs interacting with mRNAs; n represents the number of miRNAs interacting with
the lncRNAs; and r represents the number of common miRNAs simultaneously shared by
mRNAs and lncRNAs. We considered p-value < 0.05 to be statistically significant.

Given that lncRNA could regulate multiple genes, we divided lncRNA target genes
into different clusters, as described in a previous study [55]. (1) Correlation analysis
of related target genes was calculated using Pearson’s correlation coefficients (PCCs) in
primordial and primary stages; (2) the hierarchical clustering was applied, where genes
(≥ 3) with correlation coefficient above 0.7 were stratified into one group, while those cannot
be grouped into any clusters were discarded; (3) the LIBSVM toolbox implemented in R
package ‘e1071’ was adopted to perform the support vector machines (SVMs) classification
to evaluate the classification performance of each gene clusters between primordial and
primary stages; and (4) 5-fold cross validation with 100 repetitions were used to evaluate
the classification performance. Subsequently, the mean of the 100 AUC scores was regarded
as its final score. Target gene clusters of each lncRNA with average AUC scores larger than
0.8 were retained.

4.5. Obtaining Subpathway Based on k-Clique Algorithm

In this study, subpathways were extracted by R package psSubpathway [56]. In total,
725 subpathways were annotated from 238 pathways (Table S3).

https://www.mirnet.ca/
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4.6. Subpathways Activity Score

To identify subpathways with dynamic changes during primordial follicle activation,
the activity score for subpathways was defined as follows:

Acitivity = ∑n
i=1

ti
n

(2)

where n represents the number of genes in each subpathway, ti denotes the t-score of the
ith gene in the subpathway calculated by Student’s t-test analysis for comparing the gene
expression profiles between primordial stage and primary stage. Next, random selection
of the same number of genes for each candidate pathway with 1000 repetitions was per-
formed to calculate p-value of subpathway. In this study, 214 subpathways in follicles and
295 subpathways in granulosa cells (p-value < 0.05) were associated with PFA.

4.7. Cell Type-Specific Pathway Specificity

The pathway specificity score in each cell type was defined as follows:

Specificityij =
Eij

Ei
, k ∈ 1 . . . N (3)

where Eij represents the average expression level of subpathway i genes in cell type j, and
Eik represents the average expression level of subpathway i genes in all cells.

4.8. LncRNA Rank

After evaluating the importance of lncRNAs during primordial follicle activation, we
ranked the lncRNAs by lncRNA rank (LR) score to evaluate their associations with dynamic
subpathways. For each lncRNA, the score LR was defined as follows:

Entropyi = −log10(qi) (4)

LR =
∑n

i=1 Entropyi × Pi

n
(5)

where qi denotes the p-value of overlapping mRNAs between subpathway i genes and the
lncRNA target gene clusters calculated by hypergeometric test; Pi denotes the activity score
of subpathway i in Formula (2), and n represents the number of all subpathways regulated
by this lncRNA.

4.9. Premature Ovarian Insufficiency (POI)-Related Geneset

A total of 127 POI–related genes (Table S4) in Zhao et al.’s study, which summarized
genes from databases of NCBI Gene, OMIM, and DrugBank, were used [24].

4.10. Download lncRNA Knockdown Datasets

To further validate the potential function of SBF2-AS1 and ZFAS1 identified in this
study, RNA-sequencing data analysis was conducted to infer the dynamic expression of
subpathway genes after knockdown of SBF2-AS1 in human A549 cell line (GSE103016) and
ZFAS1 in human SK-Hep1 cell line (GSE104226) [36].

4.11. Statistical Analysis

R software (www.rproject.org, version 3.6.3, accessed on 28 October 2020) was used for
all statistical analyses. Wilcox test was used to identify differentially expressed lncRNAs.
Student’s t-test was performed to uncover dynamic subpathways during PFA. Hypergeo-
metric test was employed to detect the significance of shared miRNAs between lncRNAs
and mRNAs, and shared mRNAs between subpathway genes and lncRNA target genes.
p-value < 0.05 was used to indicate statistical significance in this study.

www.rproject.org
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