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Abstract: Alzheimer’s disease is the most common cause of dementia in the world. Lack of an
established pathology makes it difficult to develop suitable approaches and treatment for the disease.
Besides known hallmarks, including amyloid β peptides cumulating in plaques and hyperphospho-
rylated tau forming NFTs, inflammation also plays an important role, with known connections to the
diet. In AD, adhering to reasonable nutrition according to age-related principles is recommended.
The diet should be high in neuroprotective foods, such as polyunsaturated fatty acids, antioxidants,
and B vitamins. In addition, foods capable of rising BDNF should be considered because of the known
profitable results of this molecule in AD. Adhering to beneficial diets might result in improvements in
memory, cognition, and biomarkers and might even reduce the risk of developing AD. In this review,
we discuss the effects of various diets, foods, and nutrients on brain health and possible connections
to Alzheimer’s disease.
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1. Alzheimer’s Disease

The most common cause of dementia in the world, Alzheimer’s disease (AD), puts
an enormous burden on the healthcare system as a whole. Patients over the age of 65 are
typically the ones who develop the illness. Every year, we see an increase in the number
of impacted patients as a result of an aging society. By 2050, it is expected that there will
be more than 100 million people worldwide suffering from AD dementia. It is a chronic
disorder, since pathological processes begin at least 20 years before the onset of the disease.
The hallmarks of AD are numerous, incompletely understood, and improperly categorized
as part of the aging process. It is thought that the disease’s etiology may be influenced by
both inherited and environmental factors. Despite the fact that several gene mutations are
associated with AD, less than 5% of all cases are genetic. While early-onset AD (EOAD)
is brought on by mutations in presenilin 1, presenilin 2, and amyloid precursor protein,
sporadic, late-onset AD (LOAD) is associated with the APOE 4 gene (APP) [1]. The two
main histological signs of AD are the gradual growth of neurofibrillary tangles (NFTs)
formed of hyperphosphorylated tau and extracellular amyloid plaques. As a result, they
cause loss of neurons and synapses [2].

As AD is currently incurable, preventative strategies are being actively discussed. The
rates of clinical development of AD medications are currently limited, and the majority
of medical research is focused on delaying progression rather than curing patients. It is
because of the disease’s heterogeneity, underlying hallmarks, and pathogenesis, which are
not yet completely understood. While there is currently no cure for Alzheimer’s disease,
recent research has suggested that dietary interventions could help to prevent or delay the
onset of disease.
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2. Pathology of Alzheimer’s Disease

Amyloid buildup and tau protein hyperphosphorylation are the two primary pathogenic
features of the illness. The aftereffects of these pathologic processes include neurodegener-
ation with loss of synapses and neurons, which results in macroscopical atrophy. Mixed
pathology, which includes Lewy bodies and vascular disease, is a frequent occurrence,
particularly in elderly adults [1]. The type 1 transmembrane protein known as amyloid
precursor protein (APP) is expressed by a variety of cell types. Gamma- and beta-secretases
in the central nervous system can successively cleave APP in two different ways [3]. The
major components of incorrectly folded amyloid plaques, accumulating extracellularly, are
Aβ40 and Aβ42, two products of APP metabolism. Aβ-42 is more prevalent than Aβ-40
inside plaques due to its higher incidence of fibrillization and insolubility. Aβ may then
begin a series of processes that lead to synaptic loss and neuronal death by locating among
healthy neurons and causing disruption in signaling, including neuroinflammation, and it
is known that Aβ is capable of starting an immune response or creating angiopathy [4,5].

Neurons are built of a protein called tau, which assists in keeping the cytoskeleton’s
microtubules intact in healthy cells [6]. It accumulates within nerve cell bodies as a result of
the hyperphosphorylation that causes NFTs to tangle. Cellular proteins, which these tangles
subsequently improperly engage with, are unable to carry out their typical functions [7].
A reduction in tau binding to microtubules leads to the malfunctioning of synapses. As a
result of increased tau phosphorylation and intracellular tau aggregation brought on by an
imbalance in tau kinase and phosphatase activity, NFTs are generated in AD patients. Last
but not least, the growth of NFTs disrupts synaptic plasticity [7,8], which harms neuronal
cells. According to research, Aβ accumulation may act as a trigger for the subsequent
hyperphosphorylation process [9]. Moreover, there is evidence that toxic tau can boost Aβ

synthesis via a feedback loop mechanism [10].
Neuroinflammation is a newly identified characteristic that is receiving a lot of atten-

tion. Even after more than 20 years of research, the processes of AD neuroinflammation
are still not fully known. The two most important components of the inflammatory re-
sponse in the brain are microglia and astroglia. Microglia can be of two kinds, which
can be activated: M1 and M2. The M1 phenotype is regarded as “pro-inflammatory” and
conventional, whereas the M2 phenotype is “anti-inflammatory” and unconventional [11].
Classical activation is brought on by the release of pro-inflammatory molecules such as
IL-1, TNF, IL-6, and reactive oxygen species and is associated with pathogen defense mech-
anisms [12]. The M2 phenotype, which is induced by IL-4 and IL-13, on the other hand,
releases neuroprotective agents such as TGF-β, IL-10, and IGF-1 [12]. By controlling in-
flammation, M2 microglia can help improve tissue remodeling and repair. It is noteworthy
how rapidly the M1-to-M2 conversion can occur [13,14]. Moreover, senile plaque growth
is promoted by the pro-inflammatory environment that active microglia surrounding the
plaques generate [15,16]. These mechanisms are depicted in the Figure 1.

On the other hand, the neurotrophic factors are the growth factors promoting neuronal
growth, differentiation, survival, and proper functioning in mature and developing nervous
systems [17]. They interact with one of two receptors: p75 neurotrophin receptor (p75NTR),
a member of the tumor necrosis factor (TNF) receptor superfamily, or tyrosine receptor
kinase (Trk), one of the tropomyosin-related tyrosine kinase receptors. Neurotrophins
(NGF binds to TrkA; BDNF and NT4/5 bind to TrkB; and NT3 binds to TrkC), which
interact with certain Trk receptors, promote survival and growth responses. Additionally,
their interaction with the P75 neurotrophic receptor (p75NTR) affects both apoptosis and
brain plasticity [17]. Brain-derived neurotrophic factor (BDNF) is the most abundant neu-
rotrophin and is responsible for promoting neuroprotection and neuroregeneration. This
well-researched growth factor in the mammalian brain plays an important role in maintain-
ing synaptic plasticity in learning and memory [18,19]. The majority of BDNF produced
in the brain is delivered to presynaptic terminals and postsynaptic dendrites from the cell
bodies of neurons and glial cells. The release of neurotransmitters, ion channel activity,
axonal pathfinding, and neuronal excitability are all regulated by BDNF and its receptor,
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tropomyosin receptor kinase B (TrkB), which is localized at glutamate synapses [20]. Apop-
tosis, neuroinflammation, tau phosphorylation, and Aβ buildup are all linked to BDNF
deficiency in the etiology of AD [21]. With the activation of TrkB and phosphatidylinositol
3-kinase (PI3K) signaling, BDNF stimulation causes tau to dephosphorylate [22]. By deregu-
lating the glutamatergic N-methyl-d-aspartate receptor (NMDAR)/Ca2+/calpain signaling
cascade, Aβ impairs BDNF function [23]. The extracellularly regulated kinase/cyclic AMP
response element-binding protein (ERK/CREB) signaling pathway can increase BDNF,
which can minimize the impact of Aβ on dendritic atrophy and neuronal death [24]. Increas-
ing evidence also indicates the significance of BDNF signaling in regulating the long-term
effects of Aβ buildup in AD. By controlling the neurotransmitters that are released (in-
cluding glutamate and gamma-aminobutyric acid) after nuclear factor B (NF-B) activation,
BDNF controls the relationship between inflammation and neuroplasticity [25]. Reduced
BDNF levels were found in AD patients’ brains, blood, and cerebrospinal fluid [26–28] as
the illness advanced. Moreover, increased cognitive performance in AD has been associated
with elevated serum BDNF levels [18,29]. These results have raised interest in BDNF as a
prospective biomarker for AD diagnosis or as treatment.
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3. Diets and Life Situations Negatively Influencing the Disease
3.1. Obesity and Malnutrition

There is no dispute about the fact that obesity, one of the risk factors for AD, is con-
nected to low-grade chronic inflammation. In fact, people with obesity or other metabolic
illnesses have approximately a twofold-increased chance of getting AD, according to meta-
analysis research [30,31]. Consuming a high-fat diet, which is abundant in high saturated
fatty acids, has been linked to obesity but also to deficiencies and hippocampus-dependent
learning and memory function [32,33]. Rats fed a high-fat diet depicted impaired memory,
which progressed with further administration of the diet [34]. In addition, prospective
epidemiological studies support the connection between high-fat diet and dementia [35].
Elevated levels of APP in adipose tissue and Aβ in plasma are two potential culprits in
the development of AD in obese people. As indicated by Lee et al.’s research, increased
adipocyte APP gene expression may be the cause of mid-life obesity-related increases
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in Aβ plasma levels. Increased transport of Aβ into the human brain may occur as a
result of chronic elevation in Aβ plasma levels [31,36]. Furthermore, adipocytes and
monocyte-derived macrophages in adipose tissue secrete acute-phase proteins, such as
CRP, and pro-inflammatory cytokines, such as IL-6, IL-1, and TNF-alfa, which contribute to
neuroinflammation [37]. Chronically consuming too many high-carbohydrate and high-
saturated-fat meals while obese can have a negative influence on insulin production, which
in response has a major impact on brain glucose metabolism and functioning. Loss of
or diminished insulin sensitivity is one of the symptoms of insulin resistance. Reduced
glycogen storage in muscle and fat cells and a decline in hepatic glucose absorption are
both results of peripheral insulin resistance [31]. Peripheral insulin resistance triggers CNS
insulin signaling to worsen, which then causes changes in cerebral metabolism. In fact, high
insulin levels or peripheral insulin resistance lower insulin transporter levels and lower
BBB permeability to insulin [38]. One of the variables underpinning the pathophysiology
of AD has been identified as changes in insulin signaling in the brain [39]. According to
this theory, several AD models and AD patients have decreased brain insulin receptor
sensitivity, which may indicate the development of amyloid plaques in the brain.

On the other hand, in patients with AD, especially in those with moderate to severe
AD, nutritional issues, particularly weight loss, are commonly observed. Moreover, it is
a reliable indicator of worse outcomes in individuals suffering from the condition [40,41].
Recent research revealed that mild cognitive impairment (MCI) and early-stage AD are pre-
cursors to nutritional issues, such as appetite changes, weight loss, and sarcopenia [41–43].
Moreover, a prior study revealed that a low body mass index (BMI) indicates a higher risk
of dementia after MCI [44]. Malnutrition issues appear to be significant though controllable
aspects that may alter the prognosis of dementia, despite the fact that the precise processes
behind nutritional issues in AD patients are not fully known. The biggest detrimental
effects on brain function and mortality in individuals with cognitive impairment are un-
dernutrition and weight loss, which accelerate the neurodegenerative process. In severe
dementia, Hanson et al. have shown that weight loss is a predictor of mortality [45]. The
most prevalent finding is that low BMI and malnutrition are associated with an increased
risk of dementia and death, demonstrating the role of nutrition in the neurodegenerative
process [46]. Furthermore, in patients with mild AD, malnutrition was associated with
disease progression [47]. According to Yu et al., adults over 65 with a trend toward weight
reduction should have their cognitive function constantly examined [48].

3.2. Diet High in Fats

Dietary fat can be divided into saturated and unsaturated dietary fats. Monoun-
saturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), which include
omega-3 fatty acids, are two categories of unsaturated fats. While MUFAs and PUFAs
(“good fats”) are assumed to have positive benefits, including enhanced brain function
and the avoidance of neurodegenerative diseases, saturated and trans fats (“bad fats”) are
widely recognized to have deleterious impacts on human health, including correlations to
AD. Unsaturated fats that have undergone partial hydrogenation, or trans fats, are used
to lengthen the food shelf life span [49,50]. Evidence from studies on animals supports
the harmful effects of saturated and trans fats on pathology and behavior related to AD.
In a mouse model of AD (5xFAD), ingestion of a diet heavy in saturated and trans fats
was enough to increase cerebrovascular Aβ deposition and hippocampus oxidative stress
and promote cognitive impairment [51]. Furthermore, in an AD transgenic mouse model
(APP/PS1), consumption of a diet high in fat was linked to memory impairment, a rise
in Aβ monomers and plaques, and brain inflammation [50,52]. These revelations were
confirmed by epidemiological studies according to which consuming saturated and trans
fats increases the chance of developing Alzheimer’s disease and dementia [53,54]. A more
recent meta-analysis thoroughly assessed four independent prospective cohort studies and
depicted that high consumption of saturated fats is also strongly linked to an elevated risk
of AD (39%) and dementia (105%) [55]. Interestingly, dietary lipids can affect how the CNS
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is in an inflammatory state. Microglia respond with inflammation to saturated fatty acids
by secreting pro-inflammatory cytokines [56,57].

3.3. Western Diet

The phrase “Western diet” (WD) refers to a modern eating style that is typical to
Western nations. It is based on ultra-processed foods that are ready for consumption;
created using refined materials; and are high in salt, simple sugars, saturated fatty acids
(SFAs), and cholesterol. Grain, fiber, and mono- and polyunsaturated fatty acids (MUFAs
and PUFAs; particularly anti-inflammatory omega-3, -6, and -9 acids) are also insufficient
in this dietary pattern. Moreover, the WD has a major negative impact on how the gut
and its commensal bacteria operate, which indirectly reduces the absorption of minerals
and vitamins from the diet [58,59]. There is a significant amount of proof that the WD
can worsen cognition, learning, and memory in mice and humans, as well as aggravate
or cause the pathogenic aspects of AD [60–63]. Two dietary elements, fat and sugar, were
shown to have the most significant influence on hippocampal processes. When mice were
fed a diet high in SFAs, sucrose/sugar, or both, for short or long periods, there were
a variety of deficits in hippocampus-dependent learning and memory behavioral tests,
which was comparable with evidence from individuals who ate following a diet high in
SFAs for three days [64–66]. In addition, the WD is linked to a reduced total volume of
the left hippocampus, which was described in research performed on 60- to 64-year-old
men [59,67]. Additionally, research performed on animals confirmed the effects of the WD
on the amyloidogenic accumulation of toxic Aβ peptides and tau phosphorylation. Overall,
mice fed a Western diet showed a significant rise in typical biomarkers of AD, such as
Aβ, Aβ plaques, tau, and ptau [68–70]. Moreover, biomarkers of inflammation such as
TNF-alfa, IL-6, or IL-1beta were also enhanced in animals fed the WD [65,71,72]. These
revelations support the negative influence of the WD on patients. Table 1 summarizes the
effects of diets and life situations negatively influencing the disease.

Table 1. The effects of diets and life situations negatively influencing the Alzheimer’s disease.

Authors Type of Diet/Life
Situation Study Design Study Population Results Reference

Lee et al. Obesity Pilot study

10 obese patients
before and after

weight loss
intervention

Changes in adipocyte APP
expression correlated with
changes in plasma Aβ40
levels (R = 0.74, p = 0.01).

[36]

Ye et al. Malnutrition Longitudinal study 747 patients with
aMCI

The underweight group had
a higher risk of probable

Alzheimer’s disease
dementia (pADD), and the
decreased-BMI (HR: 2.29,
95% CI: 1.41–3.72) groups
were at increased risk of
progression to pADD.

[44]

Hanson et al. Malnutrition Prospective cohort

256 nursing home
residents with

advanced
dementia and

feeding problems

Significant mortality risk in
patients with

feeding problems
[45]

Laitinen et al. High-fat diet Population-based
study

1449 patients with
117 who had

dementia

Moderate intake of
polyunsaturated fats in

mid-life decreased the risk
of dementia even after

adjustment for demographic
variables, especially among
the ApoE epsilon4 carriers.

[54]
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Table 1. Cont.

Authors Type of Diet/Life
Situation Study Design Study Population Results Reference

Ruan et al. High-fat diet Meta-analysis of
cohort studies

8630 participants
and 633 cases

A higher dietary saturated
fat intake was significantly
associated with increased
risks of 39% and 105% for

AD and dementia.

[55]

Jacka et al. Western diet Longitudinal study

255 persons from
the Personality and

Total Health
Through Life

Study

Higher consumption of an
unhealthy “Western”
dietary pattern was

associated with smaller left
hippocampal volume.

[67]

Gibson et al. Western diet Observational
study

23 women with
polycystic ovary

syndrome from 25
to 45 years old

Greater intakes of saturated
and trans fats, and higher

saturated-to-unsaturated fat
ratio (Sat:UFA) were

associated with more errors
in the visuospatial task and

poorer word recall
and recognition.

[62]

4. Diets with Positive Influence
4.1. Mediterranean Diet

The Mediterranean diet (MeDi or MD) is a nutritional style that is popular in nations
bordering the Mediterranean Sea, such as Greece or southern Italy. The traditional Mediter-
ranean diet is characterized by high intake of fruits, vegetables, whole grains, nuts, and
legumes; moderate intake of fish, poultry, and alcohol (especially red wine, with meals);
and low intake of red and processed meats, with olive oil being the primary source of
fat [73,74]. Considering that it contains all the necessary nutrients, such as monounsat-
urated fatty acids (primarily found in olive oil), polyunsaturated fatty acids (found in
fatty fish), antioxidants (such as carotenoids, beta-carotene flavonoids, indoles, or lutein),
vitamins (A, B types, D, and E), and minerals (calcium, iodine, magnesium, potassium,
selenium, and zinc), it can be used as a nutritional model for healthy eating habits [75,76].
Many chronic illnesses have been linked to a preventive impact of the MeDi pattern.

Higher MD adherence has been linked to improved cognitive function [77,78], a slower
pace of cognitive deterioration [79,80], and a decreased risk of cognitive impairment [81,82]
but also AD itself [83,84]. Longitudinal research described by Anastaiou et al. depicted
several connections between individual components of the MeDi and cognition [85]. For
example, there was a reduction in the risk of dementia of 68.9% after every serving of fish
per day [85]. The study by Ballarini et al. showed that lower Aβ42/40 ratio and pTau
pathologies were observed in patients with higher adherence to a MeDi [86]. A newer
randomized trial described the effects of the diet in mid-life on Alzheimer’s biomarkers.
In cognitively normal people, Mediterranean-like diets improved cerebral blood flow;
memory; and AD biomarkers, such as lowered Aβ40 levels and improved Aβ42/40 ratio.
Compared with cognitively normal people, adults with MCI had an unusual pattern,
with the Western diet having a positive impact on cerebrospinal fluid biomarkers and the
MeDi elevating t-tau levels [87]. Interestingly, increasing the MeDi score, which describes
adherence to the diet, in a study on Greek patients resulted in men with decreased risk of
cognitive impairment but elevated risk in the women’s group [81].

4.2. DASH Diet

The DASH diet, which is similar to the Mediterranean diet in that it requires a substan-
tial intake of plant-based foods, also restricts the consumption of SFAs, total fats, cholesterol,
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and salt. The DASH eating pattern encourages greater consumption of preventive nutrients
such as K, Ca, Mg, fiber, and vegetable proteins while simultaneously encouraging lower
intake of refined carbs and saturated fats [88]. It has been demonstrated that the DASH
dietary pattern, which was created to prevent and treat hypertension, improves risk factors
for cardiovascular disease (CVD), such as total cholesterol, and systolic and diastolic blood
pressure [88,89].

Several studies examined the effects of the DASH diet on AD. In older adults with
cognitive impairment without dementia (CIND), better verbal memory was present while
adhering to the diet [90]. However, many studies describe no significant results of the
DASH diet on AD [91–93].

4.3. MIND Diet

The Mediterranean–DASH Intervention for Neurodegenerative Delay diet, a cross
between the Mediterranean and DASH diets, was created to stress nutrients linked to
preventing dementia and to avoid components, such as saturated/hydrogenated fats, that
have been linked to dementia [94]. The MIND diet suggests eating more than or equal
to three servings of whole grains per day, which is the core of the diet [95]. The next
important component of the diet is eating more than or equal to six servings of leafy green
vegetables per week (in addition to one or more daily servings of other vegetables) [96].
Moreover, it also entails consuming more than or equal to two servings of berries per
week [97], more than or equal to one serving of fish per week [98], more than or equal
to two servings of poultry per week, more than three servings of beans per week, and
more than or equal to five servings of nuts per week [99]. The MIND diet encourages the
use of olive oil as the main source of fat [100] and permits one serving of wine or alcohol
per day [94,101]. Moreover, this diet should not be based on red meat or processed food
such as fast food and should avoid frying [94]. According to several prospective cohort
studies, eating more vegetables was linked to a slower rate of cognitive decline, with green
leafy vegetables showing the highest associations [96,102,103]. Due to its dietary elements,
which have antioxidative, anti-inflammatory, and neuroprotective properties, the MIND
diet may support brain health. Hosking et al.’s research indicated that the MIND diet was
linked to a lower risk of 12-year cognitive impairment and that stronger adherence to the
diet was linked to a 53% lower risk of impairment [103]. In models of adjusted logistic
regression, the MIND diet was linked to a lower risk of cognitive deterioration over the
course of 12 years [103]. Moreover, a decreased rate of cognitive impairment following
stroke was linked to high MIND diet adherence [94].

4.4. Other Diets
4.4.1. Ketogenic Diet

Ketogenic diet (KD) refers to a high-fat, medium-protein, and low-carbohydrate diet
that leads to a metabolic shift to ketosis [104]. Carbohydrates should be reduced to less
than 10% of the diet, which triggers the shift from glucose metabolism to metabolizing
fatty acids [105]. In neurodegenerative diseases, there is evidence that a ketogenic diet
(KD) and/or exogenous ketone supplementation may be helpful in the treatment of AD
patients [106]. A complicated interplay of metabolism, gut microbiome, and other mecha-
nisms can regulate neuroinflammation in neurodegenerative diseases by activating multiple
molecular and cellular pathways. Recent and accumulating studies on human and animal
models have shown that the KD is beneficial in neurodegenerative diseases by modulating
central and peripheral metabolism, mitochondrial function, inflammation, oxidative stress,
autophagy, and the gut microbiome [107]. The effect of a ketogenic diet on the inhibition
of AD development is multidirectional; the KD prevents chronic sleep deprivation (SD)-
induced AD by inhibiting ferroptosis and improving the neuronal repair ability via the
Sirt1/Nrf2 signaling pathway [108]. In the study by Xu et al., four months of KD improved
spatial learning, spatial memory, and working memory in mice [109]. The authors observed
an improvement in cognitive functions, which was associated with a restored number of
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neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment
also decreased amyloid plaque deposition and microglial activation, resulting in reduced
neuroinflammation [109]. In clinical studies, the KD was associated with better cognition
but also improved brain metabolism and AD biomarkers, with lowered tau concentrations
and increased Aβ42 cerebrospinal fluid levels in patients with MCI [110]. Currently, it
seems that the KD can provide therapeutic benefits to patients with neurological problems
by effectively controlling the balance between pro- and antioxidant processes, and between
pro-excitatory and inhibitory neurotransmitters and by modulating inflammation [111]. It
is a common phenomenon that energy deprivation in neurological disorders, including
Alzheimer’s disease, progresses rapidly. The ability of ketone bodies to stabilize mitochon-
drial energy metabolism makes them suitable intervening agents [112]. The ketogenic diet
is a good candidate for adjuvant therapy, but its specific applicability depends on the type
and the degree of the disease [104].

4.4.2. Fasting

Given the many health advantages of intermittent fasting (IF), it has lately grown
in popularity, also considering its positive effects on AD. According to studies on the
regulation of metabolic pathways, intermittent fasting (IF) has been shown to increase the
life span and prevent or postpone the onset of age-related disorders. Improvements in
glucose tolerance, lipid metabolism, and cognitive impairment are just a handful of the
positive consequences of IF [113]. When examining the molecular processes, fasting has a
significant impact on the neurochemistry and activity of the neural network, particularly in
certain parts of the brain, such as brainstem, striatum, hypothalamus, and hippocampus.
Several signaling pathways have been shown to play a role in the structural and functional
adaptations of neuronal circuits to nutritional limitation, particularly low glucose and
amino acid levels, including enhanced synaptic density and neurogenesis [75,114].

There are two types of IF: alternate day fasting (ADF) and time-restricted feeding
(TRF). ADF involves 24 h of dietary restriction every other day, followed by a day of
unlimited feeding. With no limitation on the quantity of food or nutrients consumed, TRF
restricts daily meal consumption to 8 h or fewer. Animal experiments have also used
other forms of IF, such as prolonged fasting (fasting for two or more days), the 5:2 strategy
(2 fasting days interspersed with 5 days of regular feeding), and time-controlled fasting
(40 h of fasting, 24 h of feeding, followed by 24 h of fasting and 80 h of feeding in each
cycle) [113,115].

Although TRF is a more known type of food restriction diet and mainly used to
lose weight, ADF has more positive outcomes relatively to AD. Clinical research has
mainly concentrated on the improvement of ADF in obese individuals, which includes
lowering weight and total cholesterol, promoting fat oxidation, and reducing insulin
resistance [116,117]. In individuals who are normal weight or overweight, ADF is also
helpful for cardioprotection as it decreases triacylglycerol concentrations and increases
low-density lipoprotein (LDL) particle size [118]. In regards to body weight and heart
disease, greater results were observed with ADF combined with exercise [119]. In the
case of neurodegeneration, ADF is frequently used in mice models of neurodegeneration
and aging. ADF improved synaptic plasticity, and learning and memory deficiencies in
elderly mice by upregulating the expression of synaptophysin (Syn) and protein kinase
CaMkinase (CaM) [120]. However, ADF affected mice models in different ways. ADF
decreased the excessive amyloid buildup in the APP/PS1 animal model of AD, though it
had no effect on amyloid deposition in 3xTg AD [121,122]. Furthermore, ADF enhanced
neuroinflammatory responses in female 5xFAD, increased GABA signaling, and decreased
neuronal function [123]. Nevertheless, after ADF intervention, the survival rate, spatial
learning, and memory abilities in the AppNL-G-F mice model greatly improved, with no
notable change in Aβ accumulation [124]. Moreover, in another mice model, IF has been
linked to improvements in brain structure, such as a thicker CA1 pyramidal cell layer and
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greater expression of the dendritic protein drebrin in the hippocampus, as well as decreased
oxidative stress [125].

In human studies so far, several researchers have highlighted the possible benefit of
protein restriction against the aging process and aging-related chronic disorders. At this
time, no research has been performed on protein or calorie restriction in human individuals
diagnosed with AD [75,126]. It is difficult to imagine that severe food restrictions could be
sustained for extended periods, particularly among elderly subjects with neurodegenerative
diseases. However, short periods of caloric restriction were described as capable to enhance
cognitive functions such as verbal memory, and 30 days of low-glycemic-index diet in
patients with MCI resulted in the advancement of delayed visual memory and the CSF
biomarker Aβ42 [127,128]. Positive results of the above-described diets are presented in
Figure 2.
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5. Beneficial Foods and Nutrients

For a long time, a wide range of human illnesses, including cancer, cardiovascular
disease, respiratory diseases, infectious diseases, diabetes, obesity, metabolic syndromes,
and neurological problems, have been successfully treated with natural remedies based
on plants and herbs. These products have also been used to slow down the aging process.
The majority of diets with numerous cell-protective properties, such as anti-inflammatory,
antioxidant, and anti-arthritis properties, and capable of improving memory and cognitive
abilities come from natural sources. Therefore, we aim to summarize the beneficial aspects
of foods and nutrients with a known connection to AD.

5.1. Curcumin

Curcumin is a polyphenol found in turmeric and a spice with a unique yellow color
that is commonly used in cooking. Due to its rich therapeutic qualities, turmeric has
drawn a lot of interest among many natural medicines [129]. Curcumin may have anti-
amyloid effects on AD, according to many lines of evidence. Firstly, curcumin inhibits
Aβ aggregation as well as disaggregation to create fibrillar Aβ40 according to research
performed in vitro [130]. Numerous in vivo investigations described that it promotes the
disaggregation of existing amyloid deposits, prevents the formation of new ones, and even
reduces the size of surviving deposits [131,132]. Moreover, curcumin and its derivatives
suppress the synthesis of fibrillar Aβ from Aβ monomers and destabilize preformed fibrillar
Aβ in vitro, showing that curcumin is protective against Aβ toxicity [133]. According to
existing theories, curcumin works primarily by inhibiting NFkB, which is accomplished by
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preventing IkB phosphorylation and subsequent NFkB activation [134]. Curcumin can also
prevent APP-cleaving enzymes such as B-secretase from functioning (BACE-1) [135,136].

Although animal studies show promising results, research performed on humans is
limited and not trustworthy, which impedes the understanding of the results [137–139].
Only a modest number of clinical research studies have discussed the impact of curcumin
on human cognitive performance, with conflicting results. While several research studies
claim that curcumin has no beneficial effects on cognitive function [140,141], others show
valuable results in protecting against cognitive decline [137,138]. Furthermore, neuroimag-
ing demonstrates that curcumin could decrease Aβ brain deposits [137].

5.2. Coffee and Tea

Coffee is a beverage that contains a great amount of polyphenols. Moreover, it is
known that caffeine increases human information processing, attentiveness, and reaction
time [142]. The positive outcomes of caffeine are connected to antagonizing A1 adenosine
receptors in the hippocampus and cortex [143]. Caffeine has well-known anti-inflammatory
characteristics that include reducing the invasion of immune cells from the periphery,
attenuating pro-inflammatory mediators, and inhibiting microglia activation. Greater
plasma caffeine concentrations were associated with lower levels of inflammatory cytokines
in the hippocampal region [56,144]. Animal studies imply that coffee with caffeine has a
crucial function, since it lowers plasma Aβ levels, as opposed to caffeine-free coffee [145]. A
meta-analysis by Wu et al. has shown that a diminished risk of development of dementias
in humans (including AD) was observed with daily consumption of one–two cups of
coffee [146]. Interestingly, research part of the Italian Longitudinal Study on Aging (ILSA)
suggested that older people with normal cognitive function who increased their coffee
consumption had a higher rate of developing MCI, while constant-over-time, moderate
coffee consumption was linked to a lower rate of MCI incidence [147,148]. However,
research does not support the theory that caffeine could prevent AD [149], although as
reported in epidemiological research, drinking coffee and caffeine can possibly help treat
AD [147].

One of the most popular beverages worldwide is tea, as it is the most consumed,
second only to water. It is a byproduct of the plant Camellia sinensis (L.) O. Kuntze. Regard-
less of how much fermentation has occurred, green tea, black tea, and oolong tea are all
produced from the same plant [150,151]. The health advantages of green tea have been
the subject of research the most, including its effects on diabetes, cancer, cardiovascular
diseases, and neurological disorders [152,153]. It mainly contains polyphenols. Despite the
fact that the mechanisms behind green tea’s preventative impact are not fully understood,
there are some hypotheses. It has been shown that oxidative stress has a role in the etiology
of both AD and vascular dementia (VaD) [154,155]. Firstly, green tea catechins working
in the brain have antioxidant properties with known strong free radical scavenger abili-
ties [156]. Then, green tea polyphenols have an anti-inflammatory effect via the inhibition
of nuclear factor kappa-beta activation [157]. Interestingly, epigallocatechin gallate (EGCG),
the main component of green tea catechins, has shown inhibitory properties against Aβ

accumulation [154,158]. Mice models of AD fed EGCG for weeks depicted an indicative
decrease in Aβ aggregation and lowered neurotoxicity associated with amyloid [159]. More-
over, based on research by Tomata et al., drinking green tea frequently was substantially
linked with having a low risk of dementia [160]. In a rat model of Alzheimer’s disease,
green tea was found to improve memory and prevent oxidative stress and damage to the
hippocampus [161].

5.3. Cocoa

Theobroma cocoa beans, which are often consumed by humans, are used to make
cocoa (powder) and chocolate. Such products are abundant in flavonoids, the greatest
category of dietary polyphenols and antioxidant compounds [162,163]. Cocoa beans are
reported to have more antioxidant activity than green tea, red wine, or blueberries [164].
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The polyphenol content in cocoa and chocolate is not the only difference between them;
cocoa is a ground-up form of cocoa beans, whereas chocolate is a mixture of cocoa, cocoa
butter, sugar, and other components that are combined to create a solid food product [165].
Chocolate has varying amounts of cocoa, which vary from 30–70% in dark chocolate to
7–15% in milk chocolate [166]. Additionally, the bioavailability of cocoa flavanols tends to
be regulated by the complexity of the food matrix; therefore, consuming dark chocolate
may result in less effective absorption of these chemicals than ingesting cocoa powder [163].
Human studies have demonstrated that consuming a particular combination of flavanols in
cocoa can lower blood pressure, enhance insulin sensitivity, and improve cerebral perfusion
and blood flow [167–169]. Research on the effects of cocoa in the rat pheochromocytoma
PC12 cell line treated with Aβ(25–35) has shown that cocoa flavonoids have neuropro-
tective effects, preventing Aβ-induced cell death [170,171]. Interestingly, the findings
of mouse models show that cocoa extracts may successfully stop the oligomerization of
Aβ [172]. These revelations prompted researchers to conduct the study called CoCoA
Study (Cocoa, Cognition, and Aging). They investigated the possibility that dietary fla-
vanols might enhance cognitive performance in participants with MCI [173]. Desideri
et al. showed that consuming a beverage fortified with cocoa flavanols (CFs) improved
cognitive functions in adults diagnosed with MCI and lowered blood pressure and insulin
resistance [173]. The results were confirmed by a randomized controlled trial showing
comparable outcomes [168].

5.4. Vitamins

It was observed that patients’ cognitive abilities can be enhanced by having them
consume a diet high in vitamins, especially those with antioxidant properties. Oxidative
stress causes the reduction of O2 to H2O in mitochondria, which promotes the production
of reactive oxygen species (ROS). As a consequence of their high reactivity, they interact
with many molecules and structures. All macromolecules are observed to be oxidized
quite early in AD patients’ brains. In AD, oxidation occurs in lipids, proteins, nucleic
acids, and polysaccharides. Therefore, antioxidants such as vitamins are widely discussed
as beneficial in AD [174]. Vitamins from the B family vary in terms of functions and
structure. Folates play a significant role in the etiology of neurological illnesses by providing
the methyl groups required for DNA methylation [175,176]. Homocysteine by itself is
related to increases in cardiovascular risk and cognitive impairment. The metabolism of
homocysteine is linked to the positive effect of vitamin B on cognitive performance. There
is a reduction in DNA methylation in AD patients, and insufficiency of these vitamins leads
to a buildup of homocysteine in the body that affects the genes connected to AD with their
overexpression [176]. Therefore, researchers studied the supplementation of vitamin B, and
the results showed decreased concentrations of homocysteine with simultaneous better
results in MMSE, and semantic and episodic memory [177]. The results were tested in AD
patients with similar results while supplementing folic acid [178]. However, the results are
not consistent, with several publications not documenting a significant impact on cognitive
decline or even documenting no connection [179,180]. In conclusion, the examination of
individual articles demonstrates that the impact of nutritional intervention in the form
of dietary supplementation with vitamins B appears to be ambiguous. High blood levels
of vitamin B12 may be a protective factor, even if it has been noted that testing for the
presence of folate and vitamin B12 is unreliable [175].

High frequency of vitamin D hypovitaminosis, particularly in the elderly, is caused
by dietary habits and inadequate sun exposure. According to recent studies, more than
50% of central Europeans over 60 may not be getting sufficient amounts of vitamin D.
Vitamin D supplementation seems to be especially beneficial for this sensitive age group,
since vitamin D hypovitaminosis is linked to numerous disorders, including AD [181–183].
It is described that it can double the risk of dementia and increase the risk of developing
AD by 21% [184,185]. Ghahremani et al. showed that when compared with no exposure,
dementia incidence was 40% lower when vitamin D was provided [186]. Moreover, the
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benefits of vitamin D were much stronger in women than in men and in those with normal
cognition than in people with mild cognitive impairment, and apolipoprotein E4 non-
carriers had much stronger vitamin D effects than carriers [186]. Several research studies
found changed plasma Aβ1-40 levels, slower development of AD symptomatology, and
lowered Aβ-related biomarkers following vitamin D treatment, which would indicate a
lower risk of AD [187,188].

Vitamin E is a fat-soluble vitamin that shows neuroprotective and anti-inflammatory
properties [189,190]. Therefore, researchers have considered it for potential therapeutic
usage in AD. A meta-analysis by Lopes da Silva et al. showed lower plasma levels of
vitamin E in AD patients in comparison to cognitively healthy controls; moreover, they
came to the conclusion that the patients’ malnutrition was not the cause of this result [191].
This was also confirmed by a newer and bigger study by Mullan et al. [192]. Additionally,
a number of prospective cohort studies examined plasma vitamin E levels and the prob-
ability of developing AD, with results showing significant correlation with higher levels
of vitamin E and reduced risk of cognitive impairment or even reduced risk of develop-
ing AD [193,194]. Thus, supplementing this vitamin was also studied, with interesting
evidence. Greater dietary vitamin E intake was linked to a reduced risk of AD, although
the effect was only shown in people who did not have the ApoE4 risk allele [195,196].
Interestingly, the same results were not obtained when supplementation of this vitamin was
non-dietary [195]. In randomized trials, supplementing α-tocopherol alone led to a slower
functional decline compared with the placebo group. Furthermore, this study also showed
that the combination of memantine and α-tocopherol was not as beneficial as α-tocopherol
alone [197]. However, many studies show no changes in patients’ behavior, biomarkers,
or cognitive decline; therefore, the connection between vitamin E and treating AD is still
being discussed [198,199].

5.5. Foods Rising BDNF

As described above, BDNF is an interesting factor playing a role in the brain also
in AD. Specifically altering patients’ diet may be a useful strategy for influencing BDNF
and maintaining or even enhancing cognitive and metabolic health. Thus, numerous
intervention trials with the goal of increasing BDNF levels have been conducted as a result
of the fact that higher levels are linked to better cognitive function [200]. Although various
research studies have shown no significant increase in BDNF in connection with dietary
interventions, there are some with interesting outcomes [117,201]. Suzuki et al. reported
that in female MCI patients, consuming mold-fermented cheese significantly increased
serum BDNF levels as compared with non-mold-fermented cheese administration [202].
In healthy subjects, intake of kernel-based whole grain (WG) rye products was described
as capable to increase BDNF concentrations [203]. In addition, zinc supplementation
had beneficial effects on women with premenstrual syndrome and obese ones [204,205].
Moreover, curcumin, further to the above-described beneficial effects on AD itself, was also
described as influencing BDNF levels in the plasma of depressed patients [206]. However,
this area needs more research, especially in connection to AD.

6. Summary

Overall, there is growing evidence that the molecular aspects of a diet can play an
important role in the prevention and treatment of Alzheimer’s disease. By consuming a diet
that is rich in omega-3 fatty acids, antioxidants, and plant-based foods, individuals may be
able to reduce their risk of developing Alzheimer’s disease and slow the progression of the
disease if it does occur. In our article, we discuss the potential of a specific diet and diet
interventions to prevent and treat Alzheimer’s disease. We reviewed the literature on the
role of diet in Alzheimer’s disease and propose new aspects for preventing and treating
the disease based on the molecular aspects of a specific diet. Research performed on diets
rich in fruits, vegetables, whole grains, legumes, nuts, fish, and olive oil suggests that diet
can modify the molecular pathways involved in Alzheimer’s disease by reducing inflam-



Int. J. Mol. Sci. 2023, 24, 10751 13 of 21

mation, oxidative stress, and insulin resistance. We also discuss diets and life situations
negatively influencing the disease. Research shows that both obesity and malnutrition have
a significantly bad influence on the course of AD or result in a higher chance of developing
the disease. Moreover, diets high in fat and sugar intake contribute to higher levels of AD
and inflammatory biomarkers. This review suggests an important role of food intake in the
course of the disease and suggests potential dietary intervention in the treatment of AD.
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