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Abstract: The Na+/H+ antiporter NhaC family protein is a kind of Na+/H+ exchanger from the ion
transporter (IT) superfamily, which has mainly been identified in the halophilic bacteria of Bacillus.
However, little is known about the Na+/H+ antiporter NhaC family of proteins in the extremely
halophilic archaea. In this study, two Na+/H+ antiporter genes, nhaC1 and nhaC2, were screened
from the genome of Natronorubrum daqingense based on the gene library and complementation of
salt-sensitive Escherichia coli KNabc. A clone vector pUC18 containing nhaC1 or nhaC2 could make
KNabc tolerate 0.6 M/0.7 M NaCl or 30 mM/40 mM LiCl and a pH of up to 8.5/9.5, respectively.
Functional analysis shows that the Na+(K+, Li+)/H+ antiport activities of NhaC1 and NhaC2 are
both pH-dependent in the range of pH 7.0–10.0, and the optimal pH is 9.5. Phylogenetic analysis
shows that both NhaC1 and NhaC2 belong to the Na+/H+ antiporter NhaC family of proteins and are
significantly distant from the identified NhaC proteins from Bacillus. In summary, we have identified
two Na+(K+, Li+)/H+ antiporters from N. daqingense.

Keywords: Natronorubrum daqingense; NhaC family protein; Na+/H+ antiporter; extremely halophilic
archaea

1. Introduction

In environments with a high salt concentration, the damage of Na+ stress to organisms
is mainly manifested as water loss, ion toxicity, and imbalance in osmotic pressure. In order
to adapt to the toxicity, microorganisms have formed three major salt tolerance mechanisms:
(1) microorganisms change the permeability of their cell membranes to adapt to high-salinity
environments by changing the proportion of membrane lipid components in the cell mem-
brane [1,2]; (2) microorganisms accumulate a high concentration of compatible substances
within cells as osmotic regulators to maintain osmotic balance [3]; (3) microorganisms
extrude Na+ from cells while accumulating KCl to maintain an osmotic balance within the
cells [4]. These proteins are named Na+/H+ exchangers (NHEs) [5], can extrude Na+, and
can be divided into primary Na+ pumps [6] and secondary Na+/H+ pumps [7]. The primary
Na+ pumps mainly include four types [8]: Na+/K+-ATPase [9,10], decarboxylase [11,12],
NADH-ubiquinone oxidoreductase [13,14], and N5-methyltetrahydromethanopterin: coen-
zyme M methyltransferase [15–17]. The secondary Na+/H+ pumps are the main Na+ efflux
system in halophilic bacteria, namely, the Na+/H+ antiporter, and are the main adaptive
response system of halophilic bacteria to Na+ stress [18]. At present, the reported Na+/H+

antiporters can be divided into cation/proton antiporters (CPAs) superfamilies [5], IT
superfamilies [19,20], and Na+-translocating multiple resistance and pH transporter (Mrp)
superfamilies (TC identifier: 2.A.63.1.4) [21]. NHEs have also been widely reported in
plants [22] and animals [23].

The NhaC family protein is a Na+/H+ exchanger belong to the IT superfamily, mainly
identified in Bacillus. As early as 1997, a Na+/H+ antiporter encoded by nhaC was found,
and the gene sequence from Alkaliphilic Bacillus firmus OF4 was predicted to encode a
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membrane protein with 462 residues and 12 transmembrane segments (TMSs). Bf-NhaC
was highly homologous to the unknown function products encoded by homologous genes
from Bacillus subtilis and Haemophilus influenzae [24]. The g1-nhaC isolated from Bacillus sp.
G1 could restore the growth of E. coli BL21 (DE3) when grown in a medium containing
0.2–2.0 M NaCl, and the Na+ efflux activity of g1-NhaC was detected in the pH range
8.0–10.0 [25]. Haja D. K. et al. [26] also reported gene sequences that could encode NhaC
proteins from the hyperthermophilic archaeon Pyrococcus furiosus.

In our previous study, an extremely halophilic archaeon was isolated from the salinized
soil of Daqing City, Heilongjiang Province, China [27]. The strain JX313T was once named
Haloterrigena daqingense until de la Haba R. R. et al. [28] reclassified it into the genus
Natronorubrum, and it was renamed N. daqingense. N. daqingense has extremely strong
salt tolerance, and its growth salinity ranges from 10% to saturated (w/v) (the optimum
growth salinity is 17.5%), with a pH range 8.0–11.0 (the optimum pH is 10.0) [27]. Therefore,
N. daqingense has great potential to screen genes that can encode Na+/H+ exchangers. In
2022, Wang S. et al. [29] disclosed more detailed data when analyzing the whole genome
sequencing of Natronorubrum daqingense, which will also be conducive to the identification
of Na+/H+ antiporters. In this study, the salt-sensitive E. coli KNabc (E. coli with the
knockout of three major Na+/H+ antiporter genes: nhaA, nhaB, and chaA) was used to
screen Na+/H+ antiporter genes from the genome of N. daqingense. Two NhaC-type Na+/H+

antiporter genes were found, which allow E. coli Knabc to tolerate 0.6 M/0.7 M NaCl or
30 mM/40 mM LiCl, respectively, with a maximum resistance of pH 8.5/9.5. In summary,
we cloned nhaC1 and nhaC2 from the N. daqingense genome, expressed and functionally
validated their encoded proteins, and finally identified two novel NhaC-type Na+/H+

antiporters from extremely halophilic archaea.

2. Results
2.1. Cloning and Sequence Analysis of Na+(K+, Li+)/H+ Antiporter Genes

To screen for genes that exert an Na+/H+ antiport function from N. daqingense JX313T,
the genomic library and the salt-sensitive E. coli KNabc functional complementary
method [30] were combined to select positive clones that could enable KNabc to restore
the growth in the medium containing 0.2 M NaCl. Positive clones were grouped based on
plasmid electrophoresis and double enzyme digestion results, and two different positive
clones [pUC1028-1,9 (pUC18 carrying a 3.5 kb or 4.9 kb fragment)] were obtained, as
shown in Figure 1A,B, which enabled E. coli KNabc to grow on the LBK medium under the
intolerable 0.2 M NaCl concentration.

Sequence analysis revealed that: (1) a pUC1028-1 DNA fragment (3.5 kb) containing
two 5′end-truncated ORFs (ORF1, 2) and two complete ORFs (ORF3, 4), of which only
ORF3 (1701 bp) contained the promoter-predicted sequence and Shine-Dalgarno (SD)
sequence; (2) a pUC1028-9 DNA fragment (4.9 kb) containing one 5′end-truncated ORF
(ORF1) and three complete ORFs (ORF2, 3, 4), with only ORF2 (1575 bp) containing the
promoter-predicted sequence and SD sequence.

In order to screen out ORFs that exert a Na+/H+ antiport function from positive
clones, complete ORFs containing predicted promoter-like sequences were subcloned into
pUC18, and complete ORFs without a predicted promoter-like sequence were subcloned
into pET28AK (pET28(a) inserted ampicillin resistance gene at BglII, as shown in Figure 1C).
During the subcloning process, the transformed mixture was coated on the LBK medium
(containing 50 mg·mL−1 of ampicillin) plates to obtain positive subclones. Subclones were
lined on the LBK medium (containing 0.2 M NaCl and 50 mg·mL−1 of ampicillin) plates to
screen for the ORF exerts the Na+/H+ antiport function, as shown in Figure 1D,E.
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Figure 1. Screening of ORFs that exert Na+/H+ antiport function. (A) The agarose gel electrophoresis 
of positive clone plasmids that could restore the growth of E. coli KNabc on LBK medium containing 
0.2 M NaCl; (B) The agarose gel electrophoresis after double enzyme digestion of positive clone 
plasmids by EcoRⅠ and HindⅢ (the corresponding lanes in A&B are Marker and pUC-1028-1 to 
pUC1028-10 from left to right); (C) Construction schematic of the expression vector pET28AK in this 
study; (D,E) E. coli KNabc transformants were grown on the LBK medium and LBK medium con-
taining 0.2 M NaCl, (1) KNabc/pUC-1028-1-ORF3, (2) KNabc/pET-1028-1-ORF4, (3) KNabc/pUC-
1028-7-ORF2, (4) KNabc/pUC-1028-9-ORF2, (5) KNabc/pET1028-9-ORF3, (6) KNabc/pET1028-9-
ORF4, (7) KNabc/pUC18, (8) KNabc/pET28AK, (9) blank. 

Sequence analysis revealed that: (1) a pUC1028-1 DNA fragment (3.5 kb) containing 
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pUC18, and complete ORFs without a predicted promoter-like sequence were subcloned 
into pET28AK (pET28(a) inserted ampicillin resistance gene at BglⅡ, as shown in Figure 
1C). During the subcloning process, the transformed mixture was coated on the LBK me-
dium (containing 50 mg·mL−1 of ampicillin) plates to obtain positive subclones. Subclones 
were lined on the LBK medium (containing 0.2 M NaCl and 50 mg·mL−1 of ampicillin) 
plates to screen for the ORF exerts the Na+/H+ antiport function, as shown in Figure 1D,E. 

As shown in Figure 1D,E, three ORFs could enable KNabc to restore salt tolerance 
function, that is, two ORFs exhibit Na+/H+ antiport activity. The gene names of 1028-1-
ORF3 and 1028-9-ORF2 will be abbreviated as nhaC1 and nhaC2, and the proteins they 
may encode will be abbreviated as NhaC1 and NhaC2 in subsequent studies. The 
characteristics of the hypothetical proteins corresponding to the identified ORFs are listed 

Figure 1. Screening of ORFs that exert Na+/H+ antiport function. (A) The agarose gel electrophoresis
of positive clone plasmids that could restore the growth of E. coli KNabc on LBK medium containing
0.2 M NaCl; (B) The agarose gel electrophoresis after double enzyme digestion of positive clone
plasmids by EcoRI and HindIII (the corresponding lanes in A&B are Marker and pUC-1028-1 to
pUC1028-10 from left to right); (C) Construction schematic of the expression vector pET28AK in
this study; (D,E) E. coli KNabc transformants were grown on the LBK medium and LBK medium
containing 0.2 M NaCl, (1) KNabc/pUC-1028-1-ORF3, (2) KNabc/pET-1028-1-ORF4, (3) KNabc/pUC-
1028-7-ORF2, (4) KNabc/pUC-1028-9-ORF2, (5) KNabc/pET1028-9-ORF3, (6) KNabc/pET1028-9-
ORF4, (7) KNabc/pUC18, (8) KNabc/pET28AK, (9) blank.

As shown in Figure 1D,E, three ORFs could enable KNabc to restore salt tolerance
function, that is, two ORFs exhibit Na+/H+ antiport activity. The gene names of 1028-1-
ORF3 and 1028-9-ORF2 will be abbreviated as nhaC1 and nhaC2, and the proteins they may
encode will be abbreviated as NhaC1 and NhaC2 in subsequent studies. The characteristics
of the hypothetical proteins corresponding to the identified ORFs are listed in Table 1.
The protein encoded by 1028-1-ORF3 is predicted to be a membrane protein composed of
eleven transmembrane segments (TMSs) with a calculated molecular weight of 60.7 kD. A
total of 302 out of 566 amino acids that make up this protein are hydrophobic, resulting
in a lower polarity of the entire protein sequence. As a predicted membrane protein, its
TMSs include TMS I (4–21), TMS II (28–50), TMS III (65–87), TMS IV (144–166), TMS V
(191–213), TMS VI (259–281), TMS VII (320–342), TMS VIII (355–374), TMS IX (399–416),
TMS X (486–508), and TMS XI (512–529) (Figure 2C). Another ORF capable of restoring
the salt tolerance function of KNabc is 1028-9-ORF2, which is predicted to be a membrane
protein with twelve TMSs (Figure 2D), including TMS I (35–57), TMS II (61–83), TMS
III (96–115), TMS IV (125–147), TMS X (154–176), TMS VI (186–208), TMS VII (221–243),
TMS VIII (263–285), TMS IX (290–312), TMS X (342–364), TMS XI (446–466), and TMS XII
(486–508). The translation of the DNA sequence into the amino acid sequence revealed
that 301 of the 524 amino acids are hydrophobic, with a calculated molecular weight of
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54,785.66 Dalton, resulting in a low polarity of the entire sequence. Based on the character-
istics of the Na+/H+ antiporter, the above two ORFs are likely to possess Na+/H+ antiport
activity [31–35]. The protein encoded by 1028-7-ORF2 could also restore the growth of
salt-sensitive E. coli KNabc. However, our identification results in subsequent studies
showed that it belongs to different types of Na+/H+ antiporters from the two ORFs in
this article.

Table 1. Characteristics of the hypothetical proteins corresponding to the identified ORFs.

Characteristics 1028-1-ORF3 1028-9-ORF2

Gene ID BB347_RS08225 BB347_RS08285
Gene abbreviated name nhaC1 nhaC2

Protein abbreviated name NhaC1 NhaC2
Accession WP_076580434.1 WP_076580456.1

Amino acid sequence
length(aa) 566 524

Number of hydrophobic
amino acids (aa) 302 301

Predicted molecular weight
(Da) 60,722 54,786

Number of TMSs 11 12

Definition Na+/H+ antiporter NhaC
family protein

Na+/H+ antiporter NhaC
family protein
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Figure 2. Hydrophobicity analysis and transmembrane segment (TMS) prediction of NhaC1 and
NhaC2. (A,B) Hydrophobicity analysis of NhaC1 and NhaC2; (C,D) 11 and 12 predicted TMSs of
NhaC1 and NhaC2.

2.2. Phylogenetic Analysis Based on the Neighbour-Joining Algorithm

According to the BlastX comparison results on NCBI [36], both 1028-1-ORF3 and 1028-
9-ORF2 were assumed to be Na+/H+ antiporter NhaC family proteins based on the genome
sequencing results; two sequences showed 100% similarity to the published gene sequences
BB347_08225 and BB347_08285, respectively, and 1028-1-ORF3 and 1028-9-ORF2 were
speculated to be proteins of the Na+/H+ antiporter NhaC family. To verify this hypothesis
and their evolutionary relationships with the identified/predicted proteins with Na+/H+

antiport activity, a phylogenetic analysis was conducted based on the neighbour-joining
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algorithm, as shown in Figure 3. Two ORFs were translated into amino acid sequences and
then compared using BlastP to select homologs on NCBI [36].
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1028-9-ORF2 has the respective identities of from 55% to 100% with 21 homologs from 

Figure 3. Phylogenetic trees of NhaC1 (A) and NhaC2 (B) with their closest homologs and an
identified protein with Na+/H+ antiport activity based on the neighbour-joining algorithm. To
construct phylogenetic trees, the 24 and 33 closest homologs with 72.84–96.47% and 63.62–98.28%
identities, respectively, were selected from 100 sequences. An identical protein from the NhaC family
was selected, as shown in blue in Figure 3. Bootstrap values > 50% (based on 1000 replications) are
shown at branch points. Both NhaC1 and NhaC2 and their closest homologs clustered with the
bootstrap values of 100%; both are shown in bold red in Figure 3.

1028-1-ORF3 and 1028-9-ORF2 were also aligned with their 11 and 14 sequences pro-
ducing significant alignments with a percent identity from 80.43% to 96.47% and from
85.11% to 98.28%, respectively, and the similarities and differences between ORFs and their
homologs in the composition of amino acid sequences are as shown in Figure 4A,B. 1028-
1-ORF3 has the respective identities of from 87% to 100% with closely related homologs
from Natronorubrum sediminis, Natronococcus occultus, and Natronococcus amylolyticus, and
the Na+/H+ antiporter NhaC family protein of Natronorubrum sediminis shares the bootstap
of 100 with 1028-1-ORF3, which means they are sisterly in phylogeny. 1028-9-ORF2 has the
respective identities of from 55% to 100% with 21 homologs from Haloterrigena, Halopiger,
Natrinema, Natronorubrum, Halostagnicola, Euryarchaeota, Halakalicoccus, and Halovivax. The
Na+/H+ antiporter NhaC family protein of Natronorubrum sediminis shares the bootstrap
of 100 with 1028-1-ORF3, which means they are sisterly in phylogeny. 1028-1-ORF3 clus-
tered with some homologs; the 1028-9-ORF2 clustered with all homologs belonging to the
Na+/H+ antiporter NhaC family. 1028-1-ORF3 is relatively close to the identified protein in
terms of Na+/H+ antiport activity, but both 1028-1-ORF3 and 1028-9-ORF2 are significantly
distant from it.

According to sequence alignment and phylogenetic analysis, the proteins encoded by
1028-1-ORF3 and 1028-9-ORF2 were Na+/H+ antiporter NhaC family proteins.
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Figure 4. (A) Alignment between NhaC1 and homologs of NhaC family proteins. The 11 homologs
with percent identities from 80.43% to 96.47% were selected from Halopiger, Haloterrigena, Na-
tronorubrum, Halostagnicola, Natronococcus, and Natronorubrum. (B) Alignment between NhaC2
and 14 homologs of NhaC family proteins. A total of 14 homologs from Natronococcus, Halobiforma,
Natronorubrum, and Halostagnicola with the percent identity ranging from 85.11% to 93.28% were
selected. Shading homology corresponds to 100% (black), ≥75% (grey), ≥50% (light grey), and <50%
(white) amino acid identity.

2.3. Test for Salt Tolerance and Alkaline pH Resistance

In order to test the salt tolerance of E. coli KNabc containing nhaC1 or nhaC2, growth
tests were performed in LBK medium (containing 50 mg·mL−1 of ampicillin, pH 7.5)
with varying concentrations of NaCl (0–0.8 M) or LiCl (0–50 mM), respectively (KNabc
containing pUC18 as a negative control). As shown in Figure 5A,B, KNabc/nhaC1 could



Int. J. Mol. Sci. 2023, 24, 10786 7 of 16

grow up to the presence of 0.6 M NaCl or 30 mM LiCl, and KNabc/nhaC2 could grow up
to the presence of 0.7 M NaCl or 40 mM LiCl, but KNabc/pUC18 could not grow in the
presence of 0.2 M NaCl or 5 mM LiCl. KNabc/nhaC1, KNabc/nhaC2, and KNabc/pUC18
were cultured in an LBK medium (containing 50 mM NaCl, pH 7.0–10.0) to analyze the
alkaline pH resistance of nhaC1 and nhaC2. With the gradual increase in pH, the growth
of all groups was inhibited to varying degrees, as shown in Figure 5C. Compared with
KNabc/pUC18, which was significantly inhibited and almost unable to grow at pH 8.0,
both KNabc/nhaC1 and KNabc/nhaC2 exhibited strong alkaline pH resistance. Although
KNabc/nhaC1 could still grow at pH 8.5, nhaC2 could confer higher alkaline pH resistance
on KNabc, resisting up to pH 9.5.
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Figure 5. Salt tolerance and alkaline pH resistance of nhaC1 and nhaC2. To test the salt tolerance of
KNabc/pUC-nhaC1 and KNabc/pUC-nhaC2, 1% overnight cultures (OD600 was adjusted to 0.8 before
inoculation) were inoculated to LBK medium containing 0–0.8 M NaCl (A) or 0–50 mM LiCl (B) and
50 mg·mL−1 of ampicillin, respectively, at pH 7.0, and cultured at 37 ◦C for 12 h, with KNabc/pUC18
as the negative control, and the OD600 nm was measured; (C) 1% overnight cultures (OD600 was
adjusted to 0.8 before inoculation) were inoculated to LBK medium containing 50 mM NaCl and
50 mg·mL−1 of ampicillin (pH 7.0–10.0) and cultured at 37 ◦C for 12 h; KNabc/pUC18 was used
as negative control, and the OD600 was measured. Data in the figure represent the average of three
independent trials.

2.4. SDS-PAGE and Western Blot Analysis of NhaC1 and NhaC2

In order to study the protein localization and function of NhaC1 and NhaC2, two
genes were respectively inserted into pET28AK containing a T7 promoter using homol-
ogous recombination for protein expression, and the inserted gene sequence would be
co-expressed with the 6×His tag. To determine the approximate position of the protein
NhaC1 and NhaC2’s SDS-PAGE bands, the everted membrane vesicles from E. coli KNabc
containing recombinant plasmids were purified by 6×His tag affinity chromatography and
used for SDS-PAGE. Combined with the prediction of protein molecular weights in the
UniProt database and the peptide molecular weight after translation sites on the pET28AK,
the theoretical molecular weights of NhaC1 fusion 6×His protein and NhaC2 fusion 6×His
protein should be 64 kD and 58 kD, respectively. As shown in Figure 6A,B, the molecular
weights of the fusion proteins after SDS-PAGE were approximately 64 kD and 58 kD,
respectively.

Total protein, cytoplasmic protein, and membrane protein were extracted from
E. coli KNabc containing recombinant plasmids (KNabc containing pET28AK was used
as negative control) and used for the Western blot analysis. As shown in Figure 6C,D,
both NhaC1 and NhaC2 were only detected from total protein and membrane protein.
Combined with previous bioinformatics predictions, it was proven that both of them were
located on membranes in cells and were membrane proteins.
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Figure 6. Detection of molecular weights and cell localizations of NhaC1 and NhaC2. (A,B) SDS-
PAGE of NhaC1 fused with 6×His tag and NhaC2 fused with 6×His tag, purified by Ni-NTA
affinity chromatography, and the staining method was Coomassie brilliant blue staining; (C,D) Cell
localizations of NhaC1 and NhaC2 detected by Western blots. Total protein, cytoplasmic protein,
and membrane protein of NhaC1 fused with 6×His tag and NhaC2 fused with 6×His tag are shown
in Lanes 1, 3, and 5, respectively; Total protein, cytoplasmic protein, and membrane protein from
KNabc/pET28AK are shown as a negative control in Lanes 2, 4, and 6, respectively.

2.5. Detection of Na+(K+, Li+)/H+ Antiport Activity

The Na+(K+, Li+)/H+ antiport activities were detected by adding D-lactic acid to the re-
action buffer A (pH 7.0–10.0) containing everted membrane vesicles to quench fluorescence
(everted membrane vesicles prepared by KNabc/pET28AK-nhaC1 and KNabc/pET28AK-
nhaC2 as treatment groups, everted membrane vesicles prepared by KNabc/pET28AK as
negative control), and then measuring the ratio of dequenching fluorescence after adding
various concentrations of NaCl, KCl (Na free), and LiCl. As shown in Figure 7A, Na+(K+,
Li+)/H+ antiport activities were detected in everted membrane vesicles from KNabc con-
taining pET28AK/nhaC1 and pET28AK/nhaC2 when pH 7.5, while no Na+(K+, Li+)/H+

antiport activity was detected in everted membrane vesicles from E. coli KNabc containing
pET28AK. NhaC1 exhibited Na+(K+, Li+)/H+ antiport activity when pH ranged from 7.0
to 10.0, with optimal antiport activities at pH 9.5. NhaC2 also exhibited Na+(K+, Li+)/H+

antiport activity when pH ranged from 7.0 to 10.0; notably, the Li+/H+ antiport activity
of NhaC2 was lower than that of NhaC1 most of the time, but its Li+/H+ antiport activity
reached its maximum, and was higher than that of NhaC1, at pH 9.5.

2.6. Calculation of K0.5 Values for Monovalent Cations

To evaluate the substrate affinity activity of NhaC1 and NhaC2 to monovalent cations
(Na+, K+ and Li+), the fluorescence-dequenching rates of the everted membrane vesicles
were measured at pH 9.5 after adding NaCl, Na-free KCl, or LiCl (final concentration
0.5–10 mM), respectively. According to the data, nonlinear regression analysis was carried
out to determine the concentration of monovalent cations that were added when reaching
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the half-maximum deactivation rate to calculate the value of K0.5. After analysis and
calculation, it was found that the K0.5 values of NhaC1 for Na+, K+, and Li+ were 0.43 mM
(Figure 8A), 0.53 mM (Figure 8B), and 0.52 mM (Figure 8C), respectively, indicating that the
substrate affinity activity for monovalent cations was Na+ > Li+ > K+. Additionally, the K0.5
values of NhaC2 for Na+, K+, and Li+ were 0.42 mM (Figure 8D), 0.39 mM (Figure 8E), and
0.85 mM (Figure 8F), indicating that the substrate affinity activity for monovalent cations
was K+ > Na+ > Li+.
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Figure 7. Detection of Na+(K+, Li+)/H+ antiport activity. (A) The measurements for Na+(K+, Li+)/H+

antiport activities were performed in everted membrane vesicles prepared by E. coli KNabc containing
pET28AK (as negative controls), pET28AK-nhaC1, and pET28AK-nhaC2 at pH 7.0 with monovalent
cations (final concentration 5 mM), respectively; (B,C) Detection of pH-dependent activity profile of
NhaC1 and NhaC2. Data in the figure represent the average of three independent trials.
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Figure 8. Calculation of K0.5 values of Na+, K+, and Li+ by NhaC1 and NhaC2. With the final
concentration of monovalent cations as the abscissa and the fluorescence dequenching rate as the
ordinate, origin2017 was used for nonlinear regression analysis to fit the curve and calculate the final
concentration on monovalent cations added, which could reach half of the maximum fluorescence
dequenching. (A–C) The curves and K0.5 values of Na+, K+, and Li+ NhaC1, respectively; (D–F) The
curves and K0.5 values of Na+, K+, and Li+ NhaC2 respectively. Data in the figure represents the
average of three independent trials.
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3. Discussion

In this study, Na+(K+, Li+)/H+ antiporter NhaC1 and NhaC2 were identified from
N. daqingense, an extremely halophilic archaeonisolated from Daqing (China) saline-alkali
soil, which could grow under a range of NaCl concentrations in 10% saturated solution
(w/v) [27]. Both NhaC1 and NhaC2 belong to the Na+/H+ antiporter NhaC family protein
and are closely related to Na+/H+ antiporter NhaC family proteins in some halophilic
archaea; most of the proteins in this family were identified from halophilic bacteria such
as Bacillus and verified to have salt tolerance and pH resistance abilities [24,25]. It is
interesting that ArcD, an archaebacterial arginine/ornithine antiporter from Halobacterium
salinarum, was also phylogenetically classified at the edge of Na+/H+ antiporter NhaC
family proteins [37].

NhaC1 and NhaC2 were both predicted to be membrane proteins consisting of 11 and
12 TMSs, respectively (Figure 2C,D), and demonstrated to be localized on the cell membrane
of heterogenous host E. coli KNabc according to the Western blot results (Figure 6C,D).
Both nhaC1 and nhaC2 could restore the growth of KNabc in an LBK medium containing
0.2 M NaCl and could be tolerant of higher concentrations of Na+ and Li+ in the medium,
exhibiting stronger pH resistance (Figure 5); these are in line with screening patterns for the
Na+/H+ antiporter complementing of salt-sensitive strain of KNabc [38]. The detection of
Na+(Li+)/H+ antiport activities (Figure 7) found that the transportation activities of NhaC1
and NhaC2 would change with changes in pH; it is inferred that their function of transport
is pH-dependent. It has been reported that using this method can also identify genes with
K+/H+ antiport function [39] based on the results, both NhaC1 and NhaC2 are inferred to
be pH-dependent Na+(K+, Li+)/H+ antiporters.

According to available reports [39,40] and TCDB [41], the Na+/H+ antiporter NhaC
(TC identifier: 2.A.35) family protein is a Na+/H+ exchanger from the IT superfamily,
which is characterized by the substrate of the transporter, which should be a charged
organic or inorganic chemical species (cations or anions) [19]. Most NhaC family proteins
were identified in bacteria [24,25], such as Bacillus firmus, Bacillus subtilis, Haemophilus
influenziae, and Vibrio cholerae. Notably, genes encoding NhaC proteins have been identified
in hyperthermophilic archaea Pyrococcus furiosus [26]. Ito et al. [24] identified a NhaC
(462 amino acids) containing 12 TMSs from B. firmus and detected the Na+/H+ antiport
activity of everted membrane vesicles. The main function of the NhaC family protein is to
extrude intracellular Na+ or Li+ out of cells [24]. For NhaC from Bacillus sp. G1, research
has shown that NhaC is a Na+ extrusion channel at pH 7.5, and ensures pH homeostasis in
low Na+ environments, reflecting the electrogenic character of the Na+/H+ antiporter [25].

In this study, we identified two proteins with Na+(K+, Li+)/H+ antiport activity from
N. daqingense for the first time; both NhaC1 and NhaC2 belong to the Na+/H+ antiporter
NhaC family of proteins, enriching the research on NhaC-type Na+/H+ exchangers in
extremely halophilic archaea. Therefore, we plan to complete the identification of this
protein in future research. We also plan to construct N. daqingense mutants with nhaC1
deletion, nhaC2 deletion, and nhaC1-nhaC2 co-deletion by using homologous recombination
to clarify the role of two NhaC family proteins in the salt tolerance and pH resistance of
N. daqingense and clarify their mechanisms.

4. Materials and Methods
4.1. Strains, Plasmids, and Growth Conditions

The strains and plasmids employed in this study are listed in Table 2. N. daqingense
JX313T was cultured in 17.5% NaCl (optimum) Luria Bertani (LB) medium containing
10 g/L tryptone, 5 g/L yeast extract, 1.5% glucose (autoclaving alone), 1.23 g/L MgSO4·7H2O
added to 175 g/L NaCl at 35 ◦C and pH 9.5. E. coli KNabc, the salt-sensitive strain, and
its transformant cells were grown aerobically in the LBK medium, that is, the LB medium
with 6.49 g/L Na-free KCl instead of NaCl, as previously described by Karpel et al. [38].
The antibiotic concentrations used for screening positive clones were ampicillin 50 µg·mL−1

and kanamycin 50 µg·mL−1. The preparation of electrotransformed competent cells of KN-
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abc required the cultivation of KNabc in LBK medium at 37 ◦C overnight. In order to test
the salt tolerance ability of positive clones, 1% of different KNabc/recombinant plasmid
overnight cultures (OD600 was adjusted to 0.8 before inoculation) were inoculated into LBK
medium (containing 50 mg·mL−1 of ampicillin, pH 7.5) with varying concentrations of NaCl
(0–0.8 M) or LiCl (0–50 mM), respectively, and incubated overnight at 37 ◦C. To determine the
pH profile of positive clones, 1% of different KNabc/recombinant plasmid overnight cultures
were inoculated into LBK medium (containing 50 mg·mL−1 of ampicillin) with varying
pH ranges from 7.0 to 10.0 (adjust by adding 100 mM Hepes–Tris buffer), respectively, and
incubated overnight at 37 ◦C. A UV spectrophotometer was used to measure the OD600 value
of overnight (16 h) cultures to reflect the growth of recombinant strains. The preparation and
electro-conversion method of KNabc electrotransformed competent cells was as described by
Jiang et al. [42].

Table 2. Strains and plasmids employed in this study.

Strain or Plasmid Description Source or Reference

Strains

N.daqingense JX313T Original strain, an extremely
halophilic archaea

Isolated and identified by
our lab [27]

E. coli DH5α Host strain for cloning Vazyme Biotech Co., Ltd.

E. coli KNabc Na+/H+ antiporter-deficient strain,
nhaA::KmR, nhaB::EmR, chaA::CmR

Donated by Prof. Juquan
Jiang [31]

Plasmids

pUC18 Cloning vector, AmpR Comate Biosciences Co., Ltd.
(Changchun, China)

pET-28a Prokaryotic expression vector, KanR Comate Biosciences Co., Ltd.

pET-28AK Prokaryotic expression vector, KanR

and AmpR This study

pUC1028-1
pUC18 carrying 3.5 kb DNA

fragment with Na+/H+ antiport
activity

This study

pUC1028-9
pUC18 carrying 4.9 kb DNA

fragment with Na+/H+ antiport
activity

This study

pET28AK-nhaC1 Heterologous expression vector of
nhaC1 This study

pET28AK-nhaC2 Heterologous expression vector of
nhaC2 This study

4.2. Screening of Na+(K+, Li+)/H+ Antiporter Genes

The genomic DNA of N. daqingense JX313T was partially digested with the restriction
enzyme Sau3AI, and the amount of Sau3AI was adjusted to concentrate the size of genomic
cleavage products between 2–10 kb. Genomic cleavage products prepared after recovery by
agarose gel electrophoresis were inserted into the pUC18 (purified after BamHI digestion
and dephosphorylation) cloning vector using T4 DNA ligase. The ligation products were
transferred into prepared KNabc-competent cells through electro-conversion, and positive
clones were selected with LBK medium containing 0.2 M NaCl, 2% Agar, and 50 mg·mL−1

of ampicillin. By using homologous recombination, each ORF and its predicted promoter
and SD sequence from positive colonies were respectively ligated to the pUC18 vector;
ORFs with no predicted promoter or a low promoter score were ligated into a pET28(a)
vector containing T7 promoters. Examples of the above subcloning process are shown in
Figure 1C.

4.3. Preparation of Everted Membrane Vesicles

The KNabc containing pUC-positive fragments or pUC18 (as negative control) were in-
oculated into 100 mL LBK medium (containing 0.2 M NaCl, and 50 mg·mL−1 of ampicillin)
and LBK medium (containing 50 mg·mL−1 of ampicillin) at 1% inoculum, respectively,
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then cultured to the middle of the logarithmic growth stage. These were centrifuged at
5000× g, 4 ◦C for 10 min to collect precipitation, and the supernatant was discarded. After
rinsing twice with 10 mL buffer A (140 mM choline chloride; 10 mM Tris; 10% of glycerol;
pH 7.5, 1 mM PMSF was added before use; storage at 4 ◦C), they were suspended and
the cell wall was disrupted using a pre-cooled Ultrasonic Cell Disruption System (cycles:
3 s ON followed by 2 s OFF) until the bacterial solution became less turbid. They were
centrifuged at 8000× g, 4 ◦C for 10 min, then the supernatant was transferred and ultracen-
trifuged at 100,000× g, 4 ◦C for 1 h. The supernatant was discarded, and the precipitation
was dissolved using the appropriate amount of buffer A, stored at −80 ◦C.

4.4. Preparation and Purification of Proteins

Each ORF that can cause the KNabc to regrow on the LBK medium (containing
0.2 M NaCl) plates was ligated into pET28AK to co-express with the 6×His tag. E. coli
KNabc containing pET-positive fragments or pET28AK (as negative control) were inocu-
lated into 100 mL LBK medium (containing 0.2 M NaCl, 50 mg·mL−1 of ampicillin) and
LBK medium (containing 50 mg·mL−1 of ampicillin) at 1% inoculum, respectively, and
cultured at 37 ◦C. IPTG (final concentration: 1 mM) solution was added when the value of
OD600 was between 0.6–0.8, and induced the protein expression at 22 ◦C for 12 h. The total
protein, membrane protein, and cytoplasmic protein were prepared by kit from Bestbio
(BB-3182&BB-31516). The total protein and cytoplasmic protein were packaged for Western
blot analysis, and the rest were stored at −80 ◦C. The membrane proteins obtained in
the previous step were first filtered by 0.22 µm filter membrane, and then affinity chro-
matography with Ni-NTA using the AKTA protein purifier. The buffer formula involved
in the protein purification process is shown in Table 3. The target protein was eluted with
300 mM imidazole, flow velocity: 0.5 mL/min. The target proteins collected by affinity
chromatography were transferred into ultrafiltration tubes and centrifuged at 5000× g,
4 ◦C for 20–60 min (until the volume was about 600 µL). The proteins were carefully
collected from ultrafiltration and packaged for SDS-PAGE and Western blot analysis.

Table 3. Protein purification buffer formula.

Component Soluble Film Buffer Binding Buffer Washing Buffer Elution Buffer

Choline chloride 140 mM 140 mM 140 mM 140 mM
Tris 25 mM 25 mM 25 mM 25 mM

Glycerol 10% 10% 10% 10%
N-Dodecyl-β-D-maltoside 0.02% 0.02% 0.02% 0.02%

Imidazole - 10 M 25/45/50/55/60/65/85 mM 300 mM

4.5. SDS-PAGE and Western Blot

KNabc/pET28AK-nhaC1 and KNabc/pET28AK-nhaC2 were grown in LBK medium
containing 0.2 M NaCl and 50 mg·mL−1 of ampicillin; KNabc/pET28AK was grown in LBK
medium containing 50 mg·mL−1 of ampicillin as the negative control, and cultured to OD600
0.6–0.8 at 37 ◦C. Isopropyl-β-D-thiogalactoside (IPTG) was added (final concentration
1 mM) to induce the expression of proteins for 12 h at 22 ◦C, then used for the prepara-
tion and purification of proteins. The extracted protein content was quantified using a
Bradford Kit from Bestbio (BB-3411). The methods of SDS-PAGE and Western blot refer to
Green et al. [43]. Total protein, cytoplasmic protein, and membrane protein of E. coli KN-
abc (containing pET28AK-positive fragments) and E. coli KNabc (containing pET28AK as
negative control) were used as samples for detection and localization, respectively. The
detection of 6×His tag was carried out using Beyotime polyclonal mouse anti-6×His tag
antibody and Beyotime HRP-labeled goat anti-mouse IgG(H+L).

4.6. Detection of Na+(K+, Li+)/H+ Antiport Activity

The Na+(K+, Li+)/H+ antiport activity was estimated based on the collapse of trans-
membrane proton gradients, and acridine orange was selected as the fluorescent indicator
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according to Rosen’s method [44]. A 2 mL buffer D (10 mM Bis-Tris propane; 140 mM
choline chloride; 5 mM MgSO4; pH from 7.0 to 10.0), 1 µL acridine orange (1 mM), and
40 µg everted membrane vesicles were added into the quartz colorimetric dish, deter-
mined after numerical stabilization by fluorescence spectrophotometer with excitation at
490 nm (10 mm slit) and emission at 530 nm (10 mm slit). D-lactic acid (final concentration
5 mM) was added into the mixture to quench the fluorescence; then, various concentrations
of NaCl, KCl (Na free), or LiCl were added to dequench the fluorescence, determined
after numerical stability. The Na+(K+, Li+)/H+ antiport activity was represented by the
percentage of fluorescence-dequenching value to total fluorescence quenching value.

4.7. Calculation of pH Profile and K0.5 Values for Monovalent Cations

The Na+(K+, Li+)/H+ antiport activity of different everted membrane vesicles in
pH 7.0–10.0 were determined by fluorescence spectrophotometer with NaCl, KCl (Na free)
and LiCl at a concentration of 5 mM. Under the optimum pH, equal amounts of NaCl,
KCl (Na-free), or LiCl were added with various concentrations (0.5–10 mM) to measure
the Na+(K+, Li+)/H+ antiport activity of different everted membrane vesicles. With ion
concentration as the abscissa and fluorescence dequenching rate as the ordinate, origin2017
was used for nonlinear regression analysis to calculate the K0.5 value.

4.8. DNA Manipulation and Bioinformatics Analyses

The extraction of genomic DNA was carried out using a FastPure Bacteria DNA
Isolation Kit (Vazyme DC103). The genomic library screening method was described by
Green et al. [44]. Preparation of plasmid DNA was carried out using TIANprep Mini Plas-
mid Kit (Tiangen DP103). Homologous recombination of DNA was done by CloneExpress
Ultra One Step Cloning Kit (Vazyme C115-01). The primers used in this study are listed in
Table 4. DNA sequencing was performed by RuiBiotech Institute (Beijing, China). The anal-
yses for ORF and constructs of plasmid model diagrams were carried out with SnapGene5.2.
Protein and DNA sequence alignment was performed through the National Center for
Biotechnology Information using the website https://blast.ncbi.nlm.nih.gov/Blast.cgi (ac-
cessed on 1 November 2022), and the accessions of homologs of NhaC1 and NhaC2 to NhaC
family proteins used for analysis were listed in Table 5. The phylogenetic tree was con-
structed via MEGA 11.0 using the neighbour-joining method [45]. Prediction of promoter
was performed using the website http://genomes.urv.es/OPTIMIZER/ (accessed on 1
November 2022). The analyses of hydrophobicity and transmembrane prediction conducted
using the online analysis tools of DetaiBio’s website http://www.detaibio.com/tools/ (ac-
cessed on 15 April 2023).

Table 4. Primers of this study.

Primers Description Sequence(from 5′ to 3′) Source or Reference

22F
Archaea 16S rDNA

ATTCCGGTTGATCCTGC
X.W.Xu, et al. [46]1540R AGGAGGTGATCCAGCCGCAG

M13-47F Sequencing primers of pUC18 CGCCAGGGTTTTCCCAGTCACGAC This study
M13R CACACAGGAAACAGCTATGAC This study

T7 Sequencing primers of
pET-28a and pET28AK

TAATACGACTCACTATAGGG This study
T7t GCTAGTTATTGCTCAGCGG This study

Amp-F
To insertAmpR into pET-28a

CTGCHCGTTGGTGCGGATATCCGCG-
GAACCCCTATTTGTT This study

Amp-R GTATCCCACTACCGAGATATCTTA-
CCAATGCTTAATCAGTGAGGC This study

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://genomes.urv.es/OPTIMIZER/
http://www.detaibio.com/tools/
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Table 4. Cont.

Primers Description Sequence(from 5′ to 3′) Source or Reference

1-3FP To insert DNA sequence of
pUC1028-1-ORF3 into pUC18

TATGACCATGATTACGAATTCATGTC-
TGACTTTGGAGCGCTTT This study

1-3RP CAGGTCGACTCTAGAGGAT-
CCTTACTCCTCAGGGTCCGTCCC This study

9-2FP To insert DNA sequence of
pUC1028-9-ORF2 into pUC18

TATGACCATGATTACGAATTCATGAG-
TGAAGCCAACGATAATTCA This study

9-2RP CAGGTCGACTCTAGAGGATCCTCA-
TAGTCGTGCCACCTCCTCG This study

NhaC1-EF
To insert nhaC1 into pET28AK

CAGCAAATGGGTCGCGGATCCATGTC-
TGACTTTGGAGCGCTTT This study

NhaC1-ER TTGTCGACGGAGCTCGAATTCTTACT-
CCTCAGGGTCCGTCCC This study

NhaC1-EF
To insert nhaC2 into pET28AK

CAGCAAATGGGTCGCGGATCCATGA-
GTGAAGCCAACGATAATTCA This study

NhaC1-ER TTGTCGACGGAGCTCGAATTCTC-
ACACCCCCCAGAAGAACG This study

Table 5. Accessions of homologs of NhaC1 and NhaC2 to NhaC family proteins used for analysis.

NhaC1 Homologs Accession NhaC2 Homologs Accession

Nd_NhaC1(this
study) WP_076580434.1 Nd_NhaC2(this study) WP_076580456.1

Ns_NhaC WP_090507012.1 Ns_NhaC WP_090507022.1
NsA_NhaC WP_278304797.1 Nt_NhaC WP_076607379.1
Nti_NhaC WP_006090653.1 Np_spa TYL39413.1
Nte_NhaC WP_090303449.1 NsuJ_NhaC ELY48302.1
No_NhaC WP_015320610.1 Nh_NhaC1 WP_170972344.1
Na_NhaC WP_005555905.1 Nh_NhaC2 WP_162989723.1
Hk_NhaC WP_092904960.1 Nsu_NhaC WP_049890100.1
Nh_NhaC WP_137288726.1 Np_NhaC WP_187432893.1
Ht_NhaC WP_012943592.1 Hi_NhaC WP_049954249.1
Ha_NhaC WP_120244443.1 Na_NhaC WP_152938558.1
Hx_NhaC WP_013881651.1 Nt_NhaC WP_006090630.1

NsA_NhaC WP_278304817.1
HiA_NhaC EMA28167.1
NsC_NhaC WP_252487510.1
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