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Abstract: Rice false smut, caused by the fungal pathogen Ustilaginoidea virens, is a worldwide rice
fungal disease. However, the molecular mechanism of the pathogenicity of the fungus U. virens
remains unclear. To understand the molecular mechanism of pathogenesis of the fungus U. virens,
we performed an integrated analysis of the transcriptome and metabolome of strongly (S) and
weakly (W) virulent strains both before and after the infection of panicles. A total of 7932 differential
expressed genes (DEGs) were identified using transcriptome analysis. Gene ontology (GO) and
metabolic pathway enrichment analysis indicated that amino acid metabolism, autophagy-yeast,
MAPK signaling pathway-yeast, and starch and sucrose metabolism were closely related to the
pathogenicity of U. virens. Genes related to pathogenicity were significantly upregulated in the
strongly virulent strain, and were ATG, MAPK, STE, TPS, and NTH genes. However, genes involved in
the negative regulation of pathogenesis were significantly downregulated and contained TOR kinase,
TORC1, and autophagy-related protein genes. Metabolome analysis identified 698 differentially
accumulated metabolites (DAMs), including 13 categories of organic acids and derivatives, lipids
and lipid-like molecules, organoheterocyclic compounds. The significantly enriched pathways of
DAMs mainly included amino acids and carbohydrates, and they accumulated after infection by
the S strain. To understand the relevance of DEGs and DAMs in the pathogenicity of U. virens,
transcriptomic and metabolomic data were integrated and analyzed. These results further confirmed
that the pathogenesis of U. virens was regulated by DEGs and DAMs related to these four pathways,
involving arginine and proline metabolism, lysine biosynthesis, alanine, aspartate and glutamate
metabolism, and starch and sugar metabolism. Therefore, we speculate that the pathogenicity of
U. virens is closely related to the accumulation of amino acids and carbohydrates, and to the changes
in the expression of related genes.
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1. Introduction

Rice false smut (RFS), caused by the fungus Ustilaginoidea virens, which infects rice
panicles, is one of the main fungal diseases in the rice-growing regions worldwide [1]. The
main symptom of this disease is the formation of rice false smut balls, which are several
times larger than the grain. The fungus U. virens must absorb nutrients from rice to complete
its vegetative growth and the formation of smut balls. This hinders grain filling, but also
increases the sterility of grains near the smut ball. Thus, rice panicle nutrition deficiency
and thousand seed weight decrease seriously threaten rice yield and quality [2]. The fungus
produces mycotoxins, such as ustiloxins, water-soluble cyclic peptides, and ustilaginoidins,
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lipid-soluble naphthopyranones [3,4]. Mycotoxins inhibit the radicle elongation of seeds,
but also have toxic effects on humans and animals [5].

In recent years, the severity and area of occurrence of RFS have increased due to the
influence of rice varieties, cultivation conditions, and climate in China [6]. According to
statistics, in the past 10 years, the average annual occurrence area of RFS has been more
than 3 million hm2, and the average annual chemical control area has been 6.9 million hm2,
accounting for 10% and 23% of the rice planting area, respectively [7]. At present, fungicide
application is the most common and effective control method for RFS at the rice booting
stage. The extensive use of chemical fungicides aggravates environmental pollution, and
leads to the generation of fungicide-resistant strains [8]. Therefore, safe and accurate
prevention and control of RFS can ensure rice yield and quality.

With the publication of the genome sequence of U. virens, the functional genes of
U. virens have also been studied rapidly [9]. Lv et al. [10] reported that the fungus-specific
transcription factor gene UvPRO1 was involved in regulating the sporulation, stress re-
sponse, and pathogenicity of U. virens. The UvHOG1 gene of mitogen-activated protein
kinase (MAPK) is involved in the regulation of the stress response, mycelial growth, and
secondary metabolism of U. virens [11]. The autophagy-related gene UvAtg8 is associated
with mycelial growth, stress response, spore production, and the pathogenicity mechanism
of U. virens [12]. The homebox transcription factor UvHOX2 regulates chlamydospore
formation and conidia production in U. virens, and the pathogenicity of U. virens is lost
after gene deletion [13]. Ustilaginoidea virens causes RFS via a complicated process in spe-
cific infected rice-flower organs, which are involved in many metabolic pathways and
genes [14,15] Therefore, it is necessary to systematically and deeply study the pathogenic
mechanism of the pathogens.

With the development of omics technology, multiomics analysis has been widely
used in the analysis of complex biological mechanisms in plants, among which transcrip-
tomics and metabolomics are relatively mature, in-depth, and simple techniques [16,17].
In combined transcriptome and metabolome analysis, correlation analysis between the
differentially expressed genes (DEGs) in the transcriptome and the differentially accumu-
lated metabolites (DAMs) detected in the metabolome can be analyzed to determine the
internal changes in organisms from the two levels of cause and result, showing the lock and
key pathways of the changes in genes and metabolites, and building important regulatory
networks to reveal its internal law [18]. Transcriptome and metabolome analyses have
been used to study the stress and growth of pathogenic fungi, such as Rhizopus oryzae [19],
Agaricus bisporus [20], and Candida albicans [21].

The uniomics transcriptome has been used to study biological processes related to
interactions between compatible rice and U. virens [22] and the differential expression
profiling of rice panicles’ response to U. virens mycotoxins [23]. In this study, we performed
a multiomics transcriptome and metabolome analysis of strongly and weakly virulent
strains before and after infection to reveal the pathogenic mechanism of U. virens. These
results showed that metabolic pathways involved in arginine and proline metabolism,
lysine biosynthesis, alanine, aspartate and glutamate metabolism, and starch and sugar
metabolism, were closely related to the pathogenicity of U. virens. In addition, these genes
play an important role in the pathogenicity of the pathogen, involving ATG, MAPK, STE,
TPS, NTH, TOR kinase, TORC1 and autophagy-related protein genes.

2. Results
2.1. Evaluation of U. virens Pathogenicity

In the pathogenicity identification of strains PXD25 and GY900 over 3 years, we found
that PXD25 had a stronger pathogenicity than GY900 (Figure 1A). The pathogenicity rate of
PXD25 was greater than 60%, while that of GY900 was less than 10% (Figure 1B). Therefore,
PXD25 was referred to as a strongly virulent strain (S), and GY900 was known as a weakly
virulent strain (W) [24].
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Figure 1. Evaluation of Ustilaginoidea virens pathogenicity. (A) Pathogenicity identification of strains
PXD25 and GY900. (B) The disease symptoms of strains PXD25 and GY900 in the field.

2.2. Transcriptome Test Results and Analysis
2.2.1. Summary of Transcriptome Data

To identify the pathogenic mechanism of U. virens, transcriptome sequencing was
performed before and after infection of the strongly and weakly pathogenic strains. A
total of 45,750,132 clean reads and 86.59 Gb clean bases were generated in 12 samples
(Supplementary Table S1). Compared with the U. virens reference genome sequence, the
efficiency of each sample was mapped at >95.92%. The error rate, Q20, Q30, and GC content
values were less than 0.03%, 97.49–97.99%, 93.31–94.70% and 56.13–57.61%, respectively
(Supplementary Table S1). These results indicate that the sequencing quality is high and
suitable for further transcriptome analysis.

Pairwise comparisons of identified DEGs were performed before and after infection
with the S and W strains. The |log2 fold-change| ≥ 1 and p-value < 0.05 were used as
thresholds for DEG identification. A total of 6708 DEGs (3265 upregulated, 3443 downreg-
ulated) and 6521 DEGs (3224 upregulated, 3297 downregulated) were identified in S1 vs.
S0 and W1 vs. W0, respectively (Figure 2A). A Venn diagram analysis showed DEGs that
were common among strains with a difference in virulence, or specific to either strain in
response to infected rice panicles (Figure 2B). Among them, 5297 were identified as DEGs
common to S1 vs. S0 and W1 vs. W0; 1411 were categorized as DEGs only in S1 vs. S0, and
1224 were identified as DEGs only in W1 vs. W0 (Figure 2C).
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Figure 2. Analysis of differentially expressed genes (DEGs) in S1 vs. S0 and W1 vs. W0. (A) Volcano
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2.2.2. Enrichment Analysis of Functional Genes

To further investigate the functional classifications and biological functions of genes
in strains PXD25 (S) and GY900 (W) after rice panicles’ infection, the gene ontology (GO)
and pathway enrichment analyses of DEGs were performed. These data showed that the
enriched GO terms were mainly related to molecular function, binding, catalytic activity,
protein binding, ATP binding, organonitrogen compound metabolic process, oxidation
reduction process, protein metabolic process, and protein binding (Figure 3A,B). KEGG
enrichment analysis showed that 110 pathways were annotated, of which 28 pathways
were significantly enriched in S1 vs. S0 and W1 vs. W0. Among them, the top 20 pathways
are shown in Figure 3C,D. In S1 vs. S0 and W1 vs. W0, the primary pathways were
autophagy-yeast, MAPK signaling pathway-yeast, lysine biosynthesis, arginine and proline
metabolism, alanine, aspartate and glutamate metabolism, purine metabolism, TCA cycle,
cysteine and methionine metabolism, and starch and sucrose metabolism.
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2.2.3. Analysis of Pathogenicity-Related DEGs

(1) Analysis of autophagy-related DEGs Previous studies have reported that au-
tophagy plays an important role in the growth development and pathogenicity of plant
pathogens [25]. The target of rapamycin (TOR) kinase plays a vital role in autophagy.
It is a negative regulator that determines whether autophagy occurs [26]. In addition,
some autophagy-related genes (ATG) and other autophagy-related factors induce au-
tophagy. In this study, DEG analysis showed that the expression levels of 23 genes
related to autophagy were changed in strains S and W after rice infection (Figure 4A
and Supplementary Table S2). Among them, eight genes were downregulated in both S
and W, namely three negative regulator genes (TOR kinase genes, TORC1, and TapA), two
autophagy-related protein genes (UV8b_02065 and UV8b_03428), two serine/threonine-
protein kinase genes (UV8b_04169 and UV8b_01950), and one phosphoinositide 3-kinase
regulatory subunit 4 (UV8b_00898); 15 genes were upregulated, including five ATG genes
(ATG1, ATG4, ATG5, ATG7 and ATG13), one protein kinase SNF1 gene (UV8b_04520),
one vesicle fusion factor NSFI (UV8b_00760), and one phosphoinositide 3-kinase (PI3K).
Therefore, we speculated that U. virens can activate autophagy by inhibiting the expression
of the TOR kinase gene, and activating the expression of ATG genes and other autophagy-
related protein genes to improve the level of autophagy in response to the infection and
pathogenicity of rice.

(2) Analysis of the MAPK signaling pathway DEGs Signal transduction genes of
plant pathogenic fungi mainly have three categories, namely mitogen-activated protein
kinase (MAPK) gene, cyclic AMP gene, and G protein gene, which coordinate the growth,
development and pathogenicity of pathogens [27,28]. Here, the enrichment analysis of the
signal transduction pathways of DEGs showed that MAPK was the main signal pathway
after infection in strains S and W. A total of 12 genes were identified, with significant
changes in expression (Figure 4B and Supplementary Table S2). Of these, four MAPK genes,
two STE genes, two transcription factor genes, and one Rho GTPase activator (Sac7) gene
were significantly upregulated in strains S and W after infection. These genes are closely
involved in signal transduction. Therefore, our results indicate that MAPK is the main
signaling pathway after U. virens infection in rice panicles.
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Figure 4. Expression pattern of differentially expressed genes (DEGs) in strains S and W after
infection of rice panicles. (A) Analysis of autophagy-related DEGs. (B) Analysis of MAPK signaling
pathway DEGs. (C) Analysis of amino acid metabolism DEGs. (D) Analysis of starch and sucrose
metabolism DEGs.

(3) Analysis of amino acid metabolism DEGs Many studies have reported that amino
acid metabolism is essential for the vegetative growth, infection cycle, and pathogenicity
of plant pathogens [29,30]. In this study, we analyzed the DEGs in four amino acid
metabolic pathways, namely arginine biosynthesis, lysine biosynthesis, arginine and proline
metabolism, and alanine, aspartate and glutamate metabolism. A comparison of the
expression levels of DEGs in these enrichment pathways indicated that many genes were
upregulated in the strongly virulent strain but downregulated or inhibited in the weakly
virulent strain (Figure 4C and Supplementary Table S2). Among them, multiple genes
enriched in arginine and lysine biosynthesis were greatly upregulated in strain S after
the infection of rice panicles. In contrast, these genes were not significantly regulated or
suppressed in strain W. Taken together, our finding that amino acid metabolism-related
genes showed opposite expression patterns between S and W after infection indicated
that these genes played vital roles in U. virens pathogenicity. Additionally, the amino acid
metabolism of U. virens may play an important role in the pathogenesis of U. virens.

(4) Analysis of starch and sucrose metabolism DEGs Starch and sucrose metabolism
play an important role in the development and pathogenicity of plant fungal pathogens [31].
To identify potential regulatory genes closely associated with starch and sucrose metabolism,
we identified DEGs by comparing the expression changes between strains S and W. Of the
genes involved in starch and sucrose metabolism that were expressed after the infection
of rice panicles, more were expressed at a higher level in strain S than in strain W; the
difference between the two strains is shown in a heatmap (Figure 4D and Supplementary
Table S2). Previous studies have found that trehalose is closely related to the pathogenicity
of plant pathogens [32]. Here, we found four genes involved in trehalose metabolism,
namely three trehalose-6-phosphate synthase (TPS) genes and one neutral trehalase (NTH)
gene. The expression levels of these genes were upregulated in strains S and W, but the
expression in strain S was significantly higher than in strain W. Therefore, the results
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showed that these DEGs involved in starch and sugar metabolism might play an essential
role in the virulence of U. virens.

2.2.4. RT-qPCR Validation of DEGs

To validate the reliability and authenticity of the DEG data from transcriptome analysis,
the expression levels of 10 candidate genes were confirmed using RT-qPCR. Each assay was
conducted in triplicate with Tubulin as the reference gene. The RT-qPCR results showed
that the expression patterns of the candidate genes were consistent with the RNA-Seq
analysis (Table 1). Therefore, the RT-qPCR results suggest that the transcriptome data
are reliable.

Table 1. qRT-PCR primers used in this study to verify the RNA-Seq data.

Genes Primers(5′–3′) Log2FC (RNA-Seq) Log2FC (RT-qPCR)

UV8b_04520 F-ATGGCTCCCCGAGGAGGCTTTG
R-TCAGTCCGCCTCTGCCAGCTGCATGA 3.34251 2.93451

UV8b_06544 F-ATGGCGAGTCGTCAAGATGGAT
R-TTATGCTGATCCATGCGATGGTA 2.95398 2.56875

UV8b_07283 F-ATGCCCAAGCGCCTACTCCGT
R-CGGAGTCTGCTGCAGCCAAACCCTA 2.97542 2.28723

UV8b_07350 F-ATGGGGACTTCTCCTGCCACCGAGT
R-TCATGAGAAGCGGCGCTGGACGCCT 3.32256 3.01291

UV8b_05641 F-ATGGACGGTCCGAGATCGTCCTTG
R-GATGTTGCCTTCGTTGGACAGCA 2.41345 2.13214

UV8b_01480 F-ATGGCAGGCGGCATGGGTCCCC
R-TTAGCAGTATGACTCGTTAGGC 3.90424 3.45192

UV8b_06216 F-ATGGCAAATGCAAACTCCATCTA
R-TCAGGTAATCTGGGCAATAACC 1.63942 1.02376

UV8b_07418 F-ATGTCCAGTGACACCAGTATTAC
R-AATTCTATGGTACCGAATTTGCCGT 2.56132 1.98124

UV8b_04169 F-ATGGCGGCAACGGTAGCCCAGTCG
R-TCAAAACTCCTCGAAGTACCGG −3.60581 −3.97812

UV8b_00876 F-ATGGCGCAACAACAGCAGGTC
R-CCTTCCCTGACATATATGAGCA −3.27163 −3.51234

2.3. Detection Results and Analysis of the Untargeted Metabolome
2.3.1. Quality Control and Statistical Analysis of Untargeted Metabolome Data

A total of 19 samples were analyzed using metabolomics, comprising the treatment
group (S1 and W1) and control group (S0 and W0), with four biological replicates for
each treatment, and three quality control samples (QC). Qualitative and quantitative
analyses of metabolites were performed using the UHPLC-QE-MS detection platform.
Mass spectrometry of QC analysis showed that the total ion flow of metabolites had high
overlap in the positive and negative ion modes (Figure 5A,B). As shown in the figures,
the technology in this experiment had high reliability and overlap, demonstrating the
reliability and authenticity of the data. The PCA analysis of the peaks obtained from
all samples showed that the samples were closely clustered together in the positive and
negative ion modes, indicating the good repeatability of the experiment (Figure 5C,D).
Therefore, the metabolome data of this experiment are real and reliable, and can be used
for further analysis.
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2.3.2. Qualitative and Quantitative Analyses of Metabolites

The metabolites in strongly and weakly virulent strains were detected qualitatively
and quantitatively twice using the untargeted metabolome determination method. A total
of 698 metabolites were detected in this experiment, including 186 organic acids and deriva-
tives, 133 lipids and lipid-like molecules, 86 benzenoids, 81 organic oxygen compounds,
8 alkaloids and derivatives, 31 phenylpropanoids and polyketides, and 13 others (Table 2).
In addition, the cluster heat map of the metabolites in the samples (Figure 6A) showed that
there were significant differences in the metabolite content in the strongly virulent (S) and
weakly virulent (W) strains before and after infection. Furthermore, the orthogonal partial
least squares discriminant analysis (OPLS-DA) score diagram (Figure 6B) and the model
validation diagram of OPLS-DA (Figure 6C) of all samples from each group indicated
significant differences in S and W strains before and after infection.
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Table 2. Types and quantities of metabolites.

Species of Metabolites Number of Metabolites

Organic acids and derivatives 186
Lipids and lipid-like molecules 133
Organoheterocyclic compounds 100
Benzenoids 86
Organic oxygen compounds 81
Phenylpropanoids and polyketides 31
Nucleosides, nucleotides, and analogues 28
Organic nitrogen compounds 25
Other 13
Alkaloids and derivatives 8
Organosulfur compounds 2
Lignans, neolignans and related compounds 2
Homogeneous non-metal compounds 2
Hydrocarbon derivatives 1
Total 698
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2.3.3. Differential Metabolite Analysis

Metabolites with VIP ≥ 1 and p-value < 0.05 were designated as DAMs. Consequently,
562 DAMs were detected. Among them, there were 452 DAMs (223 upregulated, 229 down-
regulated) in S1 vs. S0, and 392 DAMs (188 upregulated and 204 downregulated) in W1
vs. W0 (Figure 7A,B). The Venn diagram showed that there were 282 common DAMs in
S1 vs. S0 and W1 vs. W0, 170 and 110 unique DAMs in the S1 vs. S0 and W1 vs. W0,
respectively (Figure 7C). Spearman correlation analysis was used to analyze the correlation
of the top 50 DAMs with the highest significant difference (Supplementary Figure S1). The
correlation heatmap showed that the absolute value of positive and negative correlation
coefficients between DAMs ranged from 0.636 to 0.999, indicating that the DAMs with
significant differences had significant changes in convergence or anisotropy.

To better understand the pathways involved in DAMs, KEGG enrichment analysis
was performed for DAMs. Figure 7D,E shows the top 20 pathways enriched in the two
combinations. A total of 82 metabolic pathways were enriched in S1 vs. S0, of which
10 metabolic pathways were significantly different, including the TCA cycle, arginine
and proline metabolism, ABC transporters, pentose phosphate pathway, starch and sugar
metabolism, biosynthesis of amino acids, glycine, serine and threonine metabolism, ly-
sine biosynthesis, carbon metabolism, and alanine, aspartate, and glutamate metabolism
(Supplementary Table S3). W1 vs. W0 involved a total of 79 metabolic channels, including
six metabolic channels, namely arginine biosynthesis, arginine and proline metabolism,
alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan
biosynthesis, starch and sugar metabolism, and lysine biosynthesis, with significant dif-
ferences (Supplementary Table S3). It can be seen from the significantly accumulated
metabolites that most of the accumulated metabolites increased in the strongly virulent
strain (S1) after infection and were higher than those in the weakly virulent strain (W1)
(Figure 7F). These metabolites mainly include amino acids, carbohydrates, and other
metabolites (Figure 7F), indicating that these substances may play an important role in the
pathogenesis of U. virens.

2.4. Combined Analysis of Transcription and Metabolome
2.4.1. Correlation Analysis between DEGs and DAMs

To understand the relevance of DEGs and DAMs in the pathogenicity of U. virens,
transcriptomic and metabolomic data were integrated and analyzed. Correlation anal-
ysis was performed for the genes and metabolites detected in each group based on the
Pearson correlation coefficient. The nine-quadrant diagram (Supplementary Figure S2)
showed the differential multiples of the metabolites and genes with Pearson correlation
coefficients greater than 0.8 in each differential group, and the differentially expressed
patterns of genes and metabolites were consistent in quadrants three and seven, indicating
that these metabolites were positively regulated by genes. In quadrants one and nine,
the differentially expressed patterns of genes and metabolites were opposite, and these
metabolites were negatively regulated by genes. For example, in S1 vs. S0, 3223 genes
positively regulated 363 metabolites and 3207 genes negatively regulated 363 metabolites.
W1 vs. W0 had 2812 genes that positively regulated 331 metabolites and 2810 genes that
negatively regulated 331 metabolites.

The common enrichment pathways of DAMs and DEGs were obtained by KEGG
enrichment analysis. As shown in Supplementary Figure S3A,B, 68 metabolic pathways
were co-enriched in S1 vs. S0, and 64 metabolic pathways were co-enriched in W1 vs. W0.
The KEGG enrichment analysis bubble diagram (Supplementary Figure S3C,D) showed
that the DEGs and DAMs of strongly and weakly virulent strains were significantly en-
riched in arginine and proline metabolism, lysine biosynthesis, alanine, aspartate and
glutamate metabolism, and starch and sugar metabolism. It was further confirmed that the
pathogenesis of U. virens was regulated by DEGs and DAMs related to these four pathways.
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2.4.2. Correlation Analysis of DEGs and DAMs in Significantly Enriched
Metabolic Pathways

To further investigate the correlation of DEGs and DAMs in “arginine and proline
metabolism, lysine biosynthesis, alanine, aspartate and glutamate metabolism, and starch
and sugar metabolism” in the infection mechanism of U. virens, we compared S1 and
S0 and drew a network diagram to reveal the relationship between genes and metabo-
lites. This experiment selected DAMs and DEGs with a correlation greater than 0.8 for
the correlation network map. In arginine and proline metabolism, nine metabolites dis-
played a strong correlation with 17 genes (Figure 8A and Supplementary Table S4). The
metabolites contained l-arginine, 4-aminobutyric acid (GABA), s-adenosylmethionine,
4-acetamidobutanoate, sarcosine, n-(omega)-hydroxyarginine, glutamic, pyruvate, and
d-proline. Nine related enzymes, namely pyrroline-5-carboxylate reductase [EC: 1.5.1.2],
gamma-glutamyl phosphate reductase [EC: 1.2.1.38], acetamidase [EC: 1.7.1.12], general
amidase [EC: 3.2.1.45], s-adenosylmethionine decarboxylase proenzyme [EC: 1.1.1.170],
histone acetyltransferase [EC: 2.3.1.48], delta 1-pyrroline-5-carboxylate dehydrogenase
[EC: 1.2.1.88], aspartate aminotransferase [EC: 2.6.1.1], and ornithine aminotransferase [EC:
2.6.1.13], were identified. Among them, l-arginine and s-adenosylmethionine had a corre-
lation higher than 0.99 with the following genes: UV8b_00446, UV8b_06678, UV8b_01984,
UV8b_02871, UV8b_04468, and UV8b_07070. Pyruvate was negatively regulated by gen-
eral amidase, s-adenosylmethionine decarboxylase proenzyme, pyrroline-5-carboxylate
reductase, aspartate aminotransferase, delta 1-pyrroline-5-carboxylate dehydrogenase, and
gamma-glutamyl phosphate reductase. Seven metabolites were negatively regulated by
the UV8b_06541 gene.
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In lysine biosynthesis, four metabolites showed a high relationship with 12 genes
(Figure 8B and Supplementary Table S5). The metabolites included l-lysine, l-saccharopine,
oxoadipic acid, and homocitrate. These genes encoded seven enzymes, namely homocitrate
synthase [EC: 2.3.3.14], homoserine dehydrogenase [EC: 1.1.1.3], aspartate-semialdehyde de-
hydrogenase [EC: 1.2.1.11], aminoadipate reductase enzyme [EC: 1.2.1.31], saccharopine de-
hydrogenase [EC: 1.5.1.7], aconitate hydratase [EC: 4.2.1.3], and aspartokinase [EC: 2.7.2.4].
L-lysine had a strong correlation with the genes UV8b_06216, UV8b_07007, UV8b_05599,
UV8b_00056, and UV8b_02651, and these genes positively regulated l-lysine.

In alanine, aspartate, and glutamate metabolism, six metabolites were high correlation
with 17 genes (Figure 8C and Supplementary Table S6). Six DAMs were involved: fumarate,
pyruvate, succinic semialdehyde, glutamic acid, 4-aminobutyric acid (GABA), and citrate.
The enzymes involved included fructose-6-phosphate amidotransferase [EC: 2.6.1.16], delta
1-pyrroline-5-carboxylate dehydrogenase [EC: 1.2.1.88], succinate semialdehyde dehydro-
genase [EC: 1.2.1.16], amidophosphoribosyltransferase [EC: 2.4.2.14], glutamine synthetase
[EC: 1.4.1.13], asparagine synthetase [EC: 6.3.5.4], glutamate decarboxylase [EC: 4.1.1.15],
4-aminobutyrate aminotransferase [EC: 2.6.1.96], and NAD+ dependent glutamate de-
hydrogenase [EC: 1.4.1.2]. Among them, glutamic acid had a high correlation with the
genes UV8b_06120, UV8b_01796, UV8b_07879, UV8b_04621, UV8b_02433, UV8b_02378, and
UV8b_00289, and positively regulated glutamic acid.

In starch and sugar metabolism, four metabolites were involved: glucose-6-phosphate,
trehalose, sucrose, and d-fructose (Figure 8D and Supplementary Table S7). The enzymes
involved were neutral trehalase [EC: 3.2.1.28], trehalose phosphate synthase [EC: 2.4.1.347],
maltase MLT3 [EC: 3.2.1.20], glucoamylase GMY2 [EC: 3.2.1.3], glycosyltransferase family
20 protein [EC: 2.4.1.25], beta-1,3-glucanase [EC: 3.2.1.6], alpha-glucosidase [EC: 3.2.1.20],
hexokinase [EC: 2.7.1.1], and glucose-6-phosphate isomerase [EC: 5.3.1.9].Using correlation
analysis, we found that the genes UV8b_06341, UV8b_05798, UV8b_05883, UV8b_04918, and
UV8b_04913 had a strong correlation with glucose-6-phosphate (|PPC| > 0.995), these genes
positively regulated glucose-6-phosphate. Trehalose was positively regulated by genes:
UV8b_07751, UV8b_05798, and UV8b_00809, but negatively regulated by UV8b_04523.
Three genes showed a high correlation with sucrose, namely UV8b_01012, UV8b_04240,
and UV8b_05361, all of which were positively regulated.

3. Discussion

RFS is a major fungal disease in the rice-growing areas of the world, seriously threat-
ening safe rice production. RFS not only reduces rice yield and quality, but also produces
toxins that can cause harm to human and animal health. At present, most studies have
focused on morphology [33], infection processes [15], genetic diversity [34], and myco-
toxin [4,5] in the causal agent of RFS, U. virens. An in-depth analysis of the pathogenic
mechanism of U. virens is of great guiding significance for the development of new fungi-
cides and breeding for disease resistance; however, little is known concerning these topics.
In view of this, the aim of this study was to investigate the pathogenesis of U. virens based
on two omics transcriptomes and metabolomes.

Combined transcriptome and metabolome analysis has been used to explore a series
of important problems, such as plant response to the molecular mechanism of pathogen
infection [16] and the growth and development mechanisms of pathogenic fungi [19]. In
this study, transcriptome and metabolome analyses were used for the first time to study
the changes in genes and metabolites in pathogen U. virens after infection of the host to
explore the molecular mechanism of pathogenesis in the pathogen. First, comparative
transcriptome analyses showed that the expression levels of 7932 genes were significantly
changed in the strongly and weakly virulent strains after infection. GO term analysis of the
DEGs showed that molecular function and binding were the most enriched in the molecular
function category. Based on KEGG analysis, most DEGs were significantly enriched in the
following pathways: autophagy-yeast, MAPK signaling pathway-yeast, lysine biosynthesis,
arginine and proline metabolism, alanine, aspartate and glutamate metabolism, purine
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metabolism, TCA cycle, cysteine and methionine metabolism, and starch and sucrose
metabolism. Previous studies have reported that metabolic pathways, such as autophagy,
MAPK signaling pathway, amino acid metabolism, and TCA cycle, are closely related to
the vegetative growth, development, and pathogenicity of plant pathogens [29,35–37].

Autophagy is a highly conserved degradation pathway of cytoplasmic contents in
eukaryotes, by which some long-lived proteins and damaged organelles are degraded to
maintain cell homeostasis and help them survive adversity, such as starvation or environ-
mental stress [38,39]. In recent decades, autophagy has been found to play an important
role in the pathogenicity of plant pathogenic fungi. The autophagy process is complex and
regulated by autophagy negative regulatory factors (TOR kinases), and many autophagy
proteins are involved in each step, such as ATG, SNF1 kinase, and PI3K [26,38,40]. In
this study, three negative regulator genes (TOR kinase genes, TORC1, and TapA) were
significantly downregulated, while five ATG genes, one SNF1 kinase gene and PI3K were
significantly upregulated in the S strain after infection. TOR is a major regulator of au-
tophagy and determines whether autophagy occurs [26]. Previous studies have reported
that the autophagy-related gene UvAtg8 is associated with the mycelial growth, stress
response, spore production and pathogenicity of U. virens [12]. Thus far, several ATG have
been found to be necessary for the pathogenicity of Magnaporthe grisea [35,39,40]. Taken
together, these findings indicate that autophagy regulatory factors and ATG are closely
related to the pathogenicity of U. virens.

In recent years, the MAPK signaling pathway has been shown to play an important role
in the growth, development, propagation, and pathogenicity of various plant pathogenic
fungi [41,42]. Currently, three types of MAPK cascade kinases have been identified in
plant pathogenic fungi, namely MAPK, MAPKK and MAPKKK, and these cascade kinases
play an important role in the mycelial infection, stress response, and virulence of plant
pathogenic fungi [43]. Consistent with previous findings, this study showed that MAPK
was the main signal pathway in U. virens after infection. We found that two MAPK, one
MAPKK, one MAPKKK, and other regulator factor genes were significantly upregulated in
strain S after infection. Previous studies have shown that the strains that knock out MAPKK
and MAPKKK in M. grisea lose their ability to infect [42]. In Colletotrichum higginsianum,
mutation of the MAPK gene significantly reduces infectivity and pathogenicity [43]. There-
fore, the results indicate that the MAPK cascade signaling pathway and related kinases
play an important role in the infection and pathogenesis of U. virens.

Many studies have shown that amino acid metabolism plays an important role in
the infection cycle and pathogenicity of pathogens [29,37,44]. It has been reported that
many amino acid metabolisms, such as “arginine biosynthesis, lysine biosynthesis, arginine
and proline metabolism, and “alanine, aspartate and glutamate metabolism”, are crucial
to the pathogenicity of plant pathogens [29,45,46]. In this study, DEG analysis revealed
that the expression levels of many genes involved in these four metabolic pathways were
significantly upregulated in the strongly virulent strain (S), and downregulated or inhibited
in the weakly virulent strain (W). Metabolome analysis found that metabolites involved in
four metabolic pathways, namely l-arginine, l-lysine, glutamic, d-proline, and threonine,
were also significantly upregulated in strain S after infection. Previous studies have shown
that these metabolites are closely related to the pathogenicity of plant pathogens, such
as M. oryzae [29,46], Botrytis cinerea [45], and Fusarium graminearum [47]. Taken together,
our results suggest that the genes and metabolites involved in amino acid metabolism are
closely related to the virulence of U. virens.

Starch and sugar metabolism provide an important carbon source for mycelial infec-
tion by plant pathogens, which are closely related to pathogenicity [31,47]. In this study,
the expression of many genes involved in the metabolic pathways of starch and sucrose
such as TPS, alpha-glucosidase, and beta-glucosidase genes, was significantly up-regulated
in strains S after infection. Previous studies have found that knockout of the TPS gene in
M. oryzae resulted in the loss of the trehalose synthesis ability of the mutant, decreased
infection and growth ability, and severely weakened pathogenicity [32]. In this experiment,
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metabolome analysis found that metabolites involved in starch and sugar metabolism
were significantly accumulated in a strongly virulence strain (S) after infection, especially
trehalose, consistent with the results of previous studies. Studies have shown that trehalose
can be a virulence factor that determines the pathogenicity of pathogens [48,49]. Collec-
tively, DEGs and DAMs involved in starch and sugar metabolism might play an essential
role in the virulence of U. virens. In addition, trehalose may play an important role in the
infection process of U. virens.

Many studies have shown that the combined analysis of transcriptomic and metabolomic
data can yield functional insights into different biological processes [16,18]. In fungi,
transcriptomics and metabolomics have been used to study stress and growth; for example,
Rhizopus oryzae resists oxidative stress by upregulating oxidation pathways and inducing
some antioxidant enzymes [19]. In this study, to obtain an in-depth analysis of changes
in the pathogen U. virens after infection, combined analysis of the transcriptome and
metabolome was performed. Three amino acid metabolism pathways (arginine and proline
metabolism, lysine biosynthesis, and “alanine, aspartate and glutamate metabolism”)
and “starch and sugar metabolism” were significantly co-enriched in combined analysis.
Therefore, we speculate that these three amino acid metabolism pathways and “starch and
sugar metabolism” may be the key pathways of the pathogenicity of U. virens. In addition,
in the study results, we found that the metabolites in these four metabolic pathways had a
strong correlation with their regulatory genes, especially arginine, lysine, and glutamic,
which showed positive or negative regulation.

In conclusion, this study revealed the in-depth pathogenic mechanism of the fun-
gus U. virens through transcriptomic and metabolomic analyses. Comparative transcrip-
tome analysis showed that many metabolic pathways, including amino acid metabolism,
autophagy-yeast, MAPK signaling pathway-yeast, and starch and sucrose metabolism,
were activated in U. virens after infection. In strongly virulent strains, positive regulatory
genes related to pathogenicity were significantly upregulated, including ATG, MAPK, STE,
TPS, and NTH genes. However, genes involved in negative regulation were significantly
downregulated and contained TOR kinase, TORC1, and autophagy-related protein genes.
Metabolome analysis showed that the significantly enriched pathways of DMAs mainly
included amino acids and carbohydrates and largely accumulated in the strongly virulent
strain after infection. These results suggest that these metabolic pathways, genes, and
metabolites are closely related to the pathogenicity of U. virens. Moreover, integrated tran-
scriptome and metabolome analysis further indicated that these pathogenic factors were
closely related to the pathogenicity of U. virens. Further research is needed to determine the
mechanism of action of these pathogenicity factors in pathogenic U. virens. These findings
increase our understanding of the molecular mechanisms of the pathogenicity of U. virens.

4. Materials and Methods
4.1. Materials and Fungal Inoculation

The pathogen U. virens was isolated from the yellow false smut balls. The isola-
tion methods and culture conditions of the pathogen were as previously reported by
Ashizawa et al. [15]. From 2019 to 2021, the pathogenicity of the GY900 and PXD25 strains
was measured. As a result (Figure 1), GY900 was identified as a weakly virulent strain (S),
and PXD25 was identified as a strongly virulent strain (W). The isolates GY900 and PXD25
were grown on potato sucrose agar (PSA) medium and mycelium disks were placed in
potato sucrose (PS) fluid medium. The cultures were incubated at 27 ◦C on a shaker at
120 rpm for 14 days. Mycelia and conidia were collected for inoculation.

Oryza sativa L. spp. indica cultivar ‘93–11’ was used in this experiment. The rice plants
were grown in controlled greenhouses with the temperatures ranging from 20 ◦C at night
to a maximum of 36 ◦C during the day. The inoculation protocols described by Ashizawa
et al. [15] and Fu et al. [23] were used with minor modifications. At the seventh to eighth
stage of panicle development, the conidial suspension with a concentration of 3× 106 mL−1

(GY900 and PXD25 strains) was injected into each rice panicle. The controls were injected
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with PS fluid medium for all experiments. After inoculation, all the rice plants maintained
at 25/30 ◦C (night/day), covered with an inner solar-shade screen, and automatically
sprayed water every 4 h for 20 min to maintain the environment at relative humidity (RH)
>85% for 4 days. Samples of pathogens before and after infection with mycelium were
collected, immediately frozen in liquid nitrogen, and kept at −80 ◦C for later use. The
samples of strongly virulent strains were named S0 and S1 and weakly virulent strains
were named W0 and W1 for before and after infection, respectively.

4.2. Transcriptome Sequencing and Analysis

The total RNA of the biological samples was isolated using Trizol (Aidlab Biotechnolo-
gies, Beijing, China) following the manufacturer’s protocol. There were three biological
replicates per sample group. The quality and quantity of the extracted RNA were detected
using 1% agarose gel and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). The obtained high-quality RNA was sent to the company (Allwegene Co., Ltd.,
Nanjing, China) for library construction and sequencing, using an HiSeqTM2500 platform
(pair-end 150 bp).

For sequence data analysis, low-quality reads were filtered out of the original data
under the default parameters to obtain clean reads. The clean reads were mapped onto the
reference genome sequence of U. virens using HISAT2 [50] to obtain the sample genes. No
more than two mismatches were allowed in the alignment for each read. The gene expres-
sion level was counted using HTSeq software (v 0.5.4) and normalized using the fragments
per kilobase per million fragments (FPKM) [51]. DEseq2 was used to analyze the DEGs
between the two groups. DEGs were identified by comparing gene expression levels be-
tween the before and after infection groups of the S and W strains with a p-value < 0.05 and
|log2foldchange| ≥ 1 [52]. The DEGs were then subjected to enrichment analysis of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). A q-value ≤ 0.05
was considered as the threshold for significant enrichment of GO and KEGG pathways
in DEGs.

4.3. Untargeted Metabolome Detection and Analysis

To identify differences in metabolites before (mycelium) and after infection of strongly
and weakly virulent U. virens, we selected 16 samples (four in each group, four groups)
for metabolomic analysis. Untargeted metabolomics was performed using an Ultra-high
performance liquid chromatography Q exactive mass spectrometer (UHPLC-QE-MS) fol-
lowing the previously reported methods with minor modifications [53]. Briefly, the samples
were ground to powder under liquid nitrogen. Then, 100 mg powder was weighed and
dissolved in 1.0 mL of methanol/acetonitrile/water solution (2:2:1, v/v), vortexed, ul-
trasonicated at a low temperature for 30 min, and left to stand at −20 ◦C for 10 min.
Following centrifugation at 4 ◦C for 20 min at 14,000× g, the supernatant was dried with a
vacuum. The dry substance was redissolved in aqueous acetonitrile, and the supernatant
was obtained by centrifugation for analysis using UHPLC. The samples were separated by
Vanquish LC UHPLC and then analyzed by mass spectrometry using a Q Exactive series
mass spectrometer (Thermo, Waltham, MA, USA). Positive and negative ion modes of
electrospray ionization (ESI) were used for detection.

After the mass spectrum analysis data of metabolites in different samples were ob-
tained by triple quadrupole mass spectrometry, the mass spectrum peaks of all substances
were integrated, and the mass spectrum peaks of the same metabolites in different samples
were calibrated. The data were then analyzed qualitatively and quantitatively. Unsuper-
vised principal component analysis (PCA) was carried out using the statistical function
prcomp in R (http://www.r-project.org/ accessed on 26 October 2022) to observe the
overall distribution among samples and the stability of the whole analysis process [54,55].
The metabolites between different groups were distinguished by orthogonal partial least
squares-discriminant analysis (OPLS-DA) and partial least squares-discriminant analysis
(PLS-DA). Variable importance of projection (VIP) values obtained from the OPLS-DA

http://www.r-project.org/
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model were applied to rank the overall contribution of each variable to group discrimi-
nation [55]. The threshold of significant difference was set as VIP ≥ 1 and t-test p < 0.05
to identify DAMs between the two groups. The KEGG and GO databases were then
used to annotate the functions of the DAMs, and the metabolic pathways involving in the
metabolites were obtained.

4.4. Combined Analysis of the Transcriptome and Metabolome

Based on the metabolome and transcriptome results, the common KEGG pathways
of DEGs and DAMs were analyzed jointly. Correlation analysis of the detected genes and
metabolites was performed using the cor program in the R package to calculate the Pearson
correlation coefficients of genes and metabolites. The gene metabolites with a Pearson
correlation coefficient > 0.8 and p-value < 0.05 in each group were screened as network
maps to show the correlation between metabolites and genes [55].

4.5. Validation of qRT-PCR

To validate the DEG results, qRT-PCR was carried out using 10 DEGs, with tubulin
as the internal reference. The primer sets used for qRT-PCR were designed according to
the individual gene sequences (Table 1). The same RNA sample used for RNA-Seq was
used for qRT-PCR. cDNA was produced by reverse transcription using the Fist-Strand
cDNA Synthesis Kit (TransScript, Beijing, China) according to the manufacturer’s protocol.
qRT-PCR was conducted using Takara SYBR Green (Takara, Dalian, China) in a one-step,
real-time system. There were three biological replicates for each sample, and the reaction
conditions were as follows: 95 ◦C for 1 min, followed by 40 cycles of 95 ◦C at 10 s and 60 ◦C
for 30 s. The 2−∆∆CT method was used to calculate the relative transcription level of the
genes [56].

4.6. Statistical Analysis

The data from this experiment were expressed as the means ± SD of three replicates
for each treatment. Statistical analysis was performed using a one-way analysis of variance
(ANOVA) and SPSS 20.0 (IBM, Armonk, NY, USA). A p < 0.05 indicated a statistically
significant difference.
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