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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor
prognosis, largely due to its unique tumor microenvironment (TME) and dense fibrotic stroma.
Cancer-associated fibroblasts (CAFs) play a crucial role in promoting tumor growth and metastasis,
contributing to the metabolic adaptation of PDAC cells. However, the metabolic interactions between
PDAC cells and CAFs are not well-understood. In this study, an in vitro co-culture model was used
to investigate these metabolic interactions. Metabolomic analysis was performed under monoculture
conditions of Capan−1 PDAC cells and CAF precursor cells, as well as co-culture conditions of
PDAC cells and differentiated inflammatory CAF (iCAF). Co-cultured Capan−1 cells displayed
significant metabolic changes, such as increased 2-oxoglutaric acid and lauric acid and decreased
amino acids. The metabolic profiles of co-cultured Capan−1 and CAFs revealed differences in
intracellular metabolites. Analysis of extracellular metabolites in the culture supernatant showed
distinct differences between Capan−1 and CAF precursors, with the co-culture supernatant exhibiting
the most significant changes. A comparison of the culture supernatants of Capan−1 and CAF
precursors revealed different metabolic processes while co-culturing the two cell types demonstrated
potential metabolic interactions. In conclusion, this study emphasizes the importance of metabolic
interactions between cancer cells and CAFs in tumor progression and highlights the role of TME in
metabolic reprogramming.

Keywords: pancreatic ductal adenocarcinoma (PDAC); cancer-associated fibroblasts (CAFs); metabolic
reprogramming

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal cancer with
a poor prognosis. Despite significant efforts to improve therapeutic outcomes, the five-year
survival rate for PDAC remains less than 10% [1]. The unique tumor microenvironment
(TME) of PDAC, characterized by a dense fibrotic stroma [2–4] and low oxygen tension [5,6],
plays a critical role in disease progression and treatment resistance [7–9]. Cancer-associated
fibroblasts (CAFs) are a type of stromal cells that are found in the TME of many types of
cancers, including PDAC [10–13]. They play a critical role in promoting tumor growth
and metastasis through various mechanisms [14–18]. One way in which CAFs contribute
to cancer progression is by altering the metabolic properties of the TME [19–22]. CAFs
can enhance the glycolytic activity of cancer cells by secreting lactate, which is used by
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cancer cells as a source of energy [23,24]. Additionally, CAFs can stimulate the uptake of
glucose by cancer cells through the secretion of growth factors such as insulin-like growth
factor 1 (IGF-1) and transforming growth factor beta (TGF-β) [19,25,26]. CAFs also strongly
contribute to the formation of a dense fibrotic stroma in the TME. This stroma can limit the
delivery of oxygen and nutrients to cancer cells, creating a hypoxic environment that can
further enhance the metabolic adaptation of cancer cells to survive and proliferate [24,27].

Metabolic adaptations are essential for cancer cells to sustain their growth and sur-
vival in the harsh TME [28,29]. However, the metabolic heterogeneity of PDAC cells and
CAFs and their metabolic interactions remain poorly understood. Metabolomic analysis
is a comprehensive approach to studying the metabolic profile of cells or tissues, which
involves the identification and quantification of small molecules, such as metabolites, in
a biological sample [30–33]. In the context of cancer research, metabolomic analysis can
provide valuable insights into the metabolic alterations that occur in cancer cells and their
interactions with the TME [34]. We previously used Capillary Electrophoresis-Time Of
Flight Mass Spectrometry (CE-TOFMS) to perform targeted and untargeted metabolomic
analysis of the cells [24]. Targeted analysis involves the quantification of specific metabo-
lites, while untargeted analysis aims to identify and quantify all metabolites present in
a sample. The metabolomic analysis revealed distinct metabolic profiles of PDAC cells
and CAFs, showing that the co-culture of these cells resulted in intracellular metabolic
reprogramming. However, the TME consists not only of cell space but also extracellular
space. To understand the role of cancer cells and CAFs in the TME, it is necessary to
examine metabolites in the extracellular space. This allows us to better understand roles
such as secretion and incorporation by cells.

In this study, we aimed to identify both intra- and extrametabolic alterations occurring
in PDAC cells and investigate the metabolic interactions between PDAC cells and CAFs in a
cultured TME. The importance of understanding the metabolic properties of PDAC cells and
CAFs lies in their potential as therapeutic targets. Targeting the metabolic vulnerabilities of
cancer cells has emerged as a promising strategy for cancer treatment. Therefore, our study
provides insights into the metabolic heterogeneity of PDAC and the potential role of CAFs
in regulating tumor metabolism.

2. Results
2.1. Intracellular Metabolic Reprogramming in PDAC Cells Co-Cultured with CAF Precursors

An in vitro co-culture model was previously constructed to explore the molecular in-
teractions between PDAC cells and CAFs [35]. Human adipose-derived mesenchymal stem
cells (AD-MSCs) [36], which can heterogeneously differentiate into CAF precursors both
in vitro and in CDX mouse models [37], were utilized in the study as CAF precursors. We
previously demonstrated that myoblastic CAF (myCAF) is induced upon direct co-culture
of cancer cells and AD-MSCs, and inflammatory CAF (iCAF) is induced upon indirect
co-culture of these cells [24,35]. In this study, indirect co-culture was performed to collect
individual culture supernatants, which suggests that a significant portion of differentiated
CAF precursors may exist as iCAFs. An intracellular metabolomic analysis was performed
on PDAC-derived Capan−1 cells both before and after co-culturing with CAF precur-
sors, as previously demonstrated. The intracellular metabolites of both monocultured
Capan−1 cells and co-cultured Capan−1 cells were analyzed using metabolomic anal-
ysis following a 7-day co-culturing period. A total of 183 metabolites were success-
fully detected and analyzed using an orthogonal-partial-least-squares discrimination
(OPLS-DA) model to identify differences between the two groups (n = 3 each). The
co-cultured metabolite profile was significantly different from that of normal conditioned
Capan−1, as shown in Figure 1A. Figure 1B displays a heatmap that focuses on the top
25 metabolites that underwent characteristic changes. Among these metabolites, eight
exhibited increased values after co-cultivation. Notably, our data show increased levels of 2-
oxoglutaric acid (α-ketoglutarate, Log2FC = 0.48), involved in the TCA cycle, and lauric acid
(Log2FC = 0.76), metabolized via beta-oxidation to produce ATP, in co-cultured Capan−1
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cells. On the other hand, levels of certain amino acids, specifically serine, glutamine,
methionine, and alanine, showed decreased levels after co-culture, with respective log2
fold changes of −0.58, −0.37, −0.34, and −0.42. The alterations of these metabolites in
co-cultured Capan−1 cells may suggest a potential activation of energy production within
the cells. However, further investigations, such as the evaluation of activation or upregu-
lation of enzymes involved in energy generation pathways, are needed to provide more
convincing evidence.
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cessed on 21 April 2023)). The OPLS-DA score plot shows two groups of samples (n = 3 samples per 
group) based on the metabolomic datasets, with monocultured Capan−1 cells plotted in red and co-
cultured Capan−1 cells in green. The model consists of one predictive x-score component: compo-
nent t[1] and one orthogonal x-score component to[1]. The predictive variation in x (t[1]) represents 
the variation in the data that is correlated with the response variable, in this case, the difference 
between monocultured and co-cultured cells. This component accounts for 42.3% of the total varia-
tion. On the other hand, the orthogonal variation in x (to[1]) refers to the variation in the data that 
is not related to the response variable. Essentially, it captures the ‘noise’ or ‘unrelated variation’ in 
the data. In our model, it accounts for 17.7% of the total variation. (B) Heatmap comparing altered 
metabolites between monocultured Capan−1 cells (n = 3) and co-cultured Capan−1 cells (n = 3). 

2.2. Intracellular Metabolic Differences in Co-Cultured Capan−1 Cells and CAFs 
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revealed differences. A total of 188 metabolites were successfully detected and analyzed 
using an OPLS-DA model to identify differences between the two groups (n = 3 each). 
According to the OPLS-DA analysis, there is a substantial change in the T-Score (75.5%) 
(Figure 2A). The Variable Important in Projection (VIP) score is a measure derived from a 
PLS-DA model, and it signifies the importance of each variable in the projection used to 
separate classes. Essentially, a high VIP score for a variable means it is significant in 

Figure 1. Intracellular metabolic reprogramming in PDAC cells co-cultured with CAF precursors.
(A) Global trend of intracellular metabolite changes in cancer cells (Capan−1 cells). A supervised mul-
tivariate analysis, orthogonal-partial-least-squares-discriminant analysis (OPLS-DA), was performed
using metabolomic datasets with Metaboanalyst 5.0 (https://www.metaboanalyst.ca/ (accessed on
21 April 2023)). The OPLS-DA score plot shows two groups of samples (n = 3 samples per group)
based on the metabolomic datasets, with monocultured Capan−1 cells plotted in red and co-cultured
Capan−1 cells in green. The model consists of one predictive x-score component: component t[1]
and one orthogonal x-score component to[1]. The predictive variation in x (t[1]) represents the
variation in the data that is correlated with the response variable, in this case, the difference between
monocultured and co-cultured cells. This component accounts for 42.3% of the total variation. On the
other hand, the orthogonal variation in x (to[1]) refers to the variation in the data that is not related
to the response variable. Essentially, it captures the ‘noise’ or ‘unrelated variation’ in the data. In
our model, it accounts for 17.7% of the total variation. (B) Heatmap comparing altered metabolites
between monocultured Capan−1 cells (n = 3) and co-cultured Capan−1 cells (n = 3).

2.2. Intracellular Metabolic Differences in Co-Cultured Capan−1 Cells and CAFs

It was hypothesized that there would be significant differences in intracellular metabo-
lites between the two cell types. A comparison of the co-cultured Capan−1 and CAFs
revealed differences. A total of 188 metabolites were successfully detected and analyzed
using an OPLS-DA model to identify differences between the two groups (n = 3 each).
According to the OPLS-DA analysis, there is a substantial change in the T-Score (75.5%)
(Figure 2A). The Variable Important in Projection (VIP) score is a measure derived from
a PLS-DA model, and it signifies the importance of each variable in the projection used
to separate classes. Essentially, a high VIP score for a variable means it is significant in
differentiating between the groups in our analysis. In our study, the VIP plot indicated
that isocitric acid was higher in Capan−1 than in CAFs (Figure 2B). This suggests that
Capan−1 cells retain more isocitric acid intracellularly.

https://www.metaboanalyst.ca/
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Figure 2. Intracellular metabolic differences in co-cultured Capan−1 Cells and CAFs. (A) Metabolites
differentially detected in cells co-cultured with Capan−1 cells and CAFs. OPLS-DA was performed
using metabolomic datasets with Metaboanalyst 5.0. The OPLS-DA score plot shows two groups of
samples (n = 3 samples per group) based on the metabolomic datasets, co-cultured Capan−1 cells
were plotted in red and co-cultured CAFs in green. The model consists of one predictive x-score
component: component t[1] and one orthogonal x-score component to[1]. t[1] explains 75.5% of
the predictive variation in x, to[1] explains 8.4% of the orthogonal variation in x. (B) A VIP plot
corresponding to the score plot of OPLS-DA visualized the metabolite markers that importantly
contributed to the discrimination.

2.3. Identifying Secreted and Consumed Extracellular Metabolites in Mono- and Co-Cultures of
PDAC, CAF Precursors, and CAFs

Metabolomic analysis of the water-soluble metabolites was performed using the col-
lected culture supernatants (Figure 3A). A total of 76 metabolites were successfully detected,
and Partial Least Squares Discriminant Analysis (PLS-DA) was performed using these
metabolites to explicitly show the differences between five groups (n = 6 each) (Figure 3B).
Distinct differences were observed between the supernatants of monocultured Capan−1
and CAF precursor cells and DMEM, with the co-culture supernatant showing the greatest
disparity from DMEM among all conditions. However, there were few overall differences
in the metabolite profiles between the culture supernatants collected separately from the
top and bottom of the co-culture, indicating that the medium during co-culture is prone to
mixing. The metabolite profiles from culture supernatants of both Capan−1 cells and CAF
precursors were distinctly different, indicating significant variation in the metabolites that
the cells secreted and consumed from the medium. Figure 3C displayed a heatmap focusing
on the top 25 metabolites that underwent characteristic changes. Among these metabolites,
the top seven, including amino acids such as arginine, glutamine and lysine, were present in
larger quantities in the DMEM. In contrast, under co-culture conditions, seven metabolites,
including the essential amino acids such as valine, tryptophan, and histidine, showed sig-
nificant depletion. Valine is an amino acid that is metabolized to succinyl-CoA, tryptophan
is utilized for the conversion from pyruvic acid to oxaloacetic acid, and histidine becomes
2-oxoglutaric acid and enters the TCA cycle. The depletion of these essential amino acids
suggests their potential consumption for the activation of the TCA cycle. Additionally,
citric acid and isocitric acid were not detected in the DMEM and supernatant of Capan−1
monoculture, but their release was observed in the medium of CAF precursors and CAFs.
These findings support the notion that metabolically active cancer cells consume citric
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acid and isocitric acid provided by CAFs as fuel for their proliferation. Recent studies
have highlighted proline as a potential biomarker for distinguishing PDAC patients from
healthy individuals [38]. Furthermore, proline has been shown to play a crucial role in
supporting the survival of PDAC cells under nutrient-deprived conditions, contributing
to energy generation through the TCA cycle metabolism [39]. Additionally, glutamine is
supplied to the TCA cycle and is involved in proline production. PRODH1, also known
as proline dehydrogenase 1, is an enzyme involved in proline metabolism, catalyzing the
conversion of proline to delta-1-pyrroline-5-carboxylate. Studies have indicated its role in
promoting the survival of colon tumor cells under nutrient stress through mechanisms such
as autophagy and ATP production [40,41]. In our study, we observed the consumption
of glutamine by Capan−1 cells, and proline expression was not detected in monoculture
but increased under co-culture conditions. By comparing the metabolites present in the
culture medium with those in the culture supernatant, the specific metabolites consumed
or produced and released by the cells were identified.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. Identifying secreted and consumed metabolites in mono- and co-cultures of PDAC, CAF 
Precursors, and CAFs. (A) Global trend of extracellular metabolite changes in supernatant from Ca-
pan−1 cells, CAF precursors, and co-cultured cells. Schematic illustration of the extracellular metab-
olomic analysis to measure the metabolites in the culture medium. Supernatants were isolated from 
monoculture conditions or co-culture using a Transwell culture insert. (B) Principal component 
analysis (PCA) of extracellular metabolomic datasets of Capan−1 cells, CAF precursors, and mixed 
cells grown in each sole culture dish or a Transwell co-culture. (C) Heatmap comparing altered me-
tabolites between supernatant from Capan−1 cells (n = 6), iCAF precursors (n = 6), co-cultured Ca-
pan−1 cells (n = 6), CAFs (n = 6), and DMEM (n = 6) as a baseline. 

2.4. Metabolic Alterations in Water-Soluble Metabolites of Capan−1 Cancer Cell Culture 
Supernatant 

This section aims to investigate changes in water-soluble metabolites found in the 
culture supernatant of Capan−1 cancer cells. The culture supernatant of Capan−1 cells 
grown in DMEM was compared with that of DMEM alone. OPLS-DA analysis was per-
formed using a total of 76 metabolites obtained from the two samples. The results showed 
significant differences between the culture supernatant of Capan−1 cells and DMEM (Fig-
ure 4A). The supernatant of Capan−1 cell culture exhibited particularly small variations in 

Figure 3. Identifying secreted and consumed metabolites in mono- and co-cultures of PDAC, CAF
Precursors, and CAFs. (A) Global trend of extracellular metabolite changes in supernatant from Capan−1



Int. J. Mol. Sci. 2023, 24, 11015 6 of 16

cells, CAF precursors, and co-cultured cells. Schematic illustration of the extracellular metabolomic
analysis to measure the metabolites in the culture medium. Supernatants were isolated from monocul-
ture conditions or co-culture using a Transwell culture insert. (B) Principal component analysis (PCA)
of extracellular metabolomic datasets of Capan−1 cells, CAF precursors, and mixed cells grown in
each sole culture dish or a Transwell co-culture. (C) Heatmap comparing altered metabolites between
supernatant from Capan−1 cells (n = 6), iCAF precursors (n = 6), co-cultured Capan−1 cells (n = 6),
CAFs (n = 6), and DMEM (n = 6) as a baseline.

2.4. Metabolic Alterations in Water-Soluble Metabolites of Capan−1 Cancer Cell
Culture Supernatant

This section aims to investigate changes in water-soluble metabolites found in the
culture supernatant of Capan−1 cancer cells. The culture supernatant of Capan−1 cells
grown in DMEM was compared with that of DMEM alone. OPLS-DA analysis was per-
formed using a total of 76 metabolites obtained from the two samples. The results showed
significant differences between the culture supernatant of Capan−1 cells and DMEM
(Figure 4A). The supernatant of Capan−1 cell culture exhibited particularly small varia-
tions in metabolite release and consumption, indicating a consistent pattern across all the
culture plates. S-shape plot analysis revealed a significant increase in glutamic acid and
lactic acid and a significant decrease in arginine, lysine, glutamine, and other amino acids in
the Capan−1 cell culture supernatant (Figure 4B,C). Alterations of metabolite composition
in the culture supernatant are a direct reflection of the metabolic activities within the cells.
In our study, significant changes in certain metabolites, such as amino acids and lactic acid,
imply abnormal metabolic behavior in cancer cells. Specifically, increased consumption of
amino acids from the DMEM and elevated levels of lactic acid, a byproduct of enhanced
glycolytic metabolism often seen in cancer cells (a phenomenon known as the Warburg
effect), is indicative of metabolic abnormalities. These changes suggest a shift from normal
cellular metabolism towards a more glycolytic phenotype which is characteristic of many
types of cancer cells, including PDAC.

2.5. Metabolic Activity of CAF Precursors

This section explores the consumption and release of metabolites by AD-MSCs as
CAF precursors. A total of 76 metabolites were identified in the culture supernatant of
CAF precursors. These metabolites were compared with those in a culture medium. Six
replicates of each assay were prepared, and OPLS-DA was used to examine the metabolic
profiles. As shown in Figure 5A, the metabolite composition in the culture medium of CAF
precursors underwent significant changes. The OPLS-DA analysis revealed a 38% change in
T-Score, indicating substantial differences in the metabolic profiles between CAF precursors
and culture medium. In comparison to the variability in metabolic profiles between
samples of culture medium, the variability between culture plates of CAF precursors was
smaller, suggesting a certain level of regulation in metabolite release and consumption.
We noted that a significant portion of pyruvic acid, the final product of glycolysis, is
consumed by CAF precursors (Figure 5B,C). Given the observed increases in the levels
of citric acid and isocitric acid (products of the TCA cycle) in the culture supernatant of
CAF precursors, it is likely that some of the consumed pyruvates are being converted to
acetyl-CoA for the TCA cycle. However, we acknowledge that other metabolic pathways
could also be involved, such as the conversion of pyruvic acid to lactic acid, which warrants
further investigation.
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Figure 4. Metabolic alterations in water-soluble metabolites of Capan−1 cancer cell culture super-
natant. (A) Metabolites specifically detected in the supernatants from sole Capan−1 cell culture. A
supervised multivariate analysis, OPLS-DA, was performed. The OPLS-DA score plot shows two
groups of samples (n = 6 samples per group) based on the metabolomic datasets; control DMEM
media samples were plotted in red, and Capan−1 cell supernatants in green. The model consists of
one predictive x-score component: component t[1] and one orthogonal x-score component to[1]. t[1]
explains 33.7% of the predictive variation in x, and to[1] explains 23% of the orthogonal variation in x.
(B) An S-shape plot corresponding to the score plot of OPLS-DA visualized the metabolite markers
that contributed to the discrimination. (C) A VIP plot corresponding to the score plot of OPLS-DA
visualized the metabolite markers that importantly contributed to the discrimination.
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Figure 5. Metabolic activity of CAF precursors. (A) Metabolites specifically detected in the super-
natants from sole CAF precursors culture. The OPLS-DA score plot shows two groups of samples
(n = 6 samples per group) based on the metabolomic datasets; control DMEM media samples were
plotted in red, and CAF precursors supernatants in green. The model consists of one predictive
x-score component: component t[1] and one orthogonal x-score component to[1]. t[1] explains 38% of
the predictive variation in x, to[1] explains 21.6% of the orthogonal variation in x. (B) An S-shape
plot corresponding to the score plot of OPLS-DA visualized the metabolite markers that contributed
to the discrimination. (C) A VIP plot corresponding to the score plot of OPLS-DA visualized the
metabolite markers that importantly contributed to the discrimination.

2.6. Comparison of Metabolites in Culture Supernatants of Capan−1 and CAF Precursors

Next, a comparison was made between the culture supernatants of Capan−1 and
CAF precursors to investigate the differences in metabolites present in the culture super-
natants between different cell types. Capan−1 is an epithelial-derived cancer cell with a
very fast proliferation rate, requiring a large amount of energy. On the other hand, CAF
precursors, similar to fibroblasts, are mesenchymal stem cells. They have a certain degree
of proliferative capacity and exhibit a balanced intracellular metabolism, as shown in
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Figures 4 and 5. A total of 76 metabolites were identified in both culture supernatants and
compared between samples. Six replicates were prepared for each assay, and OPLS-DA was
used to examine their metabolic profiles. As shown in Figure 6A, the culture supernatant
derived from Capan−1 cells exhibited less variation between samples, indicating a more
homogeneous cell population. According to the OPLS-DA analysis, there is a large change
in one orthogonal x-score component in CAF precursors (16.9% of the orthogonal variation),
while the T-Score change between Capan−1 and CAF precursors shows an even more
pronounced difference of 30.7%. The S-shape plot analysis and VIP plot revealed that the
release of citric acid and isocitric acid, as shown in Figure 5, is significant in CAF precursors,
while lactic acid is released more abundantly in Capan−1 (Figure 6B,C). As can be seen
from the PCA analysis in Figure 3B, Capan−1 and CAF precursors shift to opposite axes
when compared to the culture medium, suggesting that they undergo entirely different
metabolic processes.
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Figure 6. Comparison of metabolites in culture supernatants of Capan−1 and CAF precursors.
(A) Metabolites differentially detected in the supernatants from sole Capan−1 cells and CAF pre-
cursors culture. OPLS-DA was performed using metabolomic datasets with Metaboanalyst 5.0. The
OPLS-DA score plot shows two groups of samples (n = 6 samples per group) based on the metabolomic
datasets: the supernatant of Capan−1 cells was plotted in red, and the supernatant of CAF precursors
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was plotted in green. The model consists of one predictive x-score component: component t[1] and
one orthogonal x-score component to[1]. t[1] explains 30.7% of the predictive variation in x, and to[1]
explains 16.9% of the orthogonal variation in x. (B) An S-shape plot corresponding to the score plot
of OPLS-DA visualized the metabolite markers that contributed to the discrimination. (C) A VIP
plot corresponding to the score plot of OPLS-DA visualized the metabolite markers that importantly
contributed to the discrimination.

2.7. Investigation of Metabolic Changes in Co-Culture of Capan−1 and CAFs

Finally, an investigation was conducted to examine the changes in metabolites in the
supernatant of the co-culture of Capan−1 and iCAFs. The goal was to provide insights
into potential metabolic interactions between Capan−1 and iCAFs during co-culture. This
information could reveal crucial details about their respective roles in tumor progression
and the TME. DMEM served as a baseline for evaluating the metabolic changes occurring
in the culture supernatants of both cell types when grown together. Interestingly, few
differences were observed in most metabolites between the upper part cultured with
Capan−1 and the lower part cultured with iCAFs, except for uridine (Figure 7A). This
indicates that the metabolites are well mixed in the separated upper and lower parts of the
membrane, which corroborates its usefulness as an in vitro TME model.
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supernatants from co-cultured Capan−1 cells and CAFs. (B) Metabolites differentially detected in
the supernatant of co-cultured and DMEM. The OPLS-DA score plot shows two groups of samples
(DMEM media; n = 6, co-cultured supernatants; n = 12) based on the metabolomic datasets; control
DMEM media samples were plotted in red, and co-cultured supernatant in green. The model consists
of one predictive x-score component: component t[1] and one orthogonal x-score component to[1]. t[1]
explains 42.5% of the predictive variation in x, and to[1] explains 19% of the orthogonal variation in x.
(C) Heatmap comparing altered metabolites between DMEM media and co-cultured supernatants
from the upper and lower part of the Transwell dish. (D) A VIP plot corresponding to the score plot
of OPLS-DA visualized the metabolite markers that importantly contributed to the discrimination
between DMEM media and co-cultured supernatants.

To further investigate the metabolic products in the TME, the metabolites obtained
from both fractions of the Transwell were combined and compared with the culture medium
as a single group (n = 12). OPLS-DA analysis was performed using a total of 76 metabolites
obtained from the two groups. The results showed significant differences between the
supernatant of the co-culture and DMEM (Figure 7B). Again, the metabolites contained in
the culture supernatant recovered from co-culture were very similar. Figure 7C displayed
a heatmap focusing on the top 25 metabolites that underwent characteristic changes.
Approximately half of these metabolites were specific to each cell type. Among these
metabolites, the top 11 were present in larger quantities in the co-cultured supernatant,
including citric acid and isocitric acid. To investigate the changes in more detail, a VIP
plot for the top 25 metabolites was displayed (Figure 7D). As a result, the co-culture
supernatant contained higher levels of malic acid, citric acid, isocitric acid, succinic acid,
alanine, glutamic acid, and lactic acid. Taking into account the results of the single culture
analysis in Figures 4 and 5, it is believed that glutamic acid and lactic acid are released from
Capan−1 cells, while citric acid and isocitric acid are released from iCAFs. Conversely,
other metabolites appeared to be specifically released after co-culture.

3. Discussion
3.1. Interpretation of Metabolic Reprogramming in PDAC Cells Co-Cultured with CAF Precursors

Our results have revealed that PDAC cells undergo significant metabolic reprogram-
ming when co-cultured with CAF precursors, as evidenced by changes in intracellular
metabolite profiles. PDAC cells heavily rely on this metabolic reprogramming, as im-
proving fatty acid oxidation has been suggested to lead to decreased hypoxia-induced
autophagy and increased cell death after chemotherapy [42]. Even in the presence of
fully functional mitochondria, enhanced glycolysis can be induced by hypoxia or hypoxia-
inducible factor 1 (HIF-1). It has been reported that CAF precursors initiate metabolic
reprogramming to support the growth and metastasis of heterogeneous cancer cells, de-
pending on oxidative phosphorylation (OXPHOS) or glycolysis, which can switch in
response to drugs or microenvironmental stimuli [43]. In fact, the coexistence of increased
glycolysis and OXPHOS has been observed in some cancer cells, and these metabolic
phenotypes have been reported to switch reciprocally in response to drug treatment or
microenvironmental stimuli [44]. For example, stromal cells such as pancreatic stellate
cells secrete alanine, which is assimilated by PDAC cells to support glutamine and glucose
metabolism [45,46].

Another mechanism involves CAF precursors providing fuel to PDAC cells [47].
Our findings revealed an increase in 2-oxoglutaric acid (α-ketoglutarate) and lauric acid
levels in co-cultured Capan−1 cells. This suggests an upregulation of the TCA cycle
and beta-oxidation, respectively, indicating a metabolic shift in cancer cells to enhance
energy production in the presence of CAF precursors. It has been suggested that in
proliferative cancer cells, the high rate of metabolic flux and the deregulation of metabolism
contribute to maintaining low concentrations of citric acid, thereby promoting the Warburg
effect [48–50].

The observed decrease In amino ac”d le’els in co-cultured Capan−1 cells is indicative
of heightened metabolic consumption. These observations are aligned with the notion that
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cancer cells have a higher metabolic demand, which can lead to the depletion of essential
nutrients such as amino acids. In the TME, cancer cells are known to interact with other
cell types, such as CAFs, to compensate for these nutrient deficiencies. These interactions
could allow the cancer cells to access necessary nutrients, enhancing their survival and
growth despite the nutrient-poor conditions within the TME [51,52].

3.2. Implications of Metabolite Consumption and Release in Mono- and Co-Cultures of PDAC and
CAF Precursors

The comprehensive analysis of water-soluble metabolites in the culture supernatants
of mono- and co-cultures of PDAC and CAF precursors provided valuable insights into
the metabolic interplay between these cell types. The distinct metabolite profiles observed
in the culture supernatants of Capan−1 cells and CAF precursors suggest that different
metabolic pathways are employed by each cell type to sustain their growth and survival.
These findings have broad implications for understanding the complex interactions within
the TME and how these interactions contribute to tumor progression. In monoculture,
distinct metabolite profiles were observed, indicating different metabolic pathways utilized
by PDAC cells and CAF precursors for their growth and survival. The presence of specific
metabolites in larger quantities in the culture medium suggests active production or uptake
by the cells. For instance, arginine was abundant in the culture medium, indicating its
consumption by the cells. Moreover, the absence of certain metabolites, such as lactic acid,
in the culture medium and their presence in the co-cultured cells or Capan−1 cells suggests
their release by these cells. This indicates that the metabolic dynamics are altered in the
presence of co-culture, leading to the production or consumption of specific metabolites.
Understanding the specific metabolites consumed and released by different cell types in
mono- and co-cultures provides valuable insights into their metabolic interactions. These
findings contribute to our knowledge of the complex metabolic interplay within the TME
and its impact on tumor progression. While the metabolomic analysis provided valuable
insights into metabolic changes, it was limited to water-soluble metabolites. Additional
studies could explore changes in lipid-soluble metabolites. While this study provides
insights into the metabolic interplay between PDAC cells and CAF precursors, functional
studies would be necessary to validate the implications of these interactions on cancer cell
survival and growth. This study provides a snapshot of the metabolic interactions at one
time point. A longitudinal study to track metabolic changes over time would provide a
more comprehensive understanding of the dynamics of the TME.

3.3. Future Research Directions

The current study has generated novel insights into the metabolic reprogramming of
PDAC cells in co-culture with CAF precursors, as well as the consumption and release of
metabolites in mono- and co-cultures of PDAC and CAF precursors. Despite the benefits
of the in vitro co-culture model used in this study, it may not fully mimic the complex
and dynamic nature of the TME in vivo. The study focuses on Capan−1 cells and CAF
precursors, which might not fully represent the heterogeneity of PDAC and CAF precursors
observed in clinical settings. Studies involving other cell lines or patient-derived samples
would complement these findings. In vivo studies or more sophisticated in vitro models
such as organoids may provide additional insights. Further research is needed to fully
elucidate the underlying molecular mechanisms governing these metabolic changes and
their functional consequences for cancer progression. Future studies could investigate the
specific signaling pathways involved in the metabolic reprogramming of PDAC cells and
the potential for targeting these pathways as a therapeutic strategy. Additionally, it would
be of interest to examine the metabolic interactions between PDAC cells and other stromal
cell types within the TME to gain a more comprehensive understanding of the metabolic
adaptations that drive tumor progression.
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4. Materials and Methods
4.1. Cells and Culture Condition

The immortalized human AD-MSC cell line ASC52telo (ATCC SCRC-4000) and the
human pancreatic cancer cell line Capan−1 (ATCC HTB-79) were utilized and cultured
following previously established protocols [35,37]. Briefly, both cell lines were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM; FUJIFILM Wako Pure Chemical Corp., Os-
aka, Japan) supplemented with 20% fetal bovine serum (FBS), 1% nonessential amino acids,
and 1% streptomycin-penicillin at 37 ◦C in a humidified atmosphere with 5% CO2. Both
cells were expanded and maintained within 20 passages under these culture conditions.

4.2. In Vitro Monoculture Assay

In monoculture conditions, 4 × 105 AD-MSCs and 4 × 105 Capan−1 cells were seeded
in 6-well culture plates, respectively. The culturing conditions are the same as those
described above for maintaining cells. Culture supernatants were collected on day 7, and
72 h prior to that, the culture medium was replaced. The collected culture supernatant
was centrifuged (200× g) for 5 min at room temperature to remove cell debris, followed by
immediate freezing and storage.

4.3. In Vitro Co-Culture Assay

In the co-culture condition, Transwell® culture inserts (Transwell® Permeable Sup-
ports 24 mm Insert, 6-well plates, constar#3450, Corning, NY, USA) were applied. The
lower compartment of the insert was seeded with 4 × 105 AD-MSCs, whereas the upper
compartment of the transwell membrane was seeded with 4 × 105 Capan−1 cells. The
culture supernatant from both the upper and lower compartments was collected separately,
and the subsequent steps of supernatant purification and preservation followed the same
protocol as the monoculture assay.

4.4. Metabolite Extraction from the Culture Medium

In total, 20 µL of the medium were mixed with 180 µL of ice-cold methanol, vortexed
vigorously, and centrifuged at 21,500× g for 10 min at 4 ◦C. The supernatant was collected
and evaporated to dryness. After dissolved in 200 mL of 0.1% formic acid and further
diluted 100-fold, the samples were subjected to liquid chromatography-mass spectrometry
(LC-MS) analysis.

4.5. LC-MS Analysis

Primary metabolites, such as sugar phosphates, TCA-cycle metabolites, and amino
acids, were analyzed using the LCMS-8060 instrument (Shimadzu, Japan). The sample was
separated on a Discovery HS-F5-3 column (150 × 2.1 mm, 3 µm particle size, Sigma-Aldrich,
St. Louis, MO, USA) with mobile phases consisting of solvent A (0.1% formic acid) and
solvent B (0.1% formic acid in acetonitrile). The column oven temperature was 40 ◦C.
The gradient elution program was as follows: a flow rate of 0.25 mL/min: 0–2 min, 0% B;
2–5 min, 0–25% B; 5–11 min, 25–35% B; 11–15 min, 35–95% B; 15–25 min, 95% B;
25.1–30 min, 0% B. The parameters for the heated electrospray ionization source (ESI)
in negative/positive ion mode under multiple reaction monitoring (MRM) were as follows;
drying gas flow rate, 10 L/min; nebulizer gas flow rate, 3 L/min; heating gas flow rate,
10 L/min; interface temperature, 300 ◦C; DL temperature, 250 ◦C; heat block temperature,
400 ◦C; CID gas, 270 kPa. Data processing was carried out using the LabSolutions LC-MS
software (Ver: 5.118, Shimadzu, Japan).

4.6. Statistical Analysis and Visualization

The metabolite data were exported in CSV format and subsequently uploaded to the
MetaboAnalyst® platform (https://www.metaboanalyst.ca (accessed on 21 April 2023))
capable of processing and analyzing comprehensive metabolic profiles [53]. A data integrity
check was performed by default, and data filtering was carried out based on the mean inten-

https://www.metaboanalyst.ca
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sity value. A significance level of p < 0.05 was set, and normalization was performed using
Pareto data scaling when comparing samples from two groups. OPLS-DA was conducted.
The results of OPLS-DA were visualized using S-shape plots and VIP plots to identify
metabolite markers contributing to the discrimination. When comparing three or more
groups, normalization was performed using auto data scaling. PCA and cluster analysis
(heatmap) were employed to compare discriminant metabolite expression. Additionally,
the pathway analysis module in this platform utilized metabolite peak intensities as input
data. The data were log-transformed, autoscaled and matched against the human KEGG
database [54–56].

5. Conclusions

In conclusion, our study provided valuable insights into the metabolic symbiosis
between PDAC cells and CAFs within a cultured TME. Our findings revealed that the
metabolic heterogeneity of PDAC cells and CAFs plays a crucial role in tumor progression,
with CAFs supporting the metabolic needs of cancer cells through various mechanisms.
We demonstrated that the co-culture of PDAC cells and CAFs led to significant alterations
in the metabolic profiles of both cell types, indicating a complex interplay between these
cells in the TME. This metabolic reprogramming can promote cancer cell survival, growth,
and resistance to treatment, thus contributing to the aggressiveness of PDAC. Our study
highlights the potential of targeting the metabolic vulnerabilities of PDAC cells and their
interactions with CAFs as a promising therapeutic strategy. Further research should focus
on elucidating the precise mechanisms underlying the metabolic crosstalk between PDAC
cells and CAFs and exploring novel approaches to disrupt this symbiosis for improved
treatment outcomes. In light of these findings, future research directions may include
investigations into the molecular pathways that regulate metabolic adaptations in PDAC
and CAFs, as well as the development of novel therapeutics that specifically target these
metabolic interactions within the TME.
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