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Abstract: Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to
medical device manufacturing. It is well known that the addition of nanotubes can influence the
mechanical properties of various industrial materials, including plastics. Electrospinning is a popular
method for fabricating nanomaterials, widely suggested for polymer scaffold manufacturing. In this
study, we aimed to describe the influence of single-walled carbon nanotube (SWCNT) suspensions on
polymeric poured films and electrospun scaffolds and to investigate their structural and mechanical
properties obtained from various compositions. To obtain films and electrospun scaffolds of 8 mm
diameter, we used poly-ε-caprolactone (PCL) and poly(cyclohexene carbonate) (PCHC) solutions con-
taining several mass fractions of SWCNT. The samples were characterized using tensile tests, atomic
force and scanning electronic microscopy (AFM and SEM). All the studied SWCNT concentrations
were shown to decrease the extensibility and strength of electrospun scaffolds, so SWCNT use was
considered unsuitable for this technique. The 0.01% mass fraction of SWCNT in PCL films increased
the polymer strength, while fractions of 0.03% and more significantly decreased the polymer strength
and extensibility compared to the undoped polymer. The PHCH polymeric films showed a similar
behavior with an extremum at 0.02% concentration for strength at break.

Keywords: carbon nanotubes; PCL; PCHC; tubular scaffolds; bioengineering

1. Introduction

Biodegradable polymer scaffolds have become a popular concept in tissue engineer-
ing [1–3]. This approach to the fabrication of artificial tissue combines the benefits of
easy processing, financial accessibility, variability of materials and incredible potential for
substrate and process modification [3–5]. However, an ideal polymeric vascular scaffold
has not yet been created. Despite the abundance of research in this field, most artificial
vessel prototypes have serious limitations, such as unsuitable mechanical properties, poor
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vascular compliance, slow biodegradation rate, low cytocompatibility and others [3,6,7].
Mechanical behavior is one of the most common problems of polymeric vascular scaffolds.
The optimal scaffold should fully resemble a native vessel and remain sustainable through-
out the implantation period without thrombosis and interruptions, and at the same time, it
should be a temporary support matrix for cell ingrowth that will degrade later on.

PCL is a biodegradable polymer that is well known in bioengineering. It was offered
for vascular tissue engineering in 1986 [8] and remains an object of high scientific interest
today [9–11]. PCL degrades to non-toxic 6-hydroxyhexanoic acid via hydrolysis in vivo
within 2 to 3 years [12]. Tubular PCL grafts have demonstrated good endothelialization
and moderate foreign body reaction in both short- and long-term experiments in rat
models [13,14]. For a long time, PCL scaffolds were considered one of the best options for
vascular replacement, but they still did not repeat the native vessel response to blood flow,
as they were too stiff [14,15]. In search of better mechanical properties, several PCLs and
their processing modifications were realized: polymeric chain elongation, use of various
solvents [16–18], working solution additives [19], preparation of soluble mixtures with
other polymeric components [20] and alternative processing [21]. These changes have
significantly affected the properties of the grafts, but they can still be improved.

PCHC is an amorphous conductive biodegradable CO2-based polycarbonate [22]
known for its non-toxic degradation products [23]. It has been proposed as a vector for
gene and drug delivery [24,25] and tissue scaffold manufacturing [26]. Although it is a
perspective material, pure PCHC is rarely used in tissue engineering because of its low
glass transition temperature, high stiffness, low tensile strength, slow biodegradation and
poor cell adhesion [27], but many copolymers with semi-crystalline plastics such as vinyl,
PCL and poly(lactic acid) (PLA) were made on its basis [28–30].

Electrospinning is a common technique suitable for processing carbon nanotubes,
polymeric solutions and their mixtures [31,32]. The great advantage of this method is the
ability to regulate the fiber diameter and pore size of the non-woven matrix by means of
simple adjustments to the setup parameters [33]. Structures reproducing the architecture of
the natural extracellular matrix (ECM) can be obtained in this way [34]. At the same time,
many materials and their composites with desirable properties can be extremely difficult
to process or, due to their specific features, such as solution viscosity, low conductivity or
glass transition temperature, cannot be subjected to electrospinning [35–37].

Many of these problems could probably be solved through creating nanocomposite
materials with nanotubes [38]. Nanotubes are another advanced topic of contemporary
medicine [39,40]. They are being tested as possible substrates for drug delivery [41,42]
and antibacterial [43], hemophobic [44] or hemostatic coatings [45]. This highly adjustable
material can vary its behavior depending on morphology, weight and size [46]. This may be
the key to the development of a new complex material that combines the resilient properties
of nanotubes and the biocompatibility of well-tested polymers.

The addition of CNTs is a simple way to regulate the rheological properties of polymer
solutions, although the effects greatly depend on the CNT concentration, their size and
dispersion, and also on the polymer structure. The most obvious effect of CNTs concerns
their conductive properties. Being mixed with non-conducting polymer, dispersed CNTs
form a percolated network that increases the conductivity of the substrate. At the same
time, the dispersion of nanotubes in polymeric solutions depends on the polymer molecular
weight and macro- and microstructure determining the polymer/nanofiller interactions,
which is the reason for specific effects in certain polymer/nanofiller combinations [47].
The electrical properties of CNTs also lead to their alignment within the scaffold during
electrospinning, unlike their spreading in polymer films, which builds a different kind of
network [48,49].

It is also noteworthy that multiwall carbon nanotubes (MWCNTs) are more widespread
among biomedical research groups than single-wall nanotubes (SWCNTs). To date, the
number of publications devoted to MWCNTs significantly exceeds the number of papers de-
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voted to SWCNTs. Perhaps this can be explained by the complexity and lower accessibility
of SWCNTs [50].

In this research, we aimed to investigate the effect of SWCNT suspension on the
nanofiber morphology and mechanical properties of PCL and PCHC vascular scaffolds
and poured films.

2. Results and Discussion

To obtain images of nanotube bundles using atomic force microscopy, a drop of the
suspension was placed on a clean glass plate and dried. An example of an atomic force
microscopy image is shown in Figure 1A.
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Figure 1. Atomic force microscopy (AFM) image of nanotube bundles in suspension (A) and trans-
mission electron microscopy (TEM) image of plain nanotubes (the image is courtesy of LLC “Plasma-
Chemical Technologies”) (B). Scale bars are 200 nm. The green arrow indicates the point of SWCNT
clustering; the red arrow indicates the thin SWCNT bundles agglomerating into a larger one.

One of the problems researchers face when preparing nanotubes is their propensity to
agglomerate or cluster. This phenomenon is explained by the strong molecular attraction
between the nanotubes. Van der Waals forces cause entanglement, which leads to CNTs
bundling together [51]. The long hair-like structures of different thicknesses seen in the
images (Figure 1) are the result of this process. A forming cluster and SWCNT bundles,
agglomerating into a thicker filament, are presented in Figure 1B.

Figure 1A demonstrates the SWCNT bundles on the surface of a dried drop of the
studied suspension. The bundles in this microphotograph are even larger because of the
impact of the dried CNT dispersant additive—HNBR. It is an uncured rubber polymer
with a linear molecular structure, highly tropic to the nanotube surface. This affinity to
CNTs may be explained by anchoring CN groups and double bonds in their structure.
The role of this component is to enclose separated CNTs and their bundles, keeping them
dispersed through preventing reverse adhesion in suspension. However, when dried, it
causes additional clumping due to its own physical properties. The HNBR coating cannot
be seen on the surface of the bundles at this magnification because of its subtlety.

All the obtained PCL scaffolds demonstrated nanofibers organized in a dense looped
pattern without any alignment (Figure 2). It is clearly seen that with the SWCNT additives
(Figure 2B–F), electrospun fibers become diversified by thickness. The diameters of pure
PCL fibers ranged from 1.03 to 5.71 µm, but the difference between the maximum and
minimum fiber diameter in the group containing only 0.01% of nanotubes by weight of
dry polymer varied from 1.33 to 10.4 µm. The largest difference was found in samples
with 0.05% SWCNTs: the thinnest fibers were 177 nm in diameter, which is comparable to
the diameter of large CNT bundles, while the largest ones were 10.3 µm. A wide range of
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fiber diameters within the groups demonstrates the featured fiber irregularity, increasing
proportionally with SWCNT content.
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Figure 2. SEM images and corresponding typical strain-stress curves of obtained electrospun PCL
scaffolds: plain 10% PCL solution in pure chloroform (A) and working solutions containing 0.01 (B),
0.02 (C), 0.03 (D), 0.04 (E) and 0.05% (F) CNT by weight. Scale bar is 100 µm. The red lines represent
the stress–strain stretching in the axial direction; black curves correspond to circumferential stretching.

The surface of fiber-to-collector contacts increases with increasing SWCNT concen-
tration from 0.01% to 0.04% by weight. However, in scaffolds containing 0.05% of the
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nanotubes, the surface of fiber-to-collector contacts decreases, but still does not reach the
structure of pure PCL.

We assume that the increasing concentration of SWCNTs in working solutions in-
creases the number of fibers emitted from one polymer jet and fiber-to-fiber connections,
which are mostly represented by a thicker “main” fiber interlaced with thin “additional”
ones. The number of “additional” fibers increases with the rise in the SWCNT content
while their thickness changes inversely proportional to it. This effect might be due to the
nanotubes’ high conductivity: we suggested that, as the main polymer jet emits forming a
larger thread, the thin, more conductive bundles of nanotubes separate from it, moving
with speed higher than the main flow. At the same time, the scaffolds containing the
nanotube suspension demonstrate featured irregularity of the “main” filaments.

The addition of a SWCNT suspension complicates the electrospinning process: so-
lutions with nanotubes are prone to dripping, instability of the Taylor cone and fiber
interruption; it also takes more time for the fabricated scaffolds to dry. Although these
solutions are viscous enough to be electrosopun, their behavior is similar to that of PCL
solutions with lower molecular mass [52]. The supporting properties of these fibers seem to
deteriorate in solutions of 0.01–0.04%, corresponding with a rise in CNT concentration; the
result of this feature in combination with slow drying is fiber melting, which can be seen
on the SEM images (Figure 2). The solution with 0.05% mass fraction of SWCNTs formed a
stable Taylor cone and was easier to process, but filament interruption still took place.

PCHC solutions can be electrospun (Figure 3) [26], despite the unfavorable physical
properties described above, but we have not been able to obtain a sustainable tubular
electrospun scaffold with or without SWCNTs. All these scaffolds were too fragile to be
taken off the collector without damaging the structure. Tensile tests also could not be
carried out effectively due to their fragility.
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Figure 3. SEM image of the obtained electrospun PCHC scaffold (A) and the corresponding axial
strain–stress curve (B). Green arrows indicate fiber disruptions. Red color indicates the low SBR
value for these matrices (below 15 kPa). Scale bar is 100 µm.

Figure 3A represents the microstructure of the electrospun PCHC scaffold. The ob-
tained matrix is built of bead-on-string fibers of various diameters and lengths with numer-
ous fiber interruptions. Most sites of filament breakage have a specific shape of stacked
discs (Figure 3A), which implies that the fiber was damaged while drying. Increasing the
PCHC weight fraction up to 20% and adding a nanotube suspension did not improve the
scaffold properties. This result amply demonstrates the brittleness of PCHC nanofibers.
Although there are reports of successful PCHC scaffold fabrication [26], we found that the
physical properties of the tested polymer (atactic PCHC, Mn = 25 kDa) are not appropriate
for the fabrication of tubular scaffolds. This statement was confirmed by the strain–stress
curve for stretching in the axial direction (Figure 3B). The tensile strength at break (SBR)
value for these matrices was as low as nearly 15 kPa, hardly comparable to that of the PCL
samples (Figure 2).
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The mean tensile strength at break (SBR) and strain values for each group of PCL
electrospun scaffolds are presented in Figure 4; p-values are given in Tables S1–S4. The
samples were tested in the axial and circumferential directions relative to the central axis of
the tubular scaffolds.
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These data (Figure 4) and stress–strain curves (Figures 2 and S1, Tables S1–S4) describ-
ing mechanical behavior of the tested samples prove the negative effect of the SWCNT
suspension on electrospun PCL scaffolds. The impact of 0.01% of SWCNTs on PCL fibers
was not statistically proven (Tables S1–S4). The effect of 0.02% of SWCNTs on axially
oriented PCL fibers was manifested in a significant decrease in SBR (p = 0.008) and their
extensibility in circumferential direction (p = 0.034). Further, these indicators decreased as
the concentration of nanotubes increased, but the extensibility decreased more gradually
than SBR in the SWCNT concentration range of 0.01–0.03%. For PCL with 0.03–0.05%
nanotube additives, the SBR and strain were almost the same (p > 0.05). When tested in
axial direction, the mean SBR was significantly lower only with the 0.02% SWCNT concen-
tration compared to the pure polymer (p = 0.008) and the 0.01% group (p = 0.025). The axial
extensibility of the control, 0.01% and 0.02% groups varied in the range of 550–700 MPa
and did not differ significantly. Thus, with the rise in the SWCNT content, the tendency of
scaffolds being less strong and extensible enhances, the difference in values between the
last three groups is not significant, but all of them show poor results when compared to first
three groups (p-values are given in Tables S1–S4). Though, such behavior may be explained
by the nanoarchitecture of these scaffolds, in particular, by the number and the thickness of
“additional” filaments and non-melted main threads. The loss of scaffold strength from
pure PCL to 0.05% nanotubes suspension is likely due to the amount of aligned SWCNTs
inside the threads, since ordered nanotube bundles build a more fragile structure. The
same pattern can be seen on the strain–stress curves given in Figure 2, which correlates
with the degree of fiber irregularity seen in the SEM images.

We suggest that the nanotubes alignment occurred during the electrospinning of the
material. The reason for this may be the high conductivity of SWCNTs and their ordering
under the application of the electrostatic field [31].
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Figure 5 demonstrates the surfaces of the obtained films, each of which has its own
specific relief. Pure PCL films consist of connected round ring-banded formations building
linear constrictions in spherulite impingement areas. The surface of these globules is
covered with small ridges arranged in concentric circles. PCL films containing 0.05% of
SWCNTs is also represented by circular shapes, smaller in diameter and connected in
the same way. The surface of these formations is covered with spirally oriented pile-like
protrusions, which are more prominent than on pure polymer surface. We suggest that
this is the result of enhanced spherulite lamellae twist. Similar results were found by
another research group, which relates this phenomenon to the CNTs location inside the
spherulite. During the crystal formation, chains of PCL molecule arrange into lamellae, but
CNTs are not involved in this process, gathering between the lamellae or their bundles.
Consequently, more unbalanced surface stresses of lamellae or bundles, induces the twisting
of lamellae [53].
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Unlike PCL, PCHC films have a flat structure molted with small pores of various
diameter. With addition of SWCNTs, the size of the pores decreased, but no other changes
in the film structure were noticed. This may be due to the SWCNT network formation in a
layer of fully amorphous atactic PCHC polymer media. We must note that stereoregular
poly(cyclohexene carbonate)s have a different crystallization behavior [54].

Polymeric films demonstrate different mechanical behavior than electrospun scaffolds
(Figure 6, Figures S2 and S3). For PCL film samples, the addition of 0.01% of SWCNTs led
to the best SBR result compared with all the other samples including the control (p < 0.05,
Table S5). The mean strain in this group was also higher than in the control sample, but no
statistical difference was found between them (p = 0.22, Table S6).

The mechanical properties of the 0.02% SWCNT group were similar to those of pure
PCL; no significant difference was found between them. Resembling the trend, noted for
tubular scaffold analysis, three last concentrations of nanotube suspension decreased the
film tensile strength and elongation capacity when compared to pure polymer, 0.01 and
0.02% CNT concentrations, while samples of the 0.05% group were the least durable and
extensible. The tendency of smaller amounts of SWCNT having a positive effect on the
polymers’ mechanical properties was proven by other research groups, the main difference
of opinions on this subject is the amount of CNT chosen as optimal [38,55], what may
depend on the different choices of a polymer.

The evaluation of PCHC films was certainly difficult because of the physical features
described above, such as low strength and high fragility. The results collected for this
polymer were also controversial. The group containing 0.01% of SWCNTs demonstrated a
significant decrease in SBR among all of the other samples (p = 0.0001 when compared to
pure polymer, p-values are represented in Table S6). The SBR of the 0.02% group was almost
equal to the control, but with a smooth trend to SBR decreasing at higher concentration.
The strain values were highly variable within groups and mean values are not differ
significantly (Table S8).
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Probably the vast difference in mechanical behavior depends on the distribution of
the SWCNTs. In films, they lie along the initial polymer structure rather than in a line,
as it was in electrospun samples. Deliberate orientation of nanotubes in a film gives the
polymer-SWCNT compound a “reserve of flexibility” because the applied tensile force is
distributed on the network of differently oriented bundles, and its vector is directed at
various angles relating to them. This feature and specificity of macromolecular polymeric
structures define the CNT network pattern and needed CNT concentration.

Since the electrospinning method is considered unsuitable for processing these solu-
tions, because of the major decrease in SBR and extension capacity (Figure 4), the alternative
ways of matrix formation should be sought. One of the most common methods not in-
volving conductive features of nanotubes or chemical additives is molding. This method
makes it possible to create scaffolds of complex shape, which cannot be obtained using
electrospinning. Along with this, it has a minimal effect on the orientation of nanotubes
and the structure of the polymer. The main limitations of molding with polymeric solutions
are related to the requirements for molds: they should be resistant to the used solvents,
chemically inert, and easily removable.

It is important to mention that in this research, the results cannot refer solely to the
SWCNT concentration. As we noted earlier [47], the uniform dispersion of nanotubes
in the working solution is crucial for nanofilling/polymer reactions and, therefore, the
overall effect on the raw material. This suggested our use of a stabilizing agent, HNBR, can
influence the mechanical properties of the obtained samples, and at the same time its use is
highly substantial.

Through adding the SWCNT suspension in a concentration of 0.01% CNT/dry poly-
mer, we also introduce the solution to higher concentrations of HNBR, which needs a more
“holistic” approach in research. It also opens new space for suspension modification; the
search for another stabilizing agent can lead to significant findings in this field.
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Figure 7 shows a representative Brillouin spectrum of the PCHC sample. The Stokes
and anti-Stokes parts of the spectrum show the peaks corresponding to inelastic scattering
involving acoustic phonons.
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Figure 7. Representative Brillouin spectrum of the PCHC sample (circles). Lines are DHO fits.

The position of the maximum, νB, and the linewidth ΓB of the Brillouin peaks were
determined from the experimental spectra I(ν) using the damped harmonic oscillator
(DHO) function:

I(ν) =
I0

π

ΓBν2
B(

ν2 − ν2
B
)2

+ (ΓBν)2

This fit was applied for the Brillouin spectra of the PCHC and PCL series with various
concentrations of SWCNTs. Results of this analysis for νB are presented in Table 1.

Table 1. The position of Brillouin line and the evaluation of the longitudinal elastic modulus of the
samples under study. The data are presented as mean ± standard deviation.

Polymer Parameter
SWCNT Concentration (%)

0 0.01 0.02 0.03 0.04 0.05

PCHC νB, GHz 12.26
± 0.08

12.38
± 0.03

12.53
± 0.09

12.54
± 0.04

12.59
± 0.03

12.63
± 0.02

PCL νB, GHz 12.99
± 0.006

13.00
± 0.01

13.033
± 0.01

13.054
± 0.02

13.066
± 0.01

13.083
± 0.02

It can be seen that both polymers demonstrate an increase in the position of the
Brillouin peak with increasing SWCNT concentration. This increase is weak and about 0.8%
for PCL and 3% for PCHC for the whole range of SWCNT concentrations (from 0 to 0.05%).
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For the backscattering geometry, the Brillouin peak maximum νB determines the
longitudinal elastic modulus MB as

MB = ρ

(
λνB
2n

)2

where n is the refractive index, ρ is the material density and λ is the laser wavelength.
Neglecting the effects for n and ρ at low SWCNT concentrations (from 0 to 0.05%), the
addition of SWCNTs provides a relative change of MB as

MB/MB (0%) =
ν2

B
ν2

B(0%)

The relative change of MB versus SWCNT concentration is shown in Figure 8.
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It is seen that there is an increase in the infinite-frequency elastic modulus with SWCNT
concentration. These results allow us to conclude that in Figure 6, the trend towards a
decrease in the low-frequency Young’s modulus with increasing SWCNT concentration
above 0.02% is caused by the changes in the relaxation response.

The durometer Shore D hardness data of tested samples are presented in Figure 9. For
the PCL samples, all of the probes demonstrate a decrease in durometer Shore D hardness
values, compared to the original polymer. Most of these specimens have durometer Shore D
hardness in the range of 40–42 except for the group with the 0.02% SWCNT concentration,
which has higher values than the rest of CNT-containing samples, much closer to the
original polymer (49 in the control group and 47.25 for the 0.02% SWCNT group). This
behavior also suggests that for PCL samples, there is an optimum CNT content, which can
improve the mechanical properties of this polymer, while addition of excessive amounts of
the suspension can have negative effects. Another case is the PCHC samples, for which
durometer Shore D hardness increases proportionally to the suspension concentration.
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as mean ± standard deviation.

Among these samples, the lowest durometer Shore D hardness belongs to pure PCHC
(79.15). With rise in CNT concentration, it gradually increases up to 84.4 at the concentration
of 0.05%. In terms of electrospinning process this effect can result in higher solution
conductivity, but also in an increase in fiber brittleness.

3. Materials and Methods
3.1. Nanotube Suspension Preparation

Single-walled carbon nanotubes (SWCNTs) with an average diameter of 1.6 nm ob-
tained from LLC “Plasma-Chemical Technologies” (Novosibirsk, Russia) were evaluated
via optical absorption spectroscopy on a Shimadzu UV-3600 spectrophotometer (Shimadzu
Corporation, Kyoto, Japan) according to ISO 10868:2017 [56]. To achieve the fine disper-
sion of SWCNTs, a suspension in 1-methoxy-2-propyl acetate (Jiangsu Sanmu Group Co.,
Ltd., Yixing, China) with hydrogenated nitrile butadiene rubber (HNBR) Therban 2004
(Arlanxeo, Pittsburg, PA, USA) as dispersing and stabilizing agent was prepared using the
ultrasonication technique. The SWCNT content in the obtained suspension was 0.1 wt.%;
HNBR content was 0.5 wt.%.

3.2. Polymer Composition

For the PCL working solution mixture, 1 g of 3 mm spherical pellets of (1.7)-polyoxepan-
2-one (ε-polycaprolactone) with a molecular mass (Mn) of 80 kDa (cat. No 440744, Sigma-
Aldrich Co., St. Louis, MO, USA) was collected in a probe tube, and then a desired amount
of nanotube suspension was added: in the test groups, the weight ratios of nanotubes to
dry PCL were 0.01, 0.02, 0.03, 0.04 and 0.05%; control samples were made of pure PCL.
After that, pure chloroform (Vekton, Saint Petersburg, Russia) was added to obtain the 10%
PCL solution by weight. Tubes with probes were kept at 37 ◦C with permanent shaking
until the polymer was completely dissolved. Each portion was prepared separately on the
date of scaffold fabrication. The PCHC working solution was made in a similar way using
1 g of poly(cyclohexene carbonate) with a molecular mass (Mn) of 25 kDa unsized pellets
(Empowered materials, New Castle, DE, USA).

3.3. Scaffold Manufacturing

Tubular matrices were fabricated using a NANON 01-B electrospinning setup (MECC Inc.,
Fukudo Ogori-shi, Japan) with a standard clip spinneret and an 8 mm rod rotary collector
under the established setup mode, chosen on the base of our previous experience [17]. An
amount of 1 mL of working solution was delivered through a 27 G blunt-tip needle at a
constant feed rate of 0.5 mL/h. Nanofibers were generated at 16 kV at a collector rotation
speed of 300 rpm, spinneret speed of 150 rpm and tip-to collector distance of 15 cm.
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3.4. Film Fabrication

Film samples were made through pouring 1 g of working solution on a standard
glass microscopic slide (76 × 26 mm); the solution was evenly spread over the slide
surface through gentle rocking by hand, and then films were left overnight to dry at room
temperature. The mass of the applied solution was controlled with analytical-grade weights
(Shimadzu Corporation, Kyoto, Japan).

3.5. Mechanical Properties Evaluation

For mechanical tests, rectangular fragments 15 × 10 mm in size (n = 10 per group)
were cut out longitudinally or circumferentially from the obtained tubular electrospun
scaffolds. The “dog-bone”-shaped samples were cut out of the films (n = 10 per group) with
a cutting stamp (overall length of 17.5 mm, overall width of 10 mm, narrow section length of
6 mm, narrow section width of 5 mm). Before tensile tests, the sample thickness (mm) was
measured at three points for all samples, and then the average value was calculated. For the
“dog-bone” samples, all three points were selected in the narrow section. Measurements
were performed with a digital caliper (Mitutoyo, Kawasaki, Japan). Then tested samples
were placed in the grips of an ESM 303 L tester (Mark-10 Corporation, Copiague, NY, USA)
with a computer-linked force gauge (0–100 N) and stretched until failure at an extension
rate of 10 mm/min. All samples were tested dry, without any preconditioning.

Strength was evaluated as failure stress (σ, MPa) (Equation (1)):

σ =
F max

S
(1)

Failure strain (ε, %) was calculated using (Equation (2)):

ε =
L max − Lo

Lo
× 100% (2)

where ε is the failure strain, Lo is the initial sample length (mm) equal to the distance
between the grips and L max is the maximal deformation (mm).

3.6. Sample Hardness Measurements

For sample hardness measurements, each working solution was poured in a cylindrical
mold of 2 cm in diameter and dried in a fume hood at constant room temperature to obtain
samples with a thickness of 6 mm. The measurements were carried out with a Shore D
scale durometer (Vostok-7, Moscow, Russia); ten points of measurement were chosen for
every sample. The results are represented as mean ± standard deviation.

3.7. Brillouin Scattering Spectroscopy

Brillouin spectroscopy is an optical method that measures light inelastically scattered
by acoustic phonons. This method allows evaluating the sound velocity in a material from
the spectral position of the Brillouin peaks. In the case of materials with a relaxational
response slower than a nanosecond, as in the present study, the method provides informa-
tion on the elastic response in the infinite-frequency limit. Here, we applied the Brillouin
spectroscopy method to determine the longitudinal elastic modulus of PCL and PCHC
polymers as a function of SWCNT concentration.

The Brillouin experiment was realized in the back-scattering configuration using a
532.1 nm solid-state laser (Spectra Physics, Milpitas, CA, USA) and a 3 + 3 pass tandem
interferometer (JRS Scientific Instruments, Zurich, Switzerland). The focusing and collecting
lens had a focal length of 150 mm. The typical laser power was a few mW, and control
measurements were taken at several-times-lower power to ensure that the effects of laser
heating were negligible. The free spectral range was 25 GHz, and the finesse was estimated
to be 100. The Brillouin spectra from four different spatial points were measured for
each sample.
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3.8. Scanning Electron Microscopy (SEM)

SEM imaging of matrices was performed using a SU1000 FlexSEM II scanning electron
microscope (Hitachi, Tokyo, Japan). Cut samples measuring 50 mm × 50 mm were straight-
ened and fixed appropriately on a specimen tray with conductive tape. Then, samples were
sputtered with carbon alloy via a GVC-3000 Thermal Evaporation Carbon Coater (KYKY
Technology Co., Beijing, China). Sample observation was performed using a secondary
electron detector at an electron high tension of 20 keV. Ten observation fields were selected
for every specimen and were examined at 100×, 250×, 450×, 700×, 800× and 1000×
magnification. The fiber sizes were measured using a FlexSEM1000 operating program.

3.9. Atomic Force Microscopy

An Atomic Force Microscope NTEGRA II (NT-MDT Spectrum Instruments, Moscow,
Russia) was used to visualize carbon nanotubes. Each sample was analyzed under semi-
contact mode using a silicone ultrasharp probe HA_FM A (NT-MDT Spectrum Instruments,
Moscow, Russia). Ten AFM fields of 50 µm × 50 µm and 5 µm × 5 µm were analyzed for
each sample at the scan rate of 0.6 Hz. Image analysis software Nova-Px v. 3.5.0 rev. 20351
(NT-MDT Spectrum Instruments, Moscow, Russia) was used to obtain topographic images.

3.10. Statistical Analysis

Quantitative data were processed using Dell Statistica 13.0 (Dell Software Inc., Aliso
Viejo, CA, USA). Results are presented as mean (M) ± standard deviation (SD). The Mann–
Whitney (M-W) U-test was used to compare two groups. The significance level was set to
p < 0.05 (Tables S1–S8).

4. Conclusions

Based on the obtained results, we cannot recommend the studied SWCNT suspension
for the fabrication of tissue scaffolds via electrospinning. However, SWCNTs improve the
mechanical behavior of polymer poured films, which can be processed using the molding
method of scaffold production. We assume that this effect is based on the architecture of
the percolative network of nanotubes exposed to different conditions depending on the
processing method.

It is noteworthy that even small amounts of SWCNT suspension added to a polymer
solution can have a noticeable effect on its physical properties, such as material hardness
or stress at break. These effects and their dependence on the SWCNT concentration are
not universal for different materials. Some materials, like PCL, seem to have a CNT
concentration optimum, which has negative effects on its mechanical properties when it
is exceeded.

The perspective of this search is investigating new ways of processing and alternative
ways of SWCNT dispergation that would minimize the effect of the suspension additives.
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