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Abstract: Paraphalaenopsis, a genus of perennial herbs from the family Orchidaceae, contains a number
of ornamental species. However, there is no information on the chloroplast genomes of Paraphalaenop-
sis, which limits our studies of this genus. In this study, we reported the chloroplast genomes of three
species of Paraphalaenopsis (P. labukensis, P. denevel, and P. laycockii ‘Semi-alba’) and performed com-
prehensive comparative analysis. These three chloroplast genomes showed a typical quadripartile
structure. Their lengths ranged from 147,311 bp to 149,240 bp. Each genome contained 120 unique
genes, including 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Comparative analysis
revealed major differences in sequence divergence in the three chloroplast genomes. In addition,
six hypervariable regions were identified (psbM-trnDGUC, psbB, ccsA, trnKUUU, trnSGCU-trnGUCC,
rps16-trnQUUG) that can be used as DNA molecular markers. Phylogenetic relationships were deter-
mined using the chloroplast genomes of 28 species from 12 genera of Aeridinae. Results suggested
that Paraphalaenopsis was a clade of Aeridinae that was sister to the Holcoglossum-Vanda clade, with
100% bootstrap support within Aeridinae. The findings of this study provided the foundation for
future studies on the phylogenetic analysis of Aeridinae.

Keywords: Paraphalaenopsis; Aeridinae; chloroplast genome; phylogenetic analysis

1. Introduction

Paraphalaenopsis belongs to the tribe of Vandeae, a subtribe of Aeridinae, of the family
Orchidaceae. Paraphalaenopsis is endemic to Borneo (Kalimantan, Sarawak, and Sabah)
and is related to Renanthera, Aerides, Doritis, Phalaenopsis, and Kingidium [1]. This genus
consists of four species, including P. labukensis, P. laycockii, P. serpentilingua, and P. denevei.
Paraphalaenopsis is an epiphytic herb, and the leaves are terete or nearly terete and hang
naturally, such as a pencil or rat-tail, known as the “rat-tailed phalaenopsis” [2]. The flowers
of Paraphalaenopsis species usually release a strong scent analogous to cinnamon or ripe
bananas [2]. However, only a few reports have been documented about Paraphalaenopsis.
Considering that the species of this genus are morphologically similar, precise species
recognition based on molecular markers is particularly important for the rational utilization
of this genus of plants.

Moreover, some researchers have used molecular methods to explore phylogenetic
relationships within the genus Paraphalaenopsis and its phylogenetic position in the family
Aeridinae, while the selected DNA fragments are one-sided and partially complete, with
low bootstrap support values, which imposes certain limitations on the phylogenetics
of Paraphalaenopsis [3,4]. Therefore, it is necessary to further explore the phylogeny of
Paraphalaenopsis species within Aeridinae.

Due to its short length, large number of gene copies, highly conserved sequence,
and low genetic recombination rate, the chloroplast genome is an ideal tool for studying
genetic differences and molecular phylogeny among species [5–7]. In recent years, as more
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and more chloroplast genomes have been reported, research on plant phylogeny based
on chloroplast genomes has provided effective solutions to the systematic problems of
some difficult taxa [6,8–12]. Recently, Li et al. [11] reported the phylogenetic relationships
of the chloroplast genomes of 12 Holcoglossum species, and Xiao et al. [10] reported the
phylogenetic relationships of the chloroplast genomes of four Renanthera species, providing
a wealth of chloroplast genome resources for the study of Aeridinae plants. Unfortunately,
there have been no reports on the chloroplast genomes of Paraphalaenopsis.

In this study, we presented the whole chloroplast genome sequence of Paraphalaenopsis
and investigated the utility of these new genomic resources and their relationships with
other Aeridinae species. We analyzed the structural features and sequence divergence
of the chloroplast genomes in Paraphalaenopsis and performed plastome-based analyses,
comparing the differences among selected closely related species. Finally, we inferred the
phylogenetic relationships of Paraphalaenopsis within Aeridinae based on the complete
chloroplast genome sequence.

2. Results
2.1. Genome Characteristic

In this study, the complete chloroplasts of three Paraphalaenopsis species were obtained
for the first time, with genome sizes ranging from 147,311 bp (P. labukensis) to 149,240 bp
(P. laycockii ‘Semi-alba’) (Figure 1). Three chloroplast genomes of Paraphalaenopsis exhibited
the quadripartite structure typical of most angiosperms, consisting of two copies of IR
regions (24,915–25,412 bp), a large single-copy region (LSC, 85,989–86,761 bp), and a small
single-copy region (SSC, 11,492–11,655 bp) (Table 1). The G/C content was approximately
36.4% (Table 1), which is comparable to other previously sequenced chloroplast genomes of
Orchidaceae [13,14]. The GC content of each region varied in the three chloroplast genomes
and was (43.1–43.3%), (27.5–27.8%), and (33.4–33.7%) for the IR, SSC, and LSC regions,
respectively (Table 1).

The chloroplast genomes of Paraphalaenopsis encoded 120 genes (including repetitive
genes), consisting of 74 protein-coding genes, 38 transfer RNA (tRNA) genes, and eight
ribosomal RNA (rRNA) genes (Table 1). Functional ndh genes are lost or pseudogenized
in all Paraphalaenopsis species. The ndh genes were all pseudogenes with 6–7 members in
each plastome (Table 1). The plastomes of P. denevel possessed seven (ndhB/C/E/G/I/J/K)
pseudogenes; P. labukensis and P. laycockii ‘semi-alba’ possessed six (ndhB/C/E/G/J/K)
pseudogenes, respectively (Table 2). Most genes of the three chloroplast genomes appeared
as a single copy in the LSC or SSC region, with 19 gene duplications in the IR regions; six
tRNA genes and six protein-coding genes contained one intron, and three genes (ycf3, clpP,
and rps12) contained two introns (Table 2).

We comprehensively compared the positions of IR boundaries and adjacent genes in
three Paraphalaenopsis and two other closely related orchid species (Figure 2). Although the
length of IR regions varied less among the five species, there were some differences in IR
expansions and contractions. The trnN-ycf1 genes were located at the crossing points of the
SSC/IRa (JSA) regions. The ycf1 gene was duplicated in two other Aeridinae species—Vanda
concolor and Holcoglossum tsii, which were located at the IRb/SSC (JSB) boundary—but not
in the Paraphalaenopsis species. The rpl22 -rps19- psbA were located at the intersections of the
LSC/IR regions. The rpl22 genes of LSC crossed with IRb in the chloroplast genomes of five
species, with the length ranging from 31 bp to 46 bp. The psbA gene was complete in the
LSC region in all these chloroplast genomes, 90–96 bp from the IRa/LSC (JLA) boundary.
Moreover, the trnN and rps19 genes were completely in the IR regions and duplicated in
the chloroplast genomes of Paraphalaenopsis.
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Figure 1. Chloroplastic genome structure of three Paraphalaenopsis species (P. labukensis, P. denevel,
P. laycockii ‘Semi-alba’).

Table 1. Characteristics of the complete chloroplast genomes of Paraphalaenopsis strains.

Species Size
(bp)

LSC
(bp)

SSC
(bp)

IRs
(bp)

Number
of Genes

Protein
Coding
Genes

tRNA
Genes

rRNA
Genes

Total
GC
(%)

LSC
GC
(%)

SSC
GC
(%)

IR
GC
(%)

The Number of
ndh Gene Loss

/Pseudogenization

P. labukensis 147,311 85,989 11,492 24,915 120 74 38 8 36.5 33.7 27.8 43.3 7 (5)
P. denevel 148,905 86,516 11,621 25,384 120 74 38 8 36.4 33.5 27.5 43.2 8 (4)
P. laycockii
‘semi-alba’ 149,240 86,761 11,655 25,412 120 74 38 8 36.3 33.4 27.6 43.1 7 (5)
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Table 2. The list of genes in the chloroplast genomes of Paraphalaenopsis species.

Classfication Genes

Genetic apparatus
Large ribosomal subunits rpl2(×2)a, rpl14, rpl16a, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36
Small ribosomal subunits rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12(×2) b, rps14, rps15, rps16a, rps18, rps19(×2)

RNA polymerase subunits arpoA, rpoB, rpoC1, rpoC2
Other genes accD, infA, ccsA, clpPb, matK

Ribosomal RNAs rrn4.5(×2), rrn5(×2), rrn16(×2), rrn23(×2)

Transfer RNAs

trnA-UGC(×2)a, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC a,
trnH-GUG(×2), trnI-CAU(×2), trnI-GAU(×2) a, trnK-UUU a, trnL-CAA(×2), trnL-UAA a,
trnL-UAG, trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU,

trnS-GCU, trnS-GGA, trnS-UGA, trnT-UGU, trnT-GGU, trnV-GAC(×2), trnV-UAC a,
trnW-CCA, trnY-GUA, trnfM-CAU

Light dependent photosynthesis
Photosystem I psaA, psaB, psaC, psaI, psaJ
Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

NAD(P)H dehydrogenase complex ndhJ, ndhK, ndhC, ndhB(×2), ndhE, ndhG, ndhI c

F-type ATP synthase atpA, atpB, atpFa, atpE, atpH, atpI
Cytochrome b/f complex petA, petBa, petDa, petG, petL, petN

Light independent photosynthesis
Large subunit ofRubisco rbcL

Function uncertain ycf1, ycf2(×2), ycf3b, ycf4
a Gene with one intron; b Gene with two introns; c Gene lost in P. labukensis and P. laycockii ‘Semi-alba’; (×2) Gene
with two copies.
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Figure 2. Comparison of connections between LSC, SSC, and IR regions. P. labukensis, P. denevel,
P. laycockii ‘Semi-alba’, Vanda concolor, and Holcoglossum tsii chloroplast genomes.

2.2. Repeat and SSR Analysis

Paraphalaenopsis species had a total of 71 (P. labukensis)–78 (P. denevel) SSRs (Figure 3A,
Supplementary Table S3). Among the SSRs, mononucleotide repeats were the most abun-
dant. At least 39–49 mononucleotide repeats were found in the three Paraphalaenopsis
species: 9–13 were dinucleotide repeats, 4–10 were trinucleotide repeats, 2–7 were tetranu-
cleotide repeats, and 1–2 were pentanucleotide repeats. Hexanucleotide repeats were
1–2 repeats in all the species except P. laycockii ‘Semi-alba’, which had no repeats. Most
mononucleotides and dinucleotides consisted of A/T and AT/AT (Figure 3A,
Supplementary Table S3). Most SSRs were located in the LSC region, while a few were
located in the IR region. (Figure 3B, Supplementary Table S3).
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Figure 3. Analysis of simple sequence repeats (SSRs) and repeated sequences in the chloroplast
genomes of P. labukensis, P. denevel, and P. laycockii ‘Semi-alba’. (A) Type and number of each identified
SSR; (B) Number of SSRs for each Paraphalaenopsis species by location in IR, LSC, and SSC; (C) Total
of three species with four repeat types.

Four types of repeats (completement, forward, palindrome, and reverse) were ana-
lyzed in the chloroplast genomes of three Paraphalaenopsis species. Each genome contained
49 large repeats (>20 bp); almost all repeats were in the range of >30 bp in length, with the
fewest in the range of 20–29 bp. Of these, 1–2 were complement (C), 14–20 were forward (F),
16–22 were palindromic (P), and 7–17 were reverse (R) (Figure 3C, Supplementary Table S2).

2.3. Comparative Genomic Divergence and Genome Rearrangement

Comparative and collinearity analyses of chloroplast genomes can reveal differences
between species. We found that the three chloroplast genome sequences of Paraphalaenopsis
have a high degree of similarity, and no restructuring occurred. (Figure 4). Sequence differ-
ences exist in several regions, including trnKUUU, trnSGCU-trnRUCU, petN-psbM, psbE-petL,
clpP-psbB, petD, psaC-ndhE, rbcL-accD, ycf2, rpl16, and ndhB of the three Paraphalaenopsis
species (Figure 5).
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To further analyze the mutation hotspots of the chloroplast genomes of Paraphalaenop-
sis species, we used DnaSP6 to analyze the nucleotide diversity (Pi) for the alignment
of the complete genomes (Figure 6, Supplementary Table S4). The nucleotide diversity
(Pi) values of the three chloroplast genomes ranged from 0 to 0.155, and sliding win-
dow analysis showed that mutation hotspots included psbM-trnDGUC, psbB,ccsA, trnKUUU,
trnSGCU-trnGUCC, and rps16-trnQUUG, which had higher Pi values (>0.06) in the LSC and
SSC regions. These six mutational hotspots may contain information about more rapidly
evolving sites and could be potential molecular markers.

2.4. Phylogenetic Analysis

We inferred the phylogenetic relationships of Paraphalaenopsis species and other Aeridi-
nae species by ML analysis (IQ-tree ultrafast method) of complete chloroplast genomes and
68 protein-coding genes, resulting in two trees with the same topology. (Figures 7 and S1).
All the branch nodes in the phylogenetic tree were strongly supported in the ML anal-
ysis and the BI analysis (BS ≥ 75%, PP ≥ 0.90). All Paraphalaenopsis species formed a
monophyletic subclade in both trees.
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Figure 6. Sliding window test of nucleotide diversity (Pi) in the Paraphalaenopsis chloroplast genomes.
Window length: 600 bp; step size: 200 bp. X-axis: the position of the midpoint of a window. Y-axis:
nucleotide diversity of each window.
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probabilities (BSML left, BSMP middle, and PP right).-indicates that a node is inconsistent between
the topology of the MP/ML trees and the Bayesian tree. * indicates that the node has 100 bootstrap
percentage or 1.00 posterior probability.

3. Discussion

In this study, we obtained the chloroplast genome sequences of three species of
Paraphalaenopsis using next-generation sequencing technology. The chloroplast genomes
had a typical tetrad structure and a size range of 147,311 bp to 148,905 bp, wherein the
structure and gene order were highly conserved, in line with the range of previously
reported orchid chloroplast genomes [6,10–12]. These results suggest that the chloroplast
genomes are still relatively conserved in Paraphalaenopsis. In addition, a total of 71–78 SSRs
were detected in the three chloroplast genomes, of which 39–49 were mononucleotide
repeats. Most of the SSR sequences are often composed of A/T or AT/AT, a phenomenon
that has also been observed in other plant species [6,15,16]. With abundant SSR loci
associated with polymorphisms in the chloroplast genomes of different species, they are
often used as molecular markers for species identification [17–19].

The variation, contraction, and expansion of the IR regions are common phenomena
in the evolution process of angiosperms [20]. These phenomena may occur at the border
of inverted repeats (IRs) and single-copy regions (LSC and SSC), allowing certain genes
into IR or SC regions [21]. We observed that the ycf1 gene in the SSC region of Vanda
concolor and Holcoglossum tsii extended across the JSA into the IRA region. This situation
did not appear in the three Paraphalaenopsis species, and the length of their IR regions
ranged from 24,915 bp to 25,412 bp, which was no significant difference. This suggests
that the Paraphalaenopsis species did not undergo significant expansion/contraction in the
IR regions.

Nucleotide diversity (Pi) can indicate the degree of variation of nucleic acid sequences
in different species, and the position with higher variability can be used as a molecular
marker of population genetics [22,23]. Chloroplast genome mutation hotspots are conve-
nient and practical methods for developing DNA barcodes, which have been demonstrated
in orchids [8,9,24–27]. In this study, using comparative chloroplast genomics analysis, we
compared the complete chloroplast genomes and DNA sequence polymorphisms based
on mVISTA and DnaSP v6.0. We observed that noncoding regions of Paraphalaenopsis
chloroplast genomes exhibited higher polymorphism than coding regions, which is sim-
ilar to most plants. In addition, most regions except the IR regions had high Pi values,
indicating that these regions have the potential to design molecular markers. We pro-
pose that six hypervariable regions, psbM-trnDGUC, psbB, ccsA, trnKUUU, trnSGCU-trnGUCC,
and rps16-trnQUUG, can be used as potential molecular markers for the identification of
Paraphalaenopsis.

Chloroplast genomes are highly conserved and have been widely applied in phyloge-
netic and evolutionary studies, which play a vital role in species identification [8,9,13,14,28].
We analyzed the phylogenetic relationships of Paraphalaenopsis belonging to Aeridinae
by using the complete chloroplast genome sequences. In the unilateral analysis based
on chloroplast genomes, Paraphalaenopsis and Holcoglossum-Vanda were sister groups and
belonged to the Aeridinae [4]. This is consistent with the results of traditional classification
and short gene sequence studies [3,4]. However, these results are restricted because of
the maternal inheritance of the chloroplast genome [19,29], and accurate phylogenetic
relationships still require a comprehensive analysis of nuclear and organellar genes [14,30].
In addition, of the 85 genera of Aeridinae, only 20 genera have been sequenced so far. In the
future, further genome sequencing will be required to determine the relationships between
Paraphalaenopsis and other species of the subtribe Aeridinae.
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4. Materials and Methods
4.1. Plant Materials, DNA Extraction and Sequencing

Three Paraphalaenopsis species were selected, including P. labukensis, P. denevel and
P. laycockii ‘Semi-alba’. P. labukensis and P. denevel were introduced and cultivated in the
Shanghai Chen Shan Botanical Garden, Shanghai Province, China. P. laycockii ‘Semi-alba’
was introduced and cultivated in the China National Botanical Garden, Beijing Province,
China. As shown in Supplementary Table S1, their voucher information was provided. The
total DNA of leaf samples was extracted using the CTAB method [31]. Short-insert (500 bp)
pair-end (PE) libraries were constructed, and the sequencing was performed by the Beijing
Genomics Institute (Shenzhen, China) on the Illumina HiSeq 2500 platform with a read
length of 150 bp. At least 10 Gb of clean data were obtained for each species.

4.2. Chloroplast Genome Assembly and Annotation

Chloroplast genome assembly and annotation were performed following previously
described methods [32]. In short, the paired-end reads were assembled using the GetOr-
ganelle pipeline (https://github.com/Kinggerm/GetOrganelle, accessed on 5 May 2023).
Then the filtered reads were assembled using SPAdes version 3.10 [33]. The published
chloroplast genome of Phalaenopsis hygrochila (MN124430) was chosen as a reference genome
for assembling chloroplast genomes. Gene annotation was carried out using DOGMA [34]
and checked with Geneious Prime v2021.1.1 [35]. The circle maps were drawn using
OGDRAW [36].

4.3. Genome Comparison and Analysis, IR Border and Divergence Analyses

The chloroplast genomes of three Paraphalaenopsis species were aligned with mVISTA
using the alignment program LAGAN [37], using the sequence of P. labukensis as a reference.
Rearrangements of chloroplast genomes were detected and graphed using Mauve in three
species [38]. The boundaries between the IRs, SSCs, and LSCs of the chloroplast genomes
were compared using the online program IRscope (https://irscope.shinyapps.io/irapp,
accessed on 5 May 2023) [39].

To identify the mutational hotspot regions and genes, the chloroplast genome se-
quences were aligned using MAFFT v7 [40]. Then, the nucleotide diversity (Pi) of three
chloroplast genomes of Paraphalaenopsis was calculated using DnaSP v6.12.03 (DNA se-
quence polymorphism) [41]. Highly mutated hotspot regions were identified by a sliding
window strategy. The step size was set at 200 bp, with a 600 bp.

4.4. Repeat Sequence Analysis

The online software REPuter (https://bibiserv.cebitec.uni-bielefeld.de/reputer, ac-
cessed on 5 May 2023)was used to identify the repeat sequences, including forward, palin-
drome, reverse, and complementary long repeats [42]. The maximum and minimum repeat
sizes were set to 50 bp and 20 bp, respectively, while the Hamming distance was set to 3.
MISA-web was used to detect simple sequence repeats (SSRs). The thresholds for mono-,
di-, tri-, tetra-, penta-, and hexa-nucleotide SSRs and the minimum number of repeats were
set to 10, 5, 4, 3, 3, and 3, respectively [43].

4.5. Phylogenetic Reconstruction

We used the whole chloroplast genomes and 68 protein-coding sequences to perform
the phylogenetic analysis of 30 species of Orchidaceae. Three species from Polystachya
(P. bennettiana and P. concreta) and Tridactyle (T. tridactylites) were used as outgroups. Of these
30 species, three Paraphalaenopsis species are newly sequenced, and the other 27 species of
13 genera are from the complete plastid data publicly available at the National Center for
Biotechnology Information (NCBI). A list of the taxa analyzed with voucher information
and GenBank accessions is provided in Supplementary Table S1. The whole chloroplast
genome sequences were aligned by Geneious Prime v2021.1.1 [18]. A total of 68 protein-
coding genes were aligned by PhyloSuite v1.2.2 [44]. Phylogenetic relationships were

https://github.com/Kinggerm/GetOrganelle
https://irscope.shinyapps.io/irapp
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analyzed by using maximum parsimony (MP), maximum likelihood (ML), and Bayesian
inference (BI) on the CIPRES Science Gateway website [45]. All characters were equally
weighted and unordered, and a heuristic search was performed using 1000 random se-
quence repeats and TBR branch swapping. For the analysis of ML, the GTRCAT model
was specified for all datasets, and self-expanding analyses with 1000 repetitions were per-
formed [46]. Bayesian analysis was performed using MrBayes v. 3.2.6 [47], and four Markov
chains were run for 10,000,000 generations, sampling one tree every 100 generations. The
first 25% of the trees were discarded as burn-in samples to ensure that each chain reached a
steady state and the estimated posterior probabilities (PP).

5. Conclusions

In the present study, three chloroplast genomes of Paraphalaenopsis were first sequenced
and assembled, whose structural features were similar to those of most species of Orchi-
daceae. Only the genome size, GC content, repeats, and IR boundaries showed certain
differences, and all ndh genes were entirely lost or pseudogenic in plastids. This provides
clues for understanding the interspecific diversity among Paraphalaenopsis chloroplast
genomes. In addition, six hypervariable regions were identified that can be used as molec-
ular markers to identify Paraphalaenopsis. The results not only enrich the Orchidaceae
chloroplast genome data but also provide a certain theoretical basis for the phylogenetic
reconstruction of Aeridinae.
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