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Abstract: Glycosylation is a widespread glycosyl modification that regulates gene expression and
metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl mod-
ification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the
biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme
NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have
reported that PRTases are indispensable for plant survival and thriving, whereas the complicated
physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we compre-
hensively overview and critically discuss the recent findings on PRTases, including their classification,
as well as the function and crosstalk in regulating plant development, abiotic stress response, and
the balance of growth and stress responses. This review aims to increase the understanding of the
role of plant PRTase and also contribute to future research on the trade-off between plant growth and
stress response.

Keywords: phosphoribosyltransferase; nucleotides; histidine; tryptophan; NAD(P)+; physiological
role; plant development; abiotic stress response

1. Introduction

Glycosylation, the transfer of a sugar moiety to an acceptor molecule, is a widespread
modification in plants that regulates gene expression and metabolite bioactivity. This glyco-
syl modification occurs on carbohydrates, proteins, lipids, hormones, and other secondary
metabolites to alter their important properties, such as solubility, stability, biological activity,
or intermolecular interactions [1–4]. Moreover, glycosylation plays a crucial physiological
role in all life processes of plants, including growth, development, and stress response [2,3].

Phosphoribosylation, a special glycosyl modification catalyzed by phosphoribosyl-
transferases (PRTase), is a key step in the biosynthetic pathways of purine and pyrimidine
nucleotides, tryptophan (Try) and histidine (His), and cofactor NAD(P)+ to control the
production of these metabolites [5]. These metabolites are essential for plants because
purine and pyrimidine nucleotides, as well as Try and His are the basic constituent units of
nucleic acids and proteins, respectively. In addition, Try is also a key precursor of auxin
biosynthesis [6], while NAD(P)+ is the core substance of energy metabolism [7].

The physiological functions of many plant PRTases have been clarified [8–12]. In
addition, PRTases can collectively contribute to plant life processes since different PRTases
crosstalk with each other by sharing 5-phosphoribosyl-1-pyrophosphate (PRPP) as sugar
donors. However, research on plant PRTases in the past few decades mainly focuses
on their role in plant survival and thriving, with little discussion about their role and
crosstalk in plant development and abiotic stress responses [13,14]. In fact, recent studies
clearly demonstrate that PRTase-related metabolic pathways are critical for chloroplast
development, gametophyte development, salt, and osmotic stress response [15–18]. Herein,
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we summarize the recent advances in the function and crosstalk of plant PRTases in
regulating plant development and abiotic stress response, aiming to provide new insights
into the complicated role of PRTase in plant life processes.

2. Classification and Characteristics of PRTase

To date, studies have shown that PRTase is responsible for catalyzing the transfer of
ribose-5-phosphate from the glycosyl donor PRPP to acceptor molecules (e.g., adenine,
guanine, uracil) to form glycosidic bonds, which rely on divalent cations [5,19]. PRTase
belongs to the PRT family and is identified at the amino acid sequence level [5]. Almost all
PRTases contain a 13-residue sequence motif that is predicted to be a PRPP-binding site,
which is composed of four hydrophobic amino acids, two acidic amino acids and seven
variable characteristic amino acids [5,20].

PRTases can be divided into four categories based on the similarity of the three-
dimensional structures, as shown in Figure 1A [5,19]. Class I PRTase is a homodimer
formed by the N-terminal domain of one monomer adjoining the C-terminal domain of
the other monomer, which shares a common α/β-barrel domain [5]. Class II PRTase
monomers have two α/β-barrel domains that form homodimers in a similar manner to
class I PRTase [21]. Class III PRTase monomers contain a small N-terminal α-helical domain
and a large C-terminal α/β-barrel domain, with the N-terminal domain of one monomer
close to the N-terminal domain of the other monomer, forming homodimers [19,22,23].
Class IV PRTase are homohexamers, assembled from six monomers, each containing three
α/β barrel domains [24,25].

As shown in Figure 1B and Table 1, different classes of PRTase are involved in dif-
ferent metabolic pathways. Class I PRTase is responsible for purine and pyrimidine nu-
cleotide biosynthesis pathways, including amidophosphoribosyltransferase (ATase), ade-
nine phosphoribosyltransferase (APRT), hypoxanthine-guanine phosphoribosyltransferase
(HGPRT), orotate phosphoribosyltransferase (OPRT), and uracil phosphoribosyltransferase
(UPRT) [5,26,27]. Class II PRTase is involved in the NAD(P)+ biosynthesis pathway, includ-
ing quinolinic acid phosphoribosyltransferase (QPRT) and nicotinamide phosphoribosyl-
transferase (NaPRT) [21,28]. Class III PRTase participates in the Try biosynthesis pathway,
with only anthranilate phosphoribosyltransferase (AnPRT) [19,22,23,29]. Class IV PRTase
is responsible for the His biosynthesis pathway, with only ATP phosphoribosyltransferase
(ATP–PRT) [24,25].

Table 1. Classification of PRTases, their related metabolic pathways and experimental evidence of
gene function.

Category PRTase Abbreviation EC-Number Related Metabolic
Pathway

Transgenic
Line Phenotype Refs

Class I

amidophosphoribosyltransferase ATase EC 2.4.2.14

purine nucleotide
biosynthesis pathway

KO-AtATase2,
KO-NtATase2

growth retardation
and bleached/

etiolated seedling
[8,11,15,34,35]

adenine
phosphoribosyltransferase APRT EC 2.4.2.7

KO-AtAPRT1,
KO-TaAPRT2,
KO-OsAPRT2,
KO-VaAPRT3

delayed leaf
senescence,

gametophyte sterility,
enhanced oxidation

and high-temperature
tolerance

[13,14,16,36,
37]

hypoxanthine-guanine
phosphoribosyltransferase HGPRT EC 2.4.2.8

KO-AtHGPT slowed seed
germination [38]

OE-AtHGPT accelerated seed
germination [38]

orotate
phosphoribosyltransferase OPRT EC 2.4.2.10 pyrimidine

nucleotide
biosynthesis pathway

— — —

uracil
phosphoribosyltransferase UPRT EC 2.4.2.9 KO-AtUPRT light-dependent

albino and dwarf [10]
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Table 1. Cont.

Category PRTase Abbreviation EC-Number Related Metabolic
Pathway

Transgenic
Line Phenotype Refs

Class II

quinolinic acid
phosphoribosyltransferase

QPRT EC 2.4.2.19

NAD(P)+

biosynthesis pathway

KO-AtQPRT embryo lethal [9]

KD-AtQPRT1 delay in growth and
development [39]

nicotinamide
phosphoribosyltransferase NaPRT EC 2.4.2.12 KO-OsNaPRT1 dwarfism and early

leaf senescence [12]

Class III anthranilate
phosphoribosyltransferase AnPRT EC 2.4.2.18 tryptophan

biosynthesis pathway — — —

Class IV ATP
phosphoribosyltransferase ATP–PRT EC 2.4.2.17 histidine biosynthesis

pathway

OE-AtATP–
PRT

KO-AtATP–
PRT

biomass reduction
embryo lethal

[33]
[40]

OE: overexpression; KD: knock down; KO: knock out.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 21 
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represent different monomers in the homodimer or homomultimer. (B) The metabolic pathways 
that PRTases are involved in. PRTases are shown within boxes. The green box indicates that it is 
chloroplast-localized, the blue box indicates that it can be chloroplast- and cytoplasm-localized, and 
the gray box indicates that it is cytoplasm-localized. The red dot represents 5-phosphoribosyl-1-
pyrophosphate (PRPP), the common substrate of PRTases. Abbreviations for metabolites are shown 
in the Abbreviations list. 
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Figure 1. The protein structure and the catalytic reaction of PRTase, and its related metabolic
pathways in plants [30–33]. (A) Protein structure and the catalytic reaction of PRTase. Different colors
represent different monomers in the homodimer or homomultimer. (B) The metabolic pathways
that PRTases are involved in. PRTases are shown within boxes. The green box indicates that it is
chloroplast-localized, the blue box indicates that it can be chloroplast- and cytoplasm-localized, and
the gray box indicates that it is cytoplasm-localized. The red dot represents 5-phosphoribosyl-1-
pyrophosphate (PRPP), the common substrate of PRTases. Abbreviations for metabolites are shown
in the Abbreviations list.

3. Functions of PRTase and Related Metabolic Pathways in Plants
3.1. Class I PRTase

Class I PRTase, which comprises more family members compared with the other class
of PRTase, is responsible for the biosynthesis of all nucleotides, including adenine, guanine,
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cytosine, and uracil nucleotides. As is known, nucleotides are essential for all organisms
because they are the fundamental building blocks of nucleic acids as well as ribosomes.
Furthermore, adenosine triphosphate (ATP) is required for the biosynthesis of all other
nucleotides, and adenine nucleotides have a greater effect on plant physiology than other
nucleotides [30]. Thus, this section will focus on the role of adenine nucleotide biosynthesis
in plant growth and development.

3.1.1. The Role of Class I PRTase in the Adenine Nucleotide Biosynthesis Pathway

In class I PRTase, only ATase and APRT are involved in adenine nucleotide biosyn-
thesis. ATase and APRT are key factors that promote adenine nucleotide accumulation in
plants [41]. ATase catalyzes the first and rate-limiting step in the adenine nucleotide de
novo biosynthesis pathway [42]. In Arabidopsis (Arabidopsis thaliana), three ATase genes
have been identified. AtATase1 is specifically expressed in flowers and roots, and AtATase2
is rather constitutively expressed in leaves, flowers, and roots, while AtATase3 is weakly
expressed in silique, cauline leaves, and roots [8,42]. APRT is a key enzyme in the adenine
salvage pathway that converts adenine to adenosine monophosphate (AMP) [13]. Three
APRT genes have been identified in Arabidopsis, with AtAPRT1 contributing most of the
APRT activity, as the APRT activity of the AtAPRT1 knockout mutant was reduced by
>95% [13,43]. In addition to Arabidopsis, APRT genes have been found in barley, rice,
wheat, oilseed rape, maize, and tomato [44].

3.1.2. Adenine Nucleotide Regulates Plant Growth and Development

Altered adenine nucleotide biosynthesis causes changes in the intracellular level of
adenine nucleotides, thus regulating plant growth and development. Reduced biosynthesis
of adenine nucleotides, especially ATP, strongly inhibits RNA synthesis in plants because
ATP is the basis for the biosynthesis of all other nucleotides. Notably, phosphate is critical
for the biosynthesis of ATP [30]. In Arabidopsis, phosphate starvation leads to a significant
reduction in intracellular ATP levels and a nearly 90% reduction in the RNA content of
shoots, resulting in a growth arrest in seedlings [45]. In addition, transcriptional expression
of the APRT gene in the adenine nucleotide biosynthesis pathway was significantly induced.
A similar growth arrest phenotype also appears in the suspension-cultured Catharanthus
roseus cells under phosphate starvation conditions [46]. The addition of phosphate could
rapidly increase the RNA content in the Catharanthus roseus cells within 24 h, and the cells
would be able to grow again [46]. Thus, adenine nucleotide is a key factor that regulates
RNA synthesis and plant growth.

In addition to reducing RNA synthesis, defects in adenine nucleotide biosynthesis
also inhibit ribosome biogenesis in plants. Adenine nucleotide starvation caused by ATase
deficiency in the de novo biosynthesis pathway can activate autophagy and inhibit the
evolutionarily conserved TOR (target of rapamycin) kinase activity, a core regulator of
ribosome biogenesis and plant growth [47]. In addition, silencing the expression of the
PRPP synthetase (PRS4) in N. benthamiana reduces the adenine nucleotide biosynthesis and
thus inhibits TOR activity and ribosome biogenesis, resulting in pleiotropic phenotypes
including dwarfism, abnormal leaf shape, and delayed flowering [48]. Hence, adenine
nucleotide contributes to plant growth and development by regulating TOR activity and
ribosome biogenesis (Figure 2).

As derivatives of adenine, the synthesis of cytokinins also requires class I PRTase [49,50].
Notably, ATase is critical for cytokinin synthesis. Arabidopsis ATase2 mutants have shown
decreased cytokinin content, cell number, and the level of plastid-encoded RNA polymerase
(PEP)-dependent transcript in leave cells, resulting in impaired chloroplast development,
growth retardation, and bleached/etiolated seedling phenotype, and similar phenotypes
have also been found in transgenic tobacco plants [8,11,15,34,35]. In addition, APRT
participates in cytokinin inactivation. Arabidopsis APRT1 mutants have elevated levels of
activated cytokinin, which triggers cytokinin responses, resulting in increased chlorophyll
and anthocyanin contents, and delayed leaf senescence [13,14]. Furthermore, APRT also



Int. J. Mol. Sci. 2023, 24, 11828 5 of 20

plays an important role in gametophyte development in Arabidopsis, wheat, rice and Vitis
amurensis [16,36,37,51]. Overall, ATase and APRT play a key role in plant chloroplast and
gametophyte development by regulating the accumulation of adenine nucleotides and
cytokinins (Figure 2).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 21 
 

 

adenine nucleotide contributes to plant growth and development by regulating TOR ac-
tivity and ribosome biogenesis (Figure 2). 

As derivatives of adenine, the synthesis of cytokinins also requires class I PRTase 
[49,50]. Notably, ATase is critical for cytokinin synthesis. Arabidopsis ATase2 mutants have 
shown decreased cytokinin content, cell number, and the level of plastid-encoded RNA 
polymerase (PEP)-dependent transcript in leave cells, resulting in impaired chloroplast 
development, growth retardation, and bleached/etiolated seedling phenotype, and simi-
lar phenotypes have also been found in transgenic tobacco plants [8,11,15,34,35]. In addi-
tion, APRT participates in cytokinin inactivation. Arabidopsis APRT1 mutants have ele-
vated levels of activated cytokinin, which triggers cytokinin responses, resulting in in-
creased chlorophyll and anthocyanin contents, and delayed leaf senescence [13,14]. Fur-
thermore, APRT also plays an important role in gametophyte development in Arabidop-
sis, wheat, rice and Vitis amurensis [16,36,37,51]. Overall, ATase and APRT play a key role 
in plant chloroplast and gametophyte development by regulating the accumulation of ad-
enine nucleotides and cytokinins (Figure 2). 

 
Figure 2. Class Ⅰ PRTase in adenine nucleotide biosynthesis pathways regulates plant growth and 
development. Class Ⅰ PRTase ATase and APRT regulate chloroplast development, ribosome biogen-
esis, and plant growth under nutrient-adequate conditions by influencing the intracellular levels of 
adenine nucleotides and CK. ATase and APRT are represented by square boxes, and other proteins 
are represented by round boxes. Solid arrows indicate direct interactions or one-step reactions, and 
dashed arrows indicate indirect interactions, multistep reactions, or transmembrane transport. Ab-
breviations for metabolites are shown in the Abbreviations list. Other abbreviations are as follows: 
adenine phosphoribosyltransferase (APRT), amidophosphoribosyl transferase (ATase), plastid-en-
coded RNA polymerase (PEP), Arabidopsis histidine kinase (AHK), Arabidopsis response regulator 
(ARR), target of rapamycin (TOR), chloroplastic electron transport chain (cETC), mitochondrial elec-
tron transport chain (mETC). 

3.2. Class II PRTase 
3.2.1. The Role of Class II PRTase in the NAD(P)+ Biosynthesis Pathway 

QPRT and NaPRT, the only two members of class II PRTase, are rate-limiting en-
zymes in the biosynthesis pathways of NAD(P)+ [7,9]. QPRT is responsible for the de novo 
biosynthesis pathway of NAD(P)+, while NaPRT is involved in the salvage pathway of 
NAD(P)+. Class II PRTase promotes the intracellular accumulation of NAD(P)+ and is es-
sential for maintaining NAD(P)+ homeostasis in plant cells since the half-life of NAD(P)+ 
can be as short as 15 min [52,53]. 

Figure 2. Class I PRTase in adenine nucleotide biosynthesis pathways regulates plant growth and de-
velopment. Class I PRTase ATase and APRT regulate chloroplast development, ribosome biogenesis,
and plant growth under nutrient-adequate conditions by influencing the intracellular levels of adenine
nucleotides and CK. ATase and APRT are represented by square boxes, and other proteins are repre-
sented by round boxes. Solid arrows indicate direct interactions or one-step reactions, and dashed
arrows indicate indirect interactions, multistep reactions, or transmembrane transport. Abbreviations
for metabolites are shown in the Abbreviations list. Other abbreviations are as follows: adenine
phosphoribosyltransferase (APRT), amidophosphoribosyl transferase (ATase), plastid-encoded RNA
polymerase (PEP), Arabidopsis histidine kinase (AHK), Arabidopsis response regulator (ARR), target
of rapamycin (TOR), chloroplastic electron transport chain (cETC), mitochondrial electron transport
chain (mETC).

3.2. Class II PRTase
3.2.1. The Role of Class II PRTase in the NAD(P)+ Biosynthesis Pathway

QPRT and NaPRT, the only two members of class II PRTase, are rate-limiting enzymes
in the biosynthesis pathways of NAD(P)+ [7,9]. QPRT is responsible for the de novo
biosynthesis pathway of NAD(P)+, while NaPRT is involved in the salvage pathway of
NAD(P)+. Class II PRTase promotes the intracellular accumulation of NAD(P)+ and is
essential for maintaining NAD(P)+ homeostasis in plant cells since the half-life of NAD(P)+

can be as short as 15 min [52,53].

3.2.2. NAD(P)+ Regulates Plant Growth and Development

The change of intracellular NAD(P)+ level strongly affects plant growth and devel-
opment. NAD+, an indispensable coenzyme and redox carrier in plants, is involved in
many redox reactions in cellular glycolysis, the tricarboxylic acid cycle, and other energy
metabolic processes. In these processes, NAD+ is reduced to NADH, which is the basis for
mitochondrial respiration to generate ATP through oxidative phosphorylation. Decreased
free NAD+ levels severely affect mitochondrial-related metabolic processes, thereby greatly
inhibiting ATP biosynthesis and cellular energy metabolism [7]. Furthermore, enzymes
in the NAD+ biosynthesis pathway are essential for the plant, such that loss-of-function
mutants are embryo-lethal [9].
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In addition to its role in energy metabolism, NAD(P)+ also contributes to chloro-
plast development and photosynthesis. Recent studies have reported that NAD+ cap
modification at the 5′ end of mRNA can regulate mRNA stability and translation in a
DOX1-dependent manner [54–57]. Arabidopsis Atdxo1 mutant has pleiotropic phenotypes,
such as dwarfism, leaf yellowing/albinism, and various developmental defects [17]. This
is due to the increased NAD+-RNA stability in the mutant Atdxo1, and thus, enhances
post-transcriptional silencing of specific transcripts mainly involved in porphyrin and
chlorophyll metabolism, as well as photosynthesis [17,58]. Additionally, NADP+ is an
indispensable coenzyme in plant photosynthesis [7,59], because NADP+ is reduced in the
photoreaction to NADPH that is required for the CO2 fixation in the dark reaction. Silencing
of the QPRT gene reduces the content of NAD(P)+, leading to a decrease in chlorophyll
content, inhibition of photosynthesis, and delayed growth and development in Nicotiana
tabacum [39]. Additionally, mutation of rice OsNaPRT1 results in dwarfism and early leaf
senescence [12]. These results indicate that QPRT and NaPRT are important contributors
to plant growth and development by maintaining moderate intracellular NAD(P)+ levels
(Figure 3).

3.2.3. NAD(P)+ Regulates Plant Abiotic Stress Response

Recent studies have found that the crosstalk between NAD(P)+ and abscisic acid (ABA)
is involved in regulating plant abiotic stress responses. In plants, ABA is the most important
hormone in response to abiotic stress, with functions such as stress resistance, growth
inhibition, seed germination inhibition, and senescence promotion [60]. Interestingly,
high levels of NAD(P)+ can promote ABA synthesis and signal transduction, as well as
enhance plant response to ABA and stress. In turn, ABA signaling can prevent the further
increase in NAD(P)+ levels through the downstream transcription factor ABI4 specifically
inhibiting the expression of quinolinate synthase gene in the NAD(P)+ de novo biosynthesis
pathway [60].

High levels of NAD(P)+ contribute to plant abiotic stress response by promoting ABA
synthesis and signal transduction (Figure 3). ABA levels increase in an NAD+-dependent
manner in seedlings grown on mediums with different concentrations of NAD+ [60–62].
Under abiotic stress conditions, ABA activates reactive oxygen species (ROS) signaling; in
turn, ROS can inactivate tryptophan synthase TSB1 through sulfinylation, thereby relieving
its inhibition on the activity of β-glucosidase BG1 and promoting the release of ABA
from ABA-GE to form a positive feedback loop [63]. Importantly, ABA-activated ROS
signaling, which is critical for plants to respond to salt, drought, high light and other
stresses, is mainly produced by NADPH oxidase (RBOHF and RBOHD) [60,64–66]. In fact,
RBOHF and RBOHD require NADPH electrons to reduce oxygen to superoxide anions,
so the continuous supply of NADPH is a necessary fuel to maintain ROS production [67].
Defects in NAD(P)+ biosynthesis lead to RBOHF and RBOHD inactivation, resulting in the
inhibition of ROS production. NADP+ and ROS levels have been observed to be reduced in
the Atfin4 and Atfin4-4 mutants with impaired NAD(P)+ de novo biosynthesis [67]. Thus,
high levels of NAD(P)+ promote ABA synthesis and ABA-activated ROS signaling under
abiotic stress conditions.

In addition to promoting ABA synthesis and signaling, high levels of NAD+ en-
hance plant responses to ABA and abiotic stress by activating NAD+-dependent enzymes
(Figure 3). NAD+ acts as a coenzyme involved in ADP-ribosyl cyclase-mediated calcium-
responsive second messenger cyclic ADP-ribose (cADPR) synthesis [68], sirtuins-mediated
protein deacetylation [69], and poly (ADP-ribose) polymerase (PARP)-mediated protein
single- and poly-ADP ribosylation [70]. These NAD+-dependent enzymes consume NAD+

and are sensitive to free NAD+ levels. Elevating NAD+ levels by silencing the expression
of AtPARP2 could promote ADP-ribosyl cyclase-mediated cADPR synthesis to activate
Ca2+ signaling, thereby enhancing plant response to ABA [71]. cADPR is a key regu-
lator of the ABA signaling pathway in plants and induces the expression of more than
100 ABA-responsive genes which subsequently enhance the activity of ADP-ribosyl cy-
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clase, further amplifying cADPR signaling [72]. In addition, the NAD+-dependent histone,
H3K9 deacetylase SRT1, also positively regulates the expression of ABA-responsive genes
and plant stress responses. For example, the Arabidopsis SRT1 mutant, Atsrt1, and its
RNAi-silenced lines have exhibited decreased sensitivity to ABA and stress, while the
overexpressing lines have exhibited hypersensitivity to salt and osmotic stress due to their
excessive response to ABA [18]. Similarly, Oryza sativa (rice) SRT1 is also involved in the
epigenetic regulation of stress-responsive genes [73–75]. Altogether, high levels of NAD+-
induced calcium signaling and histone deacetylation greatly enhance plant responses to
ABA and abiotic stress.
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and abiotic stress response. Class II PRTase QPRT and NaPRT control the biosynthesis of NAD(P)+

to regulate its intracellular levels. Under nutrient-adequate conditions, moderate levels of NAD+

participate in mRNA modification and ATP biosynthesis to promote chloroplast development and
plant growth. However, under nutrient-limiting conditions, elevated levels of NAD+ enable NAD+-
dependent enzymes to trigger calcium signaling and histone deacetylation, thereby activating ABA
signaling, and ROS signaling to promote plant systemic stress responses. QPRT and NaPRT are
represented by square boxes, and other proteins are represented by round boxes. Solid arrows
indicate direct interactions or one-step reactions, and dashed arrows indicate indirect interactions,
multistep reactions, or transmembrane transport. Abbreviations for proteins are as follows: quinolinic
acid phosphoribosyltransferase (QPRT), decapping exonuclease 1 (DXO1), transcription factors (TFs),
target of rapamycin (TOR), NADPH oxidase (RBOHF/D), tryptophan synthase β subunit 1 (TSB1),
β-glucosidase 1 (BG1), sucrose non-fermenting 1-related protein kinase 2 (SnRK2), nicotinamide
phosphoribosyltransferase (NaPRT), protein phosphatase 2C (PP2C). Abbreviations for metabolites
are shown in the Abbreviations list.
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Interestingly, NAD+ can also improve plant stress resistance. Under abiotic stress
conditions, NAD+ is mainly consumed by PARP-mediated modification of nuclear proteins,
thereby regulating DNA synthesis and repair, chromatin structure, gene transcription,
and cell cycle [7]. This PARP-mediated modification is one of the major causes of energy
depletion and death in mammalian cells [71,76]. In Arabidopsis and Brassica napus, RNAi
silencing of PARP expression has been found to reduce NAD+ depletion resulted in broad-
spectrum stress-resistant plants without negative effects on plant growth, development, and
seed production [71]. In addition, overexpression of the ADP-ribose pyrophosphatase gene
NUDX2, which recycles AMP and ribose-5-phosphate from free ADP-ribose molecules has
been found to maintain ATP and NAD+ levels and enhance tolerance to oxidative stress in
Arabidopsis [77]. Thus, maintaining NAD+ levels under abiotic stress can greatly improve
plant stress resistance and thus regulate plant growth-defense balance.

3.3. Class III PRTase
3.3.1. The Role of Class III PRTase in the Tryptophan Biosynthesis Pathway

AnPRT is the only member of class III PRTase and catalyzes the second step of Try
biosynthesis, which transfers the phosphoribosyl group of PRPP to anthranilate to form
phosphoribosyl anthranilate [23]. Overexpression of PRPP synthetase gene to increase
PRPP content in Arabidopsis can promote Try biosynthesis, indicating that this step is the
key to determining the flow of this pathway [78]. Thus, AnPRT is a critical factor regulating
Try accumulation.

3.3.2. Tryptophan Regulates Plant Growth and Development

As the primary precursor of IAA synthesis, the level of Try is an important determinant
of IAA synthesis [6,32,79]. Changes in Try biosynthesis affect its intracellular levels and
thus regulate the synthesis of IAA, a major plant hormone that regulates plant growth [80].
In the Attsb1 mutant whose mutation occurred in the tryptophan synthase β-subunit (TSB)
loci, both IAA biosynthesis and plant growth are severely inhibited [63]. Furthermore, the
Try biosynthesis-deficient mutant, tdd1, is embryonic-lethal in rice [81]. On the contrary,
transgenic Brassica oleracea overexpressing BoTSB1 or BoTSB2 can accumulate more Try and
IAA, so it exhibits phenotypes such as long hypocotyls, large plants, and a high number of
lateral roots [82]. Thus, Try biosynthesis is essential for maintaining moderate IAA levels
and plant growth.

Moderate levels of IAA in the cytoplasm and apoplasts can jointly promote plant
growth and development through signal transduction. On the one hand, cytoplasmic IAA
is recognized by the receptor TIR1 and promotes the degradation of canonical AUX/IAA
inhibitors, thereby releasing auxin response factors (ARFs) to promote plant growth [83].
In addition, Solanum lycopersicum (tomato) ARFs have been found to be involved in chloro-
plast development, since SlARF4, SlARF10, and SlARF6A promote chlorophyll synthesis,
photosynthesis, and increase starch accumulation [84–86]. On the other hand, unlike
TIR1-dependent cytoplasmic signaling, moderate levels of IAA in the apoplast activate the
small G protein ROP2 (Rho-related protein in plant 2) via transmembrane kinase 1 (TMK1),
thereby activating TOR to promote plant growth [87,88]. Furthermore, TOR phosphorylates
and stabilizes the IAA efflux carrier, pin-formed2 (PIN2), and its gradient distribution in
Arabidopsis taproots, stimulating root tip elongation [89]. Overall, moderate levels of IAA
promote plant growth and development by activating ARFs and TOR (Figure 4).

3.3.3. Tryptophan Regulates Plant Abiotic Stress Response

Try contributes to plant abiotic stress responses by promoting the accumulation of high
levels of IAA. In Arabidopsis, loss of function of anthranilate synthase α and β subunits
(WEI2/ASA1 and WEI7/ASB1) can block excessive IAA accumulation and corresponding
phenotypes, such as growth inhibition of seedling roots, epinasty of the cotyledons, and
adventitious root formation [90]. Moreover, these phenotypes can be complemented by
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supplementing Try in the medium [90]. Hence, excess biosynthesis of Try is essential for
the accumulation of high levels of IAA.
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High levels of IAA inhibit IAA signaling and activate ABA signaling to prompt plant
abiotic stress responses and inhibit plant growth (Figure 4). In Arabidopsis, high levels
of IAA in the apoplast binding to the receptor ABP1 trigger the C-terminal cleavage of
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TMK1 (TMK1-C) [91]. TMK1-C subsequently enters the nucleus to activate non-canonical
IAA32 and IAA34, thus repressing the expression of ARFs [83]. Moreover, TMK1-C also
facilitates the phosphorylation and inactivation of the ABA signaling negative regulator
PP2Cs (protein phosphatase 2C, ABI1/2), which releases its interacting proteins SnRK2s,
thereby activating SnRK1 to inhibit TOR [92,93]. Notably, the inhibition of plant growth by
ABA signaling is largely dependent on the evolutionarily conserved energy sensor, SnRK1,
and its inhibition of TOR. Under normal conditions (nutrition adequacy), ABA signaling
and SnRK1 signaling are blocked, thereby maintaining TOR activity and promoting plant
growth, whereas under nutrient limitation conditions, ABA signaling and SnRK1 are ac-
tivated, and activated SnRK1 inhibits TOR activity and plant growth [92,94]. Specifically,
SnRK1 activates specific transcription factors (such as bZIP63, WRKYs, and NACs) and
epigenetic factors (such as H3K27me3 demethylase JMJ705) [95–99], and inactivates TOR to
reduce global H3K27me3 and DNA methylation, as well as allows EIN2 to negatively regu-
late the expression of genes related to plant cell division and elongation [100–104], thereby
promoting catabolism and inhibiting anabolism to maintain cellular energy homeostasis
under stress. Taken together, the level of IAA is a decisive factor in the trade-off between
plant growth and stress response.

3.4. Class IV PRTase
3.4.1. The Role of Class IV PRTase in the Histidine Biosynthesis Pathway

ATP–PRT, the only member of class IV PRTase, catalyzes the first step of His biosynthe-
sis, which is the condensation of ATP and PRPP to form phosphoribosyl ATP (PRATP) [40].
ATP–PRT is the rate-limiting enzyme in the His biosynthesis pathway and is feedback in-
hibited by His [105]. ATP–PRT is a key regulator of His accumulation since the level of His
in plants largely depends on ATP–PRT activity [33]. There are two ATP–PRT homologous
proteins in Arabidopsis with 74.6% similarity, and both contain chloroplast transit peptides
at the N-terminus [106]. Overexpression of either isoform ATP–PRT is sufficient to increase
free His level by 41-fold in Arabidopsis bud tissue without altering the content of other
amino acids [33].

3.4.2. Histidine Regulates Plant Growth and Development

His is an essential amino acid for plant growth and development. In Arabidopsis,
mutations at the His biosynthesis pathway gene are lethal [33]. His residue functions
as a conserved catalytic site for many enzymes due to its imidazole functional group,
which gives it a unique advantage in participating in acid-base catalyzed reactions [33].
Among these enzymes, histidine kinases such as cytokinin receptors, ethylene receptors,
and phytochromes are widely involved in signal transduction during plant growth and
development [107]. The biosynthesis of His appears to be a limiting factor for the biosyn-
thesis of these important histidine kinases since His is one of the least abundant amino
acid residues in proteins [33]. Thus, changes in His biosynthesis may influence cytokinin
receptor synthesis to regulate cytokinin signaling and chloroplast development (Figure 5).

His biosynthesis may also affect cellular energy homeostasis (Figure 5). The biosyn-
thesis of His is an energy-consuming process, since it is estimated that 31–41 ATPs are
required for one His molecule, and cells with uncontrolled His biosynthesis consume 2.5%
of its total metabolic energy [33,108,109]. Furthermore, the His biosynthesis pathway also
releases the adenine nucleotide intermediate AlCAR into the de novo adenine nucleotide
biosynthesis pathway to generate AMP [33], thereby downregulating the intracellular
energy charge. Importantly, a significant negative correlation between biomass and His
content has been observed in Arabidopsis overexpressing AtATP–PRT [33]. These results
suggest that moderate His biosynthesis is essential to maintain energy homeostasis and
plant growth.
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Figure 5. Class IV PRTase in the histidine biosynthesis pathway regulates plant growth and de-
velopment. Class IV PRTase ATP–PRT regulates chloroplast development and plant growth under
nutrient-adequate conditions by influencing intracellular His level and AMP/ATP metabolism. ATP–
PRT is represented by a square box, and other proteins are represented by round boxes. Solid
arrows indicate direct interactions or one-step reactions, and dashed arrows indicate indirect interac-
tions, multistep reactions, or transmembrane transport. Abbreviations for proteins are as follows:
Arabidopsis histidine kinase (AHK), Arabidopsis response regulator (ARR), target of rapamycin
(TOR), ATP phosphoribosyltransferase (ATP–PRT). Abbreviations for metabolites are shown in the
Abbreviations list.

4. Crosstalk between the PRTase-Related Metabolic Pathways

Due to sharing the substrate PRPP, PRTase leads to crosstalk between related metabolic
pathways. Furthermore, PRTase-related metabolic pathways play a synergistic role in
regulating plant growth, development, and abiotic stress response.

4.1. Common Substrate of PRTases

PRPP, the intersection of PRTase-related metabolic pathways, is essential for all organ-
isms. The competitive utilization of the common substrate PRPP by different PRTase makes
it flow to the corresponding metabolic pathway. Hove-Jensen et al. [110] reported that PRPP
mainly flows to the purine and pyrimidine nucleotide biosynthesis pathways. In Escherichia
coli, purine and pyrimidine nucleotide biosynthesis each consume 30% to 40% of PRPP,
His and Try biosynthesis each consume 10% to 15% of PRPP, and NAD(P)+ biosynthesis
consumes approximately 1% of PRPP [110]. However, the competition and distribution of
PRPP in PRTase-related metabolic pathways in plants remain to be elucidated. Notably,
the content of PRPP is an important factor limiting plant growth since overexpression of
the PRPP synthetase gene significantly increases biomass accumulation in Arabidopsis
and Nicotiana tabacum [78]. Hence, the competitive utilization of limited PRPP by PRTase
regulates the biosynthesis of PRTase-related metabolites during plant growth.

4.2. Common Function of PRTase-Related Metabolic Pathways

The PRTase-related metabolic pathways coordinately promote plant growth and de-
velopment (Figure 6A). Adenine nucleotide and His, Try, NAD(P)+ promote cytokinin
signaling, IAA signaling, and mRNA 5′ NAD+ cap modification, respectively, and thus par-
ticipate in chloroplast development and photosynthesis. Moreover, photosynthesis-derived
glucose generates ATP through oxidative phosphorylation, which together with moderate
levels of IAA activates TOR [111]. Importantly, TOR promotes central carbon and energy
metabolism, as well as key anabolic processes, including nucleotide, amino acid, lipid, and
cell wall synthesis, which are essential for rapid growth [88,100,101,111–115]. Overall, the
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PRTase-related metabolic pathways are jointly involved in plant growth and development
by promoting chloroplast development and activating TOR.
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Figure 6. The PRTase-related metabolic pathways co-regulate plant growth (A) and abiotic stress
response (B). Proteins are represented by square boxes. Dotted lines indicate unclear roles and mech-
anisms. Abbreviations for proteins are as follows: auxin response factor (ARF), Arabidopsis histidine
kinase (AHK), Arabidopsis response regulator (ARR), target of rapamycin (TOR), transmembrane
kinase 1 (TMK1), sucrose non-fermenting 1-related protein kinase 2 (SnRK2), sucrose non-fermenting
1-related protein kinase 1 (SnRK1). Abbreviations for metabolites are shown in the Abbreviations list.

PRTase-related metabolic pathways also synergistically affect plant abiotic stress
responses and the switching between growth and stress responses (Figure 6B). Under
abiotic stress conditions, high levels of NAD+ and IAA directly activates ABA signal-
ing in response to nutrient deficiencies and energy limitations. Importantly, changes in
the flow of any PRTase-related metabolic pathway may alter the flux of PRPP to NAD+

or IAA biosynthesis pathways, leading to plant abiotic stress responses. For example,
although the NAD+ content of multiple NAD+ biosynthesis-deficient mutants in Ara-
bidopsis and rice is significantly reduced, they instead have an ABA hypersensitivity
phenotype and excessive accumulation of ROS, resulting in growth inhibition and pre-
mature leaf senescence [12,60,116,117]. In addition, mutations in the adenine nucleotide
salvage enzyme AtAPRT1 lead to enhanced oxidation and high-temperature tolerance in
Arabidopsis [13]. His biosynthesis is also a potentially important factor in inhibiting plant
growth under energy-limited conditions [33].

In a mechanism similar to that of promoting plant abiotic stress response, PRTases
may participate in fruit ripening (Figure 7). To date, significant increases in free NAD+ and
IAA levels have been observed before the initiation of tomato fruit ripening (i.e., system II
ethylene production) [31,118]. High levels of NAD+ and IAA may be critical for system II
ethylene production and fruit ripening since they can trigger ABA signaling that mediates
SlSnRK1 activation. On the one hand, activated SlSnRK1 may promote the expression of
the key regulator SlRIN in the autocatalytic loop of system II ethylene and the ethylene
biosynthesis genes by inactivating SlTOR and activating demethylase to remove H3K27me3
and DNA methylation [99,119]. In fact, heterologous overexpression of Malus hupehensis
SnRK1 advanced tomato fruit ripening by about 10 days [120,121], whereas the silencing of
SlSnRK1 expression in tomato fruit by VIGS delayed or completely inhibited ripening [122].
On the other hand, in addition to increased ethylene biosynthesis, activated SlSnRK1 may
also enhance fruit sensitivity to ethylene, which is necessary for fruit ripening [123,124].
Specifically, SlSnRK1-mediated SlTOR inactivation stabilizes SlEIN3/EIL1 in a SlEIN2-
dependent manner to induce downstream ethylene-responsive factors expression, resulting
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in increased fruit sensitivity to ethylene [101,125]. Huang et al. [126] constructed the tomato
SlEIN2 mutant slein2-1 and found it was insensitive to ethylene and completely arrested
fruit ripening. Taken together, PRTase-related metabolic pathways are potentially critical in
fruit ripening, mediating SlSnRK1 activation and SlTOR inactivation through the activation
of ABA signaling.
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Figure 7. A possible model for the regulation of fruit growth and ripening by the PRTase-related
metabolic pathways. Under nutrient-enriched conditions, SnRK1 activity is inhibited, and ATP
and moderate levels of IAA synergistically activate TOR to promote fruit growth. However, under
nutrient-limited conditions, high levels of NAD+ and IAA activate ABA signaling, so activated SnRK1
inhibits TOR activity and promotes fruit ripening. PRTases are represented by square boxes, other
proteins are represented by round boxes. Active proteins are white, and inactivated proteins are
grey. Abbreviations for proteins and genes are as follows: transmembrane kinase 1 (TMK1), protein
phosphatase 2C (PP2C), sucrose non-fermenting 1-related protein kinase 2 (SnRK2), sucrose non-
fermenting 1-related protein kinase 1 (SnRK1), nicotinamide phosphoribosyl transferase (NaPRT),
adenine phosphoribosyltransferase (APRT), target of rapamycin (TOR), anthranilate phosphoribo-
syltransferase (AnPRT), ATP phosphoribosyltransferase (ATP–PRT), ethylene insensitive 2 (EIN2),
ethylene-insensitive proteins (EIN3/EIL1), colorless non-ripening (CNR), ripening inhibitor (RIN),
non-ripening (NOR), ethylene-responsive factor (ERF), ACC synthase (ACS), ACC oxidase (ACO),
pectate lyases (PL), tomato beta-galactosidase 4 (TBG4). Abbreviations for metabolites are shown in
the Abbreviations list.

5. Conclusions and Perspectives

PRTases contribute to nucleic acid and protein synthesis, energy metabolism, hor-
monal signaling, and epigenetics by promoting the biosynthesis of adenine nucleotides,
NAD(P)+, Try, and His. Importantly, these metabolites play an essential role in chloroplast
development and plant growth through cytokinin signaling, IAA signaling, and NAD+ cap
modification of mRNA. In addition, PRTases co-regulate plant abiotic stress response via
crosstalk with each other. Under abiotic stress conditions, increased biosynthesis of NAD+

and Try leads to elevated levels of free NAD+ and IAA, which govern the transition of
plants from growth to stress response through ABA signaling and epigenetic remodeling.
In this process, NAD-dependent enzymes and the conserved SnRK1-TOR axis regula-
tory modules are key factors, down-regulating anabolism and up-regulating catabolism
through histone acetylation/methylation remodeling and transcriptional reprogramming
to coordinate nutrient supply and plant growth.

It is a brilliant strategy for plants to use the levels of PRTase-related metabolites that
are necessary for growth as a signal to guide the transition between plant growth and stress
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response. Specifically, plants can sense a stressful environment by monitoring elevated
levels of these intracellular metabolites, rapidly turning on the switch of stress response,
which then triggers a reduction in these metabolite levels, further turning off the switch
of growth, and vice versa. Until now, studies have found that levels of NAD+ and Try
play a decisive role in the trade-off between plant growth and stress response, but the
importance of adenine nucleotides and His has been underestimated. Elucidating the
role and mechanism of adenine nucleotide and His biosynthesis in plant growth defense
tradeoffs is an urgent but challenging goal. This knowledge will guide us in precisely
regulating the levels of PRTase-related metabolites in plants to help maximize plant yield
under fluctuating environmental conditions.
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Abbreviations

Component Abbreviation
Glutamine Gln
Formylglycinamide ribonucleotide FGAR
4-carboxy aminoimidazole ribonucleotide CAIR
5-formaminoimidazole-4-carboxamide ribonucleotide FAICAR
Adenine Ade
Adenosine triphosphate ATP
Carbamoyl phosphate CP
Orotic acid OA
Uridine diphosphate UDP
Aspartate Asp
Nicotinic acid mononucleotide nicotinamide mononucleotide NaMN
Nicotinamide Nam
Nicotinamide adenine dinucleotide NADH
1-(2-carboxyphenylamino)-1-deoxyribulose-5-phosphate IGP
Auxin IAA
Pro-phosphoribosyl formimino-5-aminoimidazole-4 ProFAR
-carboxamide ribonucleotide
Imidazoleacetol phosphate IAP
Histidine His
Abscisic acid ABA
Glycinamide ribonucleotide GAR
5-aminoimidazole ribonucleotide AIR
5-aminoimidazole-4-carboxamide ribonucleotide AICAR
Adenosine monophosphate AMP
Adenosine diphosphate ADP
Guanosine monophosphate GMP
Dihydro-orotate DHO
Uridine monophosphate UMP
Cytosine triphosphate CTP
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5-phosphoribosylamine PRA
Formylglycinamidine ribonucleotide FGAM
N-succinyl-5-aminoimidazole-4-carboxamide

SAICAR
ribonucleotide
Inosine monophosphate IMP
Adenosine Ado
Xanthosine monophosphate XMP
Carbamoyl aspartate CA
Orotidine 5′-monophosphate OMP
Uridine triphosphate UTP
Iminoaspartate IA
Nicotinic acid adenine dinucleotide NaAD
Nicotinate NA
Anthranilate ANT
Indole-3-glycerol-phosphate IND
5-phosphoribosyl ATP PRATP
Phosphoribulosyl formimino-5-aminoimidazole-4

PRFAR
-carboxamide ribonucleotide
Histidinol phosphate HolP
Cytokinin CK
Glucose 6-phosphate Glu-6-P
Quinolinate QA
Nicotinamide adenine dinucleotide NAD+

Nicotinamide adenine dinucleotide phosphate NADP+

5-phosphoribosyl anthranilate PRANT
tryptophan Try
5-phosphoribosyl AMP PRAMP
Imidazoleglycerol phosphate IGP
Histidinol Hol
5-phosphoribosyl-1-pyrophosphate PRPP
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