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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a +sense single‑strand
RNA virus. The virus has four major surface proteins: spike (S), envelope (E), membrane (M), and
nucleocapsid (N), respectively. The constitutive proteins present a high grade of symmetry. Iden‑
tifying a binding site is difficult. The virion is approximately 50–200 nm in diameter. Angiotensin‑
converting enzyme 2 (ACE2) acts as the cell receptor for the virus. SARS‑CoV‑2 has an increased
affinity to human ACE2 compared with the original SAR strain. Topological space, and its symme‑
try, is a critical component in molecular interactions. By exploring this space, a suitable ligand space
can be characterized accordingly. A spike protein (S) computational model in a complex with ACE
2 was generated using silica methods. Topological spaces were probed using high computational
throughput screening techniques to identify and characterize the topological space of both SARS
and SARS‑CoV‑2 spike protein and its ligand space. In order to identify the symmetry clusters, com‑
putational analysis techniques, together with statistical analysis, were utilized. The computations
are based on crystallographic protein data bank PDB‑based models of constitutive proteins. Carte‑
sian coordinates of component atoms and some clustermapswere generated and analyzed. Dihedral
angles were used in order to compute a topological receptor space. This computational study uses a
multimodal representation of spike protein interactions with some fragment proteins. The chemical
space of the receptors (a dimensional volume) suggests the relevance of the receptor as a drug target.
The spike protein S of SARS and SARS‑CoV‑2 is analyzed and compared. The results suggest a mir‑
ror symmetry of SARS and SARS‑CoV‑2 spike proteins. The results show thatSARS‑CoV‑2 space is
variable and has a distinct topology. In conclusion, surface proteins grant virion variability and sym‑
metry in interactions with a potential complementary target (protein, antibody, ligand). The mirror
symmetry of dihedral angle clusters determines a high specificity of the receptor space.

Keywords: COVID‑19; antibody; paratope; QSAR; chemical space; spike protein; SARS‑CoV‑2;
antibody binding

1. Introduction
Designing an antibody against the SARS‑CoV‑2 spike protein S is challenging due to

its nonspecific nature, mainly conferred by each spike protein monomer [1]. The spike
protein (S protein) is the most solvent from all virus surface proteins. In addition, the S
protein is a trimer [2,3]. The inverse tetrahedron’s unique geometry confers a maximum
solvent exposure surface. In addition, the mobile domains of the pyramid base confer the
COVID‑19 surface protein structural mobility. Furthermore, mobile structural parts are
subject to variable mutations [4].

Recent research and protein sequences designed to fit spike protein S failed to bind.
A lack of specificity is a result of high mobility and flexibility combined with additional
maximum solvent exposure of the monomer domains [5].
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A mass effect should virtually resolve this lack of specificity; in other words, by in‑
creasing the mass of the desired paratope, that will interact with the epitope (S protein),
an alternative unavailable from the receptor–ligand interaction point of view [6].

Judging from the antigen–antibody point of view, epitope amino acid (Aa) sequences
located on the antigen must fit complementarily with the Aa chain (usually between 5 and
10) of the paratope (antigen variable (VL) and constant regions (CR)) [7].

Inmathematics, polynomial expressions are based on indeterminants and coefficients.
Polynomials involve operations like addition, subtraction, and multiplication. Polynomi‑
als are involved in many science areas. For example, in chemistry, they are used to set
ranges. There are two types of polynomials: real and complex polynomials, respectively.
The real polynomial has real roots, while complex ones have complex roots [8]. A poly‑
nomial function is an operation that can be characterized by computing a polynomial. A
function (f ) of one argument from a given domain is a polynomial function if a polynomial
exists. Like any other functions, polynomial functions can be represented by a graph [9].
The discriminant of a polynomial is a quantity characterized by the coefficient and allows
the deduction of some properties of the roots (i.e., it is a polynomial function of the co‑
efficient of the original polynomial) [10]. The regular use of discriminants in algebraic
geometry is for characterizing plane algebraic curves and algebraic hypersurfaces. If V is
such a curve or hypersurface, V is characterized as the zero‑set polynomial. This polyno‑
mial is regarded as a univariate polynomial in one indeterminate, with polynomials in the
other indeterminates as coefficients. The discriminant concerning the selected indetermi‑
nate shows a hypersurface W in the space of the others. The points of W are the projection
of the points of V, which are singular or have a tangent hyperplane parallel to the axis of
the selected indeterminate, respectively [11].

Suppose f is a bivariate polynomial with real coefficients. If f  = 0 is the implicit equa‑
tion of a real plane algebraic curve, the discriminant is a polynomial where roots are the
x‑coordinates of the singular points. In other words, the computation of the roots allows
the computation of all of the remarkable points of the curve [12].

The logarithm is a reverse function of exponentiation, meaning that the logarithm of a
particular number x is the exponent to which another fixed number must be raised to pro‑
duce that number x. John Napier introduced logarithms in 1614 as a means of simplifying
calculations. Navigators rapidly adopted them to perform high‑accuracy computations
more efficiently [13]. Logarithmic scales reduce broad quantities to smaller ones. In chem‑
istry, pH is a logarithmic measure for the acidity of an aqueous solution. Logarithms are
commonplace in scientific formulae and measurements of the complexity of algorithms
and geometric objects called fractals. From the perspective of group theory, the identity
log(cd) = log(c) + log(d) shows a group isomorphism among positive reals under multi‑
plication and reals under addition [14]. Logarithmic functions are the single continuous
isomorphisms between these groups. Using that isomorphism, the Haar (Lebesgue) dx on
the reals corresponds to the Haar measure dx/x on the positive reals. The non‑negative
reals not only have a multiplication but also have an addition, and they form a semiring
called the probability semiring; this is a semifield. The concept of the logarithm as the
inverse of exponentiation also extends to other mathematical structures. However, the
logarithm tends to be a multi‑valued function in general settings.

The logarithm is associatedwith the natural logarithm: Lis (z) =−ln(1− z). Moreover,
Lisequals the Riemann Zeta function ζ(s) [15].

The domain of a function is the array of inputs allowed by the function. Furthermore,
the domain of a function is the set of numbers that can go into a given function. The set of
possible y‑values is called the range [16].

Regarding a spatial perspective for a linked orientedmanifoldM of dimension 2n, the
intersection form is defined on the n‑th cohomology group by evaluating the cup product
on the entire class [M] inH2n(M, ∂M). Stated precisely, this is a bilinear form. This is a sym‑
metric form for n even (so, 2n = 4k is doubly even), in which case the signature of M is de‑
fined to be the form’s signature, and an alternating form for n odd (so, 2n = 4k + 2 is singly
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even). These can be referred to uniformly as ε‑symmetric forms, where ε = (−1)n = ±1,
respectively, for symmetric and skew‑symmetric forms [17]. These forms are essential
topological invariants. If possible, choose representative n‑dimensional submanifolds A
and B for the Poincaré duals of a and b. Then, λM (a, b) is the oriented intersection number
of A and B, which is well defined because the dimensions of A and B sum to the total di‑
mension of M; they generically intersect at isolated points. This explains the terminology
intersection form. In algebraic geometry, the Chow groups (named afterWei‑Liang Chow)
by Claude Chevalley (1958) of an algebraic variety over any field are algebro‑geometric
analogs of the homology of a topological space. The elements of the Chow group are
formed out of subvarieties (so‑called algebraic cycles), similarly to how simplicial or cel‑
lular homology groups are formed out of subcomplexes. When the variety is smooth, the
Chow groups can be interpreted as cohomology groups (compared with Poincaré duality)
and have a multiplication called the intersection product [18]. The Chow groups carry
rich information about an algebraic variety and are generally hard to compute. In mathe‑
matics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is an
example of coherent cohomology [19]. It is a generalization of the Hirzebruch–Riemann–
Roch theorem about complex manifolds, which is itselfa generalization of the classical
Riemann–Roch theorem for line bundles on compact Riemann surfaces [20]. Riemann–
Roch‑type theorems relate Euler characteristics of the cohomology of a vector bundle with
their topological degrees or, more generally, their characteristic classes in (co)homology
or algebraic analogs. The classical Riemann–Roch theorem does this for curves and line
bundles, whereas the Hirzebruch–Riemann–Roch theorem generalizes this to vector bun‑
dles over manifolds. The Grothendieck–Riemann–Roch theorem sets both theorems in a
relative situation of a morphism between two manifolds (or more general schemes) [21].

A molecule’s three‑dimensional arrangement influences molecular properties like re‑
activity and biological activity [22]. The geometry of a molecule is specified by employ‑
ing bond lengths, bond angles, and dihedral angles, respectively [23]. Bond length is the
average distance between two atoms’ nuclei that are bound together. The bond angle is
the angle formed by three atoms involving two bounds. A mathematical relationship be‑
tween the bond angles for a central atom and four peripheral atoms is expressed using a
determinant. The cos of the bond angles of each atom involved is used to build the deter‑
minant’s matrix. If θ is the determinant, and cosθ represents the bound angle value in Å,
and if cosθ11, cosθ22, cosθ33, and cosθ44 are considered zero, the determinant matrix can
be written as follows [24]:

θ =

cos θ11 cos θ12 cos θ13 cos θ14
cos θ21 cos θ22 cos θ23 cos θ24
cos θ31 cos θ32 cos θ33 cos θ34
cos θ41 cos θ42 cos θ43 cos θ44

The dihedral angle is formed by intersecting two planes. Notably, in chemistry, it is
the angle formed by two sets of atoms, i.e., two planes with two common atoms. Torsion
angles are a particular example of dihedral angles in chemistry. Geometric relationships
of particular atoms united by a chemical bound are described. Three non‑colinear atoms
that form an angle are considered to be in the same plane [25].

Regarding chemical compounds, by intersecting two distinct planes, a dihedral angle
is formed [26]. Molecular conformations are characterized using dihedral angles. Specifi‑
cally, stereochemical arrangements are used. Arrangements equivalent to angles between
0◦ and ±90◦ are called syn (s), and those equivalent to angles between ±90◦ and 180◦ are
called anti (a). Similarly, arrangements equivalent to angles between 30◦ and 150◦ or be‑
tween −30◦ and −150◦ are called clinal (c), and those between 0◦ and ±30◦ or ±150◦ and
180◦ are called periplanar (p). Four ranges of angles are defined: 0◦ to ±30◦ is colled syn‑
periplanar (sp); ranges 30◦ to 90◦ and −30◦ to −90◦are called synclinal (sc); ranges 90◦
to 150◦ and −90◦ to −150◦ are called anticlinal (ac); ±150◦ to 180◦is called antiperiplanar
(ap) [27,28].
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In proteins, three dihedral angles are described for a chain: φ (phi), ψ (psi), and ω
(omega). The planarity of the bond usually restricts ω to 180◦ (the typical trans case) or
0◦ (the rare cis case). The space between the Cα atoms within the trans and cis isomers
is approximately 3.8 and 2.9 Å, respectively. The overwhelming majority of the peptide
bonds in proteins are trans [29].

The sidechain dihedral angles are designated with χn (chi‑n). They tend to cluster
near 180◦, 60◦, and−60◦, which are called the trans, gauche+, and gauche− conformations.
The soundness of certain side chain dihedral angles is laid low with the values φ and ψ.
For example, there are direct steric interactions between the Cγ of the side chain within
the gauche+ rotamer and the backbone nitrogen of the following residue when ψ is near
−60◦ [30–32].

The polynomial equation of Ramachandran plot values can be represented as a sur‑
face of revolution. A surface of revolution could be a surface in Euclidean space created by
rotating a curve (the generatrix) around an axis of rotation. To generate a surface of revolu‑
tion out of any two‑dimensional scalar function y = f (x), make u the function’s parameter,
set the axis of rotation’s function to easily u, then use v to rotate the function round the
axis by setting the opposite two functions up to f(u) sin v and f(u) cos v. As an example,
to rotate a function y = f (x) around the x‑axis ranging from the highest of the xz‑plane,
parameterize it as [33]:

r(u,vfo) = (u,f(u)sinv, f(u) cos v) for u = x and v� [0,2pi]

However, in order to normalize the dihedral angle values to characterize the dihedral
angle clusters, alogarithmic trendlinemay be a best‑fit curved line that ismost useful when
the speed of change within the data increases or decreases quickly and then levels out. A
logarithmic trendline can use negative and positive values [34].

Lastly, protein symmetry can be classified by crystallographic point groups. The
cyclic groups have one rotational axis symmetry, C1 symmetry (monomeric protein), and
C2 symmetry (dimeric protein). These proteins have functions that require directionality,
such as channel formation and interactions with membranes [35]. The dihedral group has
higher symmetry containing an additional perpendicular axis of two‑fold symmetry. This
symmetry provides increased allosteric control. The cubic group shows a three‑fold sym‑
metry combined with a nonarticular rotational axis. This group is associated with storage
and transport proteins (icosahedral symmetry) [36].

Also, some in silico studies propose new molecules that can bind efficiently to SARS‑
CoV‑2. In this respect, curcuminoids had high binding affinity [37]. Another class of com‑
pounds of interest is the turmeric‑derived compounds that act against RNA‑dependentRNA
polymerase of SARS‑CoV‑2. These compounds showed promising perspectives to be de‑
signed as RdRp‑RNA inhibitors [38]. Also, some natural compounds have been considered
SARS‑CoV‑2 inhibitors, such as compounds derived from Nigella Sativa. Alpha dederin,
rutin, and nigellamineA2showed promising binding energywith the specific SARS‑CoV‑2
proteins [39].

In conclusion, protein 3D structure IDs were explored to gain insights into spike pro‑
tein chemical space and antigen interaction. The coronavirus main protein is spike protein
(S), a trimer. Also, the envelope protein(E), a pentamer composed of five equivalent units,
and membrane protein (M),a dimer, are discussed [40].

Lastly, some proposed first‑,second‑, and third‑generation vaccines have failed to pro‑
duce long‑lasting antibodies. This computational study illustrates theCOVID‑19 spike pro‑
tein S interaction space and proposes some Aa sequences (see also Supplementary Materi‑
als File S1) that can be conceivably used as a paratope in designing an effective COVID‑19
vaccine.
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2. Results
Light chains (VL) interactions (structures retrieved from the literature)with an epitope

(structures retrieved from the literature) are presented in Table 1. Also, ACE II interactions
with the spike protein monomer and with itself is included in the table.

Table 1. Structures and interaction equations.

Nr Structure Polynomial Eq. Logarithmic Eq.
Polynomial

Discriminant Eq.
Solution

Logarithmic Eq.
Solution

1 6cvr y = −21x6 − 16x5 − 12x4 − 0.9x3
− 0.5x2 + 0.0226x − 2.6132 y = −0.964 ln(x) + 8.6756 −1.25027 × 1013 8099.72

2 5M76 y = −19x6 − 15x5 − 12x4 − 0.8x3
− 0.6x2 − 0.0007x + 0.0118 y = 0.2959 ln(x) − 1.43 1.75267 × 109 125.551

5M6A y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.5x2 − 0.001x + 0.0703 y = 0.1133 ln(x) − 0.0932 3.13803 × 109 2.2764

4 5C9K y =−19x6 − 15x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0028x − 0.1209 y = 0.1457 ln(x) − 0.2645 −1.74887 × 1010 6.14337

5 5ACM y = −19x6 − 16x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0023x − 0.0865 y = 0.1653 ln(x) − 0.7071 −1.20161 × 1010 72.0728

6 4X4Z y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.6x2 + 0.0021x + 0.4072 y = −0.039 ln(x) + 1.4726 7.63376 × 1010 25,033,075,340,170,460

7 4N1C y = −19x6 − 15x5 − 12x4 − 0.9x3
− 0.7x2 + 0.0015x + 0.0317 y = −0.022 ln(x) + 0.4792 1.26141 × 1010 2.8822 × 109

8 4LVE y = −19x6 − 15x5 − 12x4 − 0.9x3
− 0.6x2 − 0.0017x + 0.2568 y = 0.1423 ln(x) − 0.33 3.61698 × 1010 10.166

9 4K07 y = −20x6 − 16x5 − 13x4 − 1.0x3
− 0.6x2 + 0.0028x + 0.4214 y = −0.105 ln(x) + 1.5204 5.92218 × 1010 1.9435 × 106

10 4K3G y = −19×6 − 15x5 − 11x4 − 0.8x3
− 0.5x2 − 0.0022x + 0.1699 y = 0.2815 ln(x) − 1.1125 7.39881 × 109 52.0416

11 4BJL y = −19x6 − 15x5 − 12x4 − 0.8x3
− 0.5x2 − 0.0021x + 0.1734 y = 0.0611 ln(x) − 0.0185 7.84012 × 109 1.35362

12 3UPA y = −19x6 − 15x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0047x + 0.3328 y = −0.067 ln(x) + 1.6866 4.86836 × 1010 8.56157 × 1010

13 3T0W y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.6x2 + 0.001x − 0.009 y = 0.1872 ln(x) − 0.4948 −1.39331 × 109 14.0576

14 3MCG y = −20x6 − 17x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0018x − 0.0765 y = 0.1462 ln(x) − 0.641 −1.241 × 1010 80.1905

15 3CDC y = −20x6 − 16x5 − 13x4 − 0.9x3
− 0.6x2 + 0.0037x + 0.4392 y = −0.119 ln(x) + 1.6773 8.86941 × 1010 1.3224 × 106

16 3BJL y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.5x2 − 0.0045x + 0.3602 y = 0.1276 ln(x) − 0.0371 1.71228 × 1010 1.33743

17 3BDX y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.5x2 − 0.0016x + 0.1355 y = 0.3303 ln(x) − 1.4623 5.93645 × 109 83.6957

18 3BD3 y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.5x2 + 0.0059x − 0.1529 y = 0.2444 ln(x) − 0.7981 −7.37006 × 109 26.1945

19 3B5G y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.6x2 − 0.0014x + 0.1304 y = 0.3172 ln(x) − 1.4154 2.09459 × 1010 86.6753

20 2Q2O y = −20x6 − 16x5 − 12x4 − 0.9x3
− 0.5x2 + 0.0062x + 0.3398 y = −0.093 ln(x) + 1.6544 1.34625 × 1010 5.31829 × 107

21 2OMB y = −19x6 − 15x5 − 12x4 − 0.8x3
− 0.6x2 − 0.5x + 0.0285 y = 0.1881 ln(x) − 0.6922 2.85107 × 1012 39.6447

22 2MCG y = −20x6 − 17x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0018x − 0.0765 y = 0.1462 ln(x) − 0.641 −1.241 × 1010 80.1905

23 2KQN y = − 19x6 − 15x5 − 12x4 − 0.8x3
− 0.5x2 + 0.0063x + 0.2908 y = −0.131 ln(x) + 1.8406 1.4796 × 1010 1.26475 × 106

24 2KQM y = − 20x6 − 16x5 − 13x4 − 1.1x3
− 0.6x2 + 0.001x + 0.1356 y = −0.034 ln(x) + 0.4816 1.60522 × 1010 1.41793 × 106
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Table 1. Cont.

Nr Structure Polynomial Eq. Logarithmic Eq.
Polynomial

Discriminant Eq.
Solution

Logarithmic Eq.
Solution

25 1REI y = −19x6 − 15x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0047x + 0.0759 y = −0.099 ln(x) + 1.7129 1.07351 × 1010 3.26717 × 107

26 1QP1 y = −20x6 − 16x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0013x + 0.161 y = −0.053 ln(x) + 0.6762 2.62376 × 1010 347,490

27 1QAC y = −20x6 − 16x5 − 12x4 − 0.9x3
− 0.6x2 − 0.0003x + 0.0601 y = 0.0241 ln(x) + 0.0217 9.87188 × 109 0.406401

28 1MCW y = −20x6 − 16x5 − 12x4 − 0.9x3
− 0.6x2 + 0.002x − 0.0665 y = −0.006 ln(x) + 0.2463 −1.11613 × 1010 672,640,970,952,404,352

29 1MCS y = −19x6 − 16x5 − 13x4 − 0.9x3
− 0.6x2 + 0.0014x − 0.0533 y = 0.1255 ln(x) − 0.5198 −6.94971 × 109 62.918

30 1MCJ y = −19x6 − 16x5 − 12x4 − 1.0x3
− 0.6x2 + 0.0012x − 0.0402 y = 0.1337 ln(x) − 0.5691 −5.368 × 109 70.5657

31 1MCI y = −19x6 − 16x5 − 13x4 − 1.0x3
− 0.6x2 + 0.0013x − 0.0482 y = 0.1293 ln(x) − 0.5426 −6.26192 × 109 66.4495

32 1MCD y = −19x6 − 16x5 − 12x4 − 1.0x3
− 0.6x2 + 0.0012x − 0.0402 y = 0.1337 ln(x) − 0.5691 −5.368 × 109 70.5657

33 1MCC y = −19x6 − 16x5 − 13x4 − 0.9x3
− 0.6x2 + 0.0014x − 0.0533 y = 0.1255 ln(x) − 0.5198 −6.94971 × 109 62.918

34 1MAJ y = −19x6 − 15x5 − 12x4 − 0.9x3
− 0.6x2 − 0.0005x + 0.126 y = 0.0665 ln(x) − 0.1725 1.75923 × 1010 13.383

35 1LGV y = −19x6 − 15x5 − 11x4 − 0.8x3
− 0.5x2 − 0.0018x + 0.0735 y = 0.1481 ln(x) − 0.6409 3.27612 × 109 75.7533

36 1IVL y = −20x6 − 16x5 − 12x4 − 0.9x3
− 0.7x2 + 0.0015x + 0.092 y = 0.0212 ln(x) + 0.333 4.36258 × 1010 1.50764 × 10−7

37 1EK3 y = −19x6 − 15x5 − 12x4 − 0.9x3
− 0.6x2 + 0.0002x + 0.1087 y = 0.0677 ln(x) − 0.0314 1.52104 × 1010 1.59012

38 1EEU y = −19x6 − 15x5 − 12x4 − 0.8x3
− 0.6x2 − 0.0013x + 0.1335 y = 0.0796 ln(x) − 0.1689 2.13078 × 1010 8.34664

39 1EEQ y = −19x6 − 15x5 − 12x4 − 0.8x3
− 0.6x2 − 0.0013x + 0.1344 y = 0.098 ln(x) − 0.2921 2.14642 × 1010 19.6999

40 1DCL y = −20x6 − 16x5 − 13x4 − 0.9x3
− 0.6x2 + 0.002x − 0.0963 y = 0.1157 ln(x) − 0.4593 −1.51605 × 1010 52.9713

41 1BWW y = −20x6 − 16x5 − 13x4 − 1.0x3
− 0.6x2 + 0.0013x + 0.0516 y = −0.03 ln(x) + 0.4975 7.65811 × 109 1.59239 × 107

42 1BJM y = −18x6 − 14x5 − 10x4 − 0.7x3
+ 0.0002x2 − 0.0464x + 2.9016 y = −0.03 ln(x) + 1.5043 1.58331 × 1013 59,837,435,299 ×

10−11

43 1B6D y = −19x6 − 15x5 − 12x4 − 0.9x3
− 0.7x2 + 0.0014x + 0.1079 y = −0.057 ln(x) + 0.7972 4.37707 × 1010 1.18584 × 106

44 1BOW y = −21x6 − 17x5 − 13x4 − 1.0x3
− 0.6x2 + 0.0016x + 0.2476 y = −0.074 ln(x) + 1.0069 3.80249 × 1010 811.595

45 1A8J y = 19x6 − 16x5 − 12x4 − 0.9x3 −
0.6x2 + 0.0023x − 0.0865 y = 0.1653 ln(x) − 0.7071 1.41204 × 108 72.0728

46 6VXX y = −19x6 − 15x5 − 11x4 − 0.7x3
− 0.0002x2 + 0.119x − 10.705 y = −2.722 ln(x) + 23.157 −1.72453 × 1016 4951.01

47 ACEII 6VXX y = −16x6 − 12x5 − 9x4 − 0.6x3
− 0.0001x2 + 0.1x − 9.857 y = 0.0628 ln(x)−0.668 −4.79692 × 1015 41,645.3

48 6VXX 6VXX y = −27x6 − 20x5 − 15x4 − 2.4x3
− 0.0001x2 +0.1x − 17.1143 y = 0.0053 ln(x) − 0.0593 −6.91299 × 1017 723,07.2

Two‑dimensional interaction plots and scatter plots of molecular interactions are rep‑
resented in Figure 1.
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Figure 1. (A) I‑Frag interaction map between ACEII monomer and spike protein monomer (6VXX)
based on I‑Frag interaction scores; (B) Radar plot based on I‑Frag interaction scores between ACE
II monomer and 6VXX monomer; (C,D) 6VXX sequence1A. I‑Frag interaction map between 6VXX
monomer and Aa based on I‑Frag interaction scores; (D). Radar plot based on I‑Frag interaction
scores between 6VXX monomer and sequence1; (E) 6CVR sequence1 Frag interaction map between
6CVR monomer and sequence1 based on I frag interaction scores; (F). Radar plot based on I‑Frag
interaction scores between 6CVRmonomer and sequence1; (G) I‑Frag interactionmapbetween 6VXX
monomer and 6VXX based on I frag interaction scores; (H) Radar plot based on I‑Frag interaction
scores between 6VXX monomer and 6VXX monomer 6VXX monomer.

In Figure 2, molecular interactions are represented using the I‑Frag interaction score.

Figure 2. Cont.
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Figure 2. Scatter plots representing: (a) I Frag score results from interaction between the ACEII
monomer and 6VXX monomer, characterized by 678,370 interaction pairs between one Aa; from
6VXX and one Aa; from ACE II (OX axes). The I Frag score corresponding to each pair of Aa is
represented on oy axes. A logarithmic trendline (dash points) is also drawn. (b) 6VXX interaction
with sequence1 is characterized by almost 7000 Aa pairs interacting (OX axes). The I Frag score
corresponding to each pair of Aa is represented on OY axes. A logarithmic trendline (dash points)
is also drawn (I Frag scores values significative of stronger interactions). (c) Aa sequence (epitope)
interaction with 6CVR. (d) Spike protein interaction with itself.

The Aa sequence (epitope) interaction with 6CVR is outlined by a significant I Frag
score (ox axes—up to 20) and fewer Aa interaction pairs (<5000). Also, there are two do‑
mains of interaction only: one with I frag scores of 20 and an indifferent domain with
no I frag values. The spike protein S sequence interacts with an identical spike protein
S sequence. As observed, multiple domains of interactions are observed. As seen in the
ACEII–6VXX interaction, a dominant domain with a lower interaction score is observed
together with small domains.

Due to similar discriminant values (in interactions with the spike protein monomer),
the Aa sequence 6VXX was used as a template. The sequence was searched in the PDB
database [41], with the following results retrieved: 6cwt.1.Ea, a capsid protein HBV(100%
identity); 6cwd.1.B, a capsid protein HIV (98.40% identity); 6cwd.1.D, a capsid protein
HBV (98.40% identity) [42]; 6cbv.1.D, a cacapsidnterovirus protein (identity 98.40) [43].
The sequence with 100% identity is shown below.

ELVMTQTPSSTSAAVGGTVTINCQASQSIGNALAWYQQKPGQPPKLLISAGSNLA
SGVPSRFRGSGSGTEYTLTISDVQREDAATYYCLGTYSAIDRAFGAGTNVEIERTVIDPY
KEFGATVELLSFLPSDFFPSVRDLLDTAAALYRDALESPEHASPHHTALRQAILCWGDL
MTLATW

The sequence was scanned for paratopes to find binding sites using the Paratome
server. The Paratore server retrieved for this sequence the following results (Table 2):
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Table 2. Paratope sequences retrieved computationally.

ABR L1: QSIGNALA (27–34)
ABR L2: LLISAGSNLAS (46–56)
ABR L3: LGTYSAIDRA (89–98)

Furthermore, using the discussed sequence, a homology model was performed us‑
ing the SWISS protserver, and the following homology model was retrieved (Figure 3).
Also, the value of potential energy of conformations (E), strain energy (dE), conformation
stereochemistry integer (chi), radius of gyration (gry), and globularity of the conformation
(glob) was computed as follows: (a) PE = −2077.8716, dE = 0.4685, Chi = 1, Rgir = 14.5243,
Glob = 0.4600, ecc = 0.9628; (b) E = −2078.3401, dE = 0.0000, Chi = 1, Rgir = 14.3664,
Glob = 0.4691, ecc = 0.9873; (c) E = −2075.5857, dE = 2.75451, Chi = 1, Rgir = 13.8382,
Glob = 0.5646, ecc = 0.9513 (Figure 3).

Figure 3. Homology model of the sequence, together with three favorable structural conformations:
(a–c).

Furthermore, dihedral angles computed in silico for each protein monomer are repre‑
sented in Figure 4.

As shown in Figure 4a, for the spike protein of SARS, three dihedral angle clusters
are observed: two symmetrical clusters in the range 1600–1800 and −1600–(−1800), re‑
spectively, and a central domain in the range −300–300. A population‑abundant baseline
domain is also observed. Envelope proteinmonomer dihedral angle population shows two
symmetrical clusters in the range 1700–1800 and −1700–(−1800), respectively. A central
cluster around 00 is also observed (Figure 4b). The membrane protein monomer dihedral
angle population shows symmetrical clusters in the range 1600–1800 and −1600–(−1800),
respectively. Also, a central cluster in the range 00–100 and −100–00 is described. Two
central continuous dihedral angle population domains are observed (Figure 4c).

In Figure 4d, spike protein monomer of SARS‑CoV‑2 is represented. In contrast with
the dihedral angle populations of protein, the monomers discussed have two symmetrical
clusters in the range 1600–1700 and−1600–(−1700), respectively, and another two symmet‑
rical clusters in the range 600–700 and −600–(−700), respectively. Also, a central domain
situated around the 00 value is observed. Two baselines are also observed.
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Figure 4. Dihedral angles of surface protein monomers. On the right, dihedral angles are repre‑
sented after the log representation of the ox axis. (a) Spike protein monomer of SARS dihedral angle
population; (b) envelope protein monomer of dihedral angle population of SARS‑CoV‑2; (c) mem‑
brane protein monomer of dihedral angle population of SARS‑CoV‑2; (d) spike protein monomer of
dihedral angle population of SARS‑CoV‑2.
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Logarithmic dihedral angles population trendlines equations for eachproteinmonomer
are represented below in Table 3.

Table 3. Logarithmic trendline equations for each protein monomer dihedral angle.

Protein Monomer Equations

S(SARS) y = −0.059 ln(x) + 6.1779
E(SARS‑CoV‑2) y = −8.42 ln(x) + 62.544
M(SARTS‑CoV‑2) y = 1.5101 ln(x) − 8.9329
S (SARS‑CoV‑2) y = −0.443 ln(x) + 9.7581

In Figure 5,the protein monomer surface of revolution is shown.

Figure 5. Protein monomers surface of revolution. The surface of resolution is generated using
the logarithmic trendline dihedral angles equation. The axis of revolution is represented in green.
The generator (dihedral angle trendline equation) is represented in blue (see also Supplementary
Materials File S2).

The spike protein monomer of SARS has a base surface with a radius of 8 units and a
length of 1000 units on the x‑axis. The envelope protein monomer of SARS‑CoV‑2 has
a base surface radius of 125 units and a length of 1000 units. The membrane protein
monomer of SARS‑CoV‑2 has a base radius of 22 units and a length of 1000 units. For the
spike protein (SARS‑CoV‑2), the base of the surface has a radius of 12 units and a length
of 1000 units on the x‑axis. The termination of the surface of revolution after 1000 units of
length is arbitrary, while its length is virtually infinite.

Figure 6 shows radar plots of the dihedral angle populations for protein monomers.

Figure 6. Radar plots of proteins monomers dihedral angles population (see also Supplementary
Materials File S3).

The spike protein monomer of SARS has a uniform distribution of dihedral angles
with upper values of 1800. The envelope protein of SARS‑CoV‑2 has some spatial regions
uncovered by the dihedral angles. The membrane protein of SARS‑CoV‑2 has a partially
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uniform dihedral angle population which covers much of the conformational space. The
spike protein of SARS‑CoV‑2 has a vast empty regionwhere dihedral angle conformational
space is not covered.

Polynomial trendline equations of Ramachandran plots obtained for the spike protein
monomer of SARS and SARS‑CoV‑2, taking into account the energetically allowed regions,
are represented in Table 4 (see also Supplementary Materials File S4).

Table 4. Polynomial equations of energetically allowed regions of spike protein monomer.

Protein Monomer Energetically Allowed
Regions Equations

S (SARS) y = −14x6 − 10x5 − 7x4 − 5x3 − 0.0265x2 +
3.0432x − 165.5

S (SARS‑CoV‑2) y= −10x6 − 8x5 − 6x4 + 0.0002x3 + 0.0556x2 +
0.146x − 110.03

The complex roots were completed and turned to have a similar disposition, with six
similar points disposed of from −1.5 to 1.5 in all four quadrants (Figure 7).

Figure 7. Spike protein energetically allowed regions represented by blue spike protein SARS and
pink spike proteins SARS‑CoV‑2.

3. Discussion
Spike protein S is a high‑priority target molecule in developing a vaccine or treatment

against SARS‑CoV‑2. Many studies describe the interactions of spike protein S with some
organic molecules. Some of them are driven by an experiment where a set of molecules
are selected, and any interactionwith the S protein is objectified. Others are computational
studies. The benefit of most computational studies published is that they can probe a vast
majority of the chemical space using, for example, virtual screening techniques. These vir‑
tual screening studies explore a multitude of binding sites. As stated before, a distinct and
vast library of compounds is used. As expected, these results regarding energy (binding
energy, Gibbs energy) are reported. This kind of computation does not offer a clear view of
the phenomena. Usually, these results are expressed in kcal/mo. Sometimes, the only way
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to assess a compound’s attractiveness in terms of spike protein interaction is by searching
for the lowest possible interaction energy. This kind of judgement offers a one‑dimensional
view of the process.

Also, computational studies regarding epitope–paratope interactions are to be noted.
These studies usually used peptide libraries, and the interactions are treated in a ligand–
receptor paradigm. Furthermore, structural correlations are hard to perform even using a
fragment‑based approach.

This computational study uses a multimodal representation of spike protein interac‑
tions with some fragment proteins. The interactions are represented using heat maps and
radar plots. Also, the chemical space of each potential target (S, M, N, E SARS‑CoV‑2)
protein is represented compared with the SARS‑CoV‑2 spike protein.

The set of VL structures used to describe interactions with SARS‑CoV‑2 surface pro‑
teins is distinct. As seen in Figure 8, two significant groups of clusters are observed.

Figure 8. VL cluster. Two major groups of clusters are observed: a major group composed of VL: 2,
3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37,
38, 39, 40, 41, 41, 43, 44, 46, 47; a small one composed of VL 7, 9, 23, 25, 45 and two single clusters 1
and 35.

Taking into account the polynomial discriminant as a unidimensional way of quan‑
tifying and judging spike protein S interactions with different molecular targets, it is ob‑
served that the value of VL (Aa polynomial discriminant (8099.72)) is close to the value
of fragment 47 discriminant (41,645.3). The difference between the values of magnitude is
5.141. Theoretically, the Aa sequence 1 with the spike S protein is five times weaker than
the interaction of fragment 47 (ACE II receptor, its ideal target) with the spike S protein.
Virtually, viral capsules do not interact with each other. There are virtually no interactions
between the molecules resulting from the final biosynthetic pathway. Furthermore, they
have a particular way of rejecting each other. So, a minimum range of interaction in a
monodimensional space, which has to be characterized by protein S interaction spaces, is
set to be a spike protein S–spike protein S interaction as a lower limit (495.01) and a spike
protein S–ACE II receptor interaction as an upper limit (41,645.3) (Figure 9).

Figure 9. Most favorable interaction of fragment 47 (6CWT), represented with ACE II monomer and
anther VL fragment 26with a polynomial discriminant value of 347,490 to demonstrate the specificity
of VL—spike protein interaction and the lack of mass effect in this computational study.
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On the function interval −0.5 ≤ x ≤ −0.15, function f1 = −14x6 − 10x5 + 7x4 − 5x3
− 0.0265x2 + 3.0432x − 165.5 is null, f1 = 0, and function f2 = 10x6 − 8x5 − 6x4 + 0.0002x3
+ 0.0556x2 + 0.146x − 110.03 becomes f2 = −110, thus a straight line parallel to ox. The
two straight lines on the interval (−0.5; −0.15) are parallel and symmetric from the axis
y = −147.5. The area enclosed between the two functions, on the interval (−0.5,−0.15), has
a rectangular shape. S = [−0.5− (−0.15)]× [−165− (−130)] = (−0.35)× (−35) = 1225. The
convergence of the two functions is determined via the following relationship:∫ ∞

a f(x)dx = lim
x→∞

∫ ∞
a f(x) then f1(x)/(−x6) and (f1(x))/(−x6) is computed: (f1(x))/

〖−x〗6 =10 + 8/x + 6/x2 − (0.0002)/x3 − (0.0556)/x4 − (0.146)/x5 + (110.3)/x6 also (f2(x))/
(−x6) = 14 + 10/x − 7/x2 +5/x3 + (0.0265)/x4 − (3.0432)/x5 + (165.5)/x6. Because lim

x→∞
A
xn = 0,

where A is a constant, the limits of the two functions are 10 and 14, respectively. While
the limits have positive values (10 > 0, 14 > 0), both of the functions have the following
convergence domain: −∞ < x < +∞.

The Riemann theorem shows that via permutation of a series of terms, the sum can
be made equal to any number given before. In the case of functions f1(x) and f2(x), these
numbers are 10 and 14. So, the functions are convergent.

The surface of revolution in Euclidean space is a surface created by a rotating curve
around an axis of rotation [44]. Here, the rotation axis originates at the object’s center in
Euclidean space. Such surfaces generated by a straight line include cylindrical and con‑
ical surfaces. The surface of resolution coordinates expression is obtained by rotating a
y = f(x) curve around the x‑axis described by cylindrical coordinate r = f(z). In Cartesian
coordinates, the parametrization in terms of z and θ is(f(z)cos(θ), f(z) sin (θ),z). If x and
y are defined in terms of a parameter t, then a parametrization of t and θ is obtained. If
x and y are functions (functions of proteins x,y,z atom coordinates) of t, then the surface
of revolution obtained by revolving the curve around the x‑axis is described in cylindrical
coordinates by parametric equations (r,θ,z) = (y(t), θ, x(t)), and the surface of revolution
obtained by revolving the curve around the y‑axis is described by (r,θ,z)= (x(t), θ, y(t)). In
Cartesian coordinates, these becomes (y(t)cos(θ), y(t)sin(θ), z(t) and (x(t)cos(θ), x(t)sin (θ),
y(t)) [45,46]. Protein monomers have a distinct surface of revolution regarding the value,
number, and topology of dihedral angles. It seems that the surface of revolution computed
as a logarithmic equation dependent on molecule dihedral angles varies with the mass of
the protein. Virtually, the SARS‑CoV‑2 surface proteins’ (spike, envelope, membrane) ra‑
dius of revolution tends to converge in one point, in contrastwith the spike protein of SARS,
where the generators are parallel. Judging from the base of the surface of revolution, the
envelope protein has the most extensive base (125 units).

Ramachandran plots are a tool for visualizing energetically allowed domains for back‑
bone dihedral anglesψ againstϕ of amino acid residues in proteins. Dihedral angle values
are annular (0 degrees is the same as 360 degrees). Ramachandran plots warp from right to
left and bottom to top [47]. Theω angle at the peptide bond is usually 180◦ since the partial‑
double‑bond character keeps the peptide planar. The torsional angles of each fragment in a
peptide define the geometry of its molecular connections to its adjacent residues by dispos‑
ing of its planar peptide bond relative to the adjacent planar peptide bonds. The torsional
angles characterize the conformation of the residues and the peptide. While somewhat
energetically unfavorable, the specific geometry of functionally relevant residues may be
essential for the protein’s function. Conformations need to be stabilized by the protein us‑
ing H‑bonds [48]. Figure 10 represents Ramachandran plots of the SARS and SARS‑CoV‑2
spike protein, envelope, and membrane protein of SARS‑CoV‑2. Spike protein monomer
for SARS and SARS‑CoV‑2 seems to have similar energetically favorable domains rich in
antiparallel beta‑sheets, parallel beta‑sheets, collagen triple helix, and right‑handed alpha
helix, thus emphasizing their similar spatial backbone constitution. Envelope and mem‑
brane protein monomers do not possess a rich structural complexity like the spike protein
(Figure 11).
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Figure 10. Ramachandran plots of viral proteins monomers. The spike protein of SARSA and SARS‑
CoV‑2 have similar allowed regions. Antiparallel ß sheets, right‑handed ἀ helix, and collagen triple
helix are dominant in spike protein for both SARS and SARS‑CoV‑2.

Figure 11. Property space of spike protein of SARS and SARS‑CoV‑2. Spike property space of SARS‑
CoV‑2.

The property space of both spike proteins demonstrates similar characteristics of both
molecules. Solvent exposure of both molecules shares common characteristics. Spike pro‑
tein SARS and SARS‑CoV‑2 solvent exposure are similar (Figure 11).

Binding site identification of potential therapeutic targets is crucial in every drug de‑
sign process as the expected spike protein has various binding sites. Also, many binding
sites in various spike protein regions are described in the literature. An efficient vaccine
can be designed by identifying the energetically and structurally favorable binding site.
In the present study, the ligand’s interaction with its receptor (spike protein) is a general
process of applying various binding sites.
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Furthermore, the mirror symmetry of SARS‑CoV‑2 compared with SARS can poten‑
tially suggest potential ligands that can be used as vaccines. Symmetricmolecules of SARS‑
proven ligands can be considered in such a way. Also, as seen in Figure 7, the difficulty
of finding a proper ligand (organic molecule or Aa sequence) is due to the depleted dihe‑
dral angle region of SARS‑CoV‑2comparedwith SARS.Moreover, the symmetry of the two
spike proteins suggests that reverse engineering (and thus retrosynthesis) is possible.

4. Materials and Methods
The design of an appropriate paratope that can lead to a COVID‑19 antibody in in

silico methods was used together with secondary data derived from the literature. In or‑
der to find a suitable paratope, a set of very low (VL) random sequences were used to
assess the chemical space of epitope–paratope interactions (see also Supplementary Mate‑
rials File S1).

Firstly, a target for a potential antibody was established. Spike protein S was chosen
as a target due to its volume, shape, and frequency at the external membrane of COVID‑
19 compared to proteins E, M, and N, respectively. Computational studies and published
data show that spike S protein is a valid target [49–52].

Also, an Aa sequence was chosen as an epitope. The Aa sequence was chosen from
the literature (Nandy et al.) [53,54].

A set of 47 PDBVL chainswas chosen from the literature to explore the paratope space
by evaluating the epitope–paratope interactions using distinct computational techniques.

Firstly, a light chain of 47PDB structures was used. Paratopes were detected for each
structure using the Paratome online engine [55]. Results were selected manually for Aa
sequences to be at the outer portion of the light chain. Small and long Aa sequences were
selected. After obtaining the sequence, they were computed using the Vendruscolo Lab
software package named Parapred (https://www‑cohsoftware.ch.cam.ac.uk, accessed on
1 July 2023). For example, the following sequence was obtained for 1A8J using Paratome:
SYEGSDF. After checking that the sequence was of the outer external region and could
contact the antigen, the probabilistic contribution of each Aa was computed using Para‑
pred, in this case yielding the following values: S 0.1649, Y 0.486472, E 0.713605, G 0.32135,
S 0.469778, and F 0.0840889. In order to take into account the epitopes’ first light chains,
interactions with the light chains were studied. The PSOPIA online server was used [56].
PSOPIA computes three types of scores: sequences, similarities, domain–domain interac‑
tions, Aa contacts (sum of edge weights, the shortest path between homologous proteins
in a protein–protein interaction network), and a score which is the sum of all three scores,
respectively. After computing, the interaction Paratome server was used for selecting the
paratopes [51].

iFrag, a protein–protein interaction prediction server, was used to compute and quan‑
tify the interaction between epitopes and paratopes [52]. First, the row sequences of the
epitopes and paratopes were introduced. Below are the spike S protein monomer and
ACEE II monomer sequences.

Spike protein monomer:
AYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHDNPVLPFNDGVYF

ASTE
KSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVNCTFEYVSFK

NLR
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHAAY

YV
GYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTE

SIV
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP

TKL
NDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL

DSKGNY

https://www-cohsoftware.ch.cam.ac.uk
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NYLYRKPFERDIYFPLQSYGFQPTNVGYQPYRVVVLSFELLHAPATVCGPKKSTNL
VKNK

CVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFG
GVSV

ITPGTNTSNQVAVLYQDVNCTEVNVFQTRAGCLIGAEHVNNSYECDIPIGAGICAS
YQTS

QSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTE
C

SNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI
LPDP

SKPSKRSFIEDLLFNKVTKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGA
ALQ

IPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDV
VNQN

AQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL
IRA

AEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVP
AQEKNF

TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI
GIVNN

TVYDPLQPELDS
ACEII monomer
STTEELAKTFLETFNYEAQELSYQSSVASWNYNTNITEENVQNMNNAGDKWSAF

LKEQST
LAQTYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCN

PDNP
QECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMAR

ANHYED
YGDYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAY

PSYISP
IGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEA

EKFFVSV
GLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDFRILMCTKVTMDDFL

TAHHEGH
IQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQEDNE

TEINF
LLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPV

PHDETYC
DPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKL

FNML
RLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTDWS

PYADPFG
EVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNVYADSFV

VKGD
DVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATSTGNYNYKYRYLRH

GKLRPFE
RDISNVPFSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFE
In order to characterize the VL sequences, a cluster analysis was performed using

molecular descriptors. The properties, after the cluster was computed, are the follow‑
ing: sum of atomic polarizabilities, number of hydrogen bond acceptors, number of acidic
atoms, number of aromatic atoms, number of H donor atoms, the sum of the number of H
bond acceptors and donors, number of heavy atoms, information content, medium infor‑
mation content, number of carbon atoms, number of hydrogen atoms, number of nitrogen
atoms, number of oxygen atoms, Balaban index, difference in bonded atompolarizabilities,
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number of rotable single bonds, number of aromatic bonds, number of bounds, number of
heavy bounds, number of single bounds, atomic connectivity index, atomic valence con‑
nectivity index, number of chiral centes, number of unconstrained chiral centers, density,
diameter (most considerable vertex eccentricity in a graph), SlogP, molar refractivity, topo‑
logical polar surface area, vertex adjency information, volume surface area, van der Waals
acceptor surface area, molecular weight, winner path, Weiner polarizability, Zagreb index,
surface rugosity, total energy, angular energy, electronic energy, non‑bonded energy, sol‑
vation energy, strain energy, van der Waals energy, and globularity. As seen in Figure 8,
VL fragment 1 (6CVR, colored in red) is located outside the cluster together with an electric
VL fragment 35. Fragments 46 and 47 are located inside the significant (central) cluster.

The following PDB models were used: 6VXXfor SARS‑CoV‑2spike protein, 6CVR
for SARS spike protein, 5X29for SARS‑CoV‑2 envelope protein, and3I6Gfor SARS‑CoV‑2
spike protein. Furthermore, the PDB models were energetically minimized, charges cor‑
rected, and protonated at pH 7.4, a salt concentration of 0.9 nmol/L, and at 315 K. The
model preparations were performed using Schrodinger2009 and MOE 2009software pack‑
ages [57,58]. Shape‑derived descriptors were computed for all the PDB structures and
computed to define protein shape and functionality consecutively. The lowest energy con‑
formations were retained for each protein. The following descriptors were used:pmi(y),
Kier1,2,3, KierA1,2,3, first, second, and third alpha‑modified shape index, normalized PMI
ratio. The descriptors were computed using the MOE 2009 software package.

In order to reduce the amount of data and to simplify the results, monomers for each
protein(envelope protein, membrane protein, spike protein) were prepared computation‑
ally, as stated before. The trimers and pentamer PDB structures were energetically min‑
imized, and charges were corrected using the AMBER force field available in MOE 2009
software package. For each monomer structure, the energy was minimized, charges cor‑
rected, and structures protonated at a physiological pH. Dihedral (torsion angles) for each
monomer were computed using the Chemoffice 2008 software package.

In probing the chemical space, some structural information, from simple dihedral
angles to complex tertiary and quaternary organizations, was obtained computationally
using Schrodinger 2009 software packages. Dihedral angles were represented using a scat‑
ter plot for each monomer (oy dihedral angle values; ox atom pairs composing the planes
for dihedral angle). While an abrupt cut‑off was observed in data, and an abrupt variation
in data was noted, a logarithmic scale was used. Also, as discussed in the introductory
part, by normalizing the data, clusters are more easily observed (Figure 2). A logarithmic
trendline was further calculated using the Microsoft Office 2019 software package for the
discussed monomers.

In order to expand data dimensionality, a Ramachandran plot diagramwas computed
for all four monomers in order to characterize the dihedral angles of the structures us‑
ing the Schrodinger 2009 software package. The Wolfram Alpha software (https://www.
wolframalpha.com/, accessed on 1 July 2023) interface was used to perform a cluster anal‑
ysis of all dihedral angles. To compare their function domains, the function table dn/dxn
(f(x)) for n = 1 … 4 was calculated for all four monomers. Surface plots were computed us‑
ing the radius of gyration of each logarithmic trend line. Here, r2, while exploring a trend
and not a correlation between two phenomena, is not significant. A histogram was com‑
puted using dihedral angle values on 300 intervals for all three monomers. Using logarith‑
mic trendline equations, a derivate equationwas computed for all three proteinmonomers
to represent the dynamic of dihedral angles as a function graphically.

Radar plots were used to emphasize the dihedral angles of protein monomers. Fur‑
thermore, the surface of revolution for protein S for SARS and for M, E, and S for SARS‑
COV‑2 were computed to retrieve the 3D dimensionality of monomers’ dihedral angles.
Surfaces were generated using the following formulas: for S (SARS) protein monomer ta‑
ble: dn/dxn (−0.059 log(x) + 6.1779) for n = 1 … 4; for M (COVID‑19) protein monomer
table: dn/dxn(−1.51011 log(x) + 6.1779) for n = 1 … 4; for E (COVID‑19), protein monomer

https://www.wolframalpha.com/
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table: dn/dxn(−0.842 log(x) + 62.544) for n = 1… 4; and for S (COVID‑19) protein monomer
table: dn/dxn(−0.443 log(x) + 9.7581) for n = 1 … 4.

5. Conclusions
The dimensionality of the COVID‑19 interaction space is defined by its interaction

with its core receptor. The interaction space has a finite dimensionality defined quantita‑
tively by the polynomial discriminant. Judging by its 2D dimensionality, the interaction
space has a negative and positive domain through which epitope–paratope interactions
are defined.

SARS and SARS‑CoV‑2 spike proteins have similar solvent exposure and mirror sym‑
metry regarding their dihedral angle chemical space. Both proteins have a similar solvent
exposure even if their dihedral angle conformational space has mirror symmetry. Mirror
symmetry explains to some extent the chemical inaccessibility of the spike protein SARS‑
CoV‑2 as a receptor and the evasive but permanent chemical bonding in which it is in‑
volved.
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