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Abstract: Insulin resistance is the link between obesity and type 2 diabetes mellitus. The molecular
mechanism by which obese individuals develop insulin resistance has not yet been fully elucidated;
however, inconclusive and contradictory studies have shown that oxidative stress may be involved
in the process. Thus, this study aimed to evaluate the effect of reactive species on the mechanism
of insulin resistance in diet-induced obese mice. Obese insulin-resistant mice were treated with
N-acetylcysteine (NAC; 50 mg/kg per day, for 15 days) by means of oral gavage. Twenty-four hours
after the last NAC administration, the animals were euthanized and their tissues were extracted for
biochemical and molecular analyses. NAC supplementation induced improved insulin resistance
and fasting glycemia, without modifications in food intake, body weight, and adiposity. Obese
mice showed increased dichlorofluorescein (DCF) oxidation, reduced catalase (CAT) activity, and
reduced glutathione levels (GSH). However, treatment with NAC increased GSH and CAT activity
and reduced DCF oxidation. The gastrocnemius muscle of obese mice showed an increase in nuclear
factor kappa B (NFκB) and protein tyrosine phosphatase (PTP1B) levels, as well as c-Jun N-terminal
kinase (JNK) phosphorylation compared to the control group; however, NAC treatment reversed
these changes. Considering the molecules involved in insulin signaling, there was a reduction
in insulin receptor substrate (IRS) and protein kinase B (Akt) phosphorylation. However, NAC
administration increased IRS and Akt phosphorylation and IRS/PI3k (phosphoinositide 3-kinase)
association. The results demonstrated that oxidative stress-associated obesity could be a mechanism
involved in insulin resistance, at least in this animal model.

Keywords: insulin resistance; obesity; oxidative stress; skeletal muscle

1. Introduction

The epidemic of obesity is a major public health problem globally. Excess adiposity
is a major risk factor in the progression of various metabolic conditions, including type 2
diabetes mellitus (T2DM), dyslipidemia, nonalcoholic fatty liver disease, etc. [1]. These
pathological states are strongly associated with insulin resistance. Described as the major
link between obesity and T2DM, insulin resistance is a condition in which target peripheral
tissues, such as the skeletal muscle, liver, and adipose tissue, have a subnormal response
to the levels of circulating insulin, resulting in a decrease in the physiological effects of
this hormone and, thus, lower glucose uptake. The precise molecular mechanisms that are
involved in the pathogenesis of obesity-associated insulin resistance and its consequences
are complex. Based on the efforts over the last decades, there have been remarkable
developments in the investigation of obesity-induced insulin resistance, especially in the
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mechanisms involved in this process [1]. Among these, augmented production and the
action of pro-inflammatory cytokines, a process known as subclinical inflammation or
low-grade chronic inflammation, is the most widely accepted [1–6].

In fact, scientific evidence has revealed that excessive adiposity can increase the
levels of pro-inflammatory molecules, such as inductor kappa B kinase (IKK), nuclear
factor kappa B (NFκB), and c-Jun N terminal kinase (JNK), which interpose intracellular
insulin signaling, leading to insulin resistance [1–5]. However, it is considered that insulin
resistance cannot be explained using one mechanism. Thus, the role of oxidative stress in
the mechanism of insulin resistance has been suggested. Radicals derived from oxygen
(ROS) and nitrogen (RNS) are the largest class of radical species generated in living systems.
ROS and RNS are the products of normal cell metabolism and have either beneficial or
deleterious effects, depending on their concentrations in the tissues [7]. A number of
studies have reported that ROS and RNS can disrupt insulin signal transduction and have
shown elevated levels of ROS in both obese animals and obese humans during insulin
resistance [8–12]. Oxidative stress, an imbalance between the production and counteraction
of ROS, can increase in certain conditions that generate oxidative stress in obesity, such
as hyperglycemia, elevated lipids, vitamin and mineral deficiencies, chronic low-grade
inflammation, impaired mitochondrial function, and increased NOX activity [13]. Among
these, two principal mechanisms include: elevated production of ROS by the NADPH
oxidase (NOX) system [14] and elevated mitochondrial substrate oxidation of fatty acids
and glucose [14–17].

As described above, studies, although not conclusive, have revealed that oxidative
stress is the mechanism involved in the onset of insulin resistance. However, there are other
studies opposing this [18–20]. Ristow et al. observed that exercise-induced oxidative stress
ameliorates insulin resistance and causes an adaptive response, promoting endogenous
antioxidant defense capacity. However, supplementation with antioxidants precluded these
health-promoting effects of exercise in humans [18]. Loh et al. showed that mice lacking
one of the key enzymes involved in the elimination of physiological ROS, glutathione
peroxidase 1 (Gpx1), were protected from high-fat diet-induced insulin resistance [19].
Considering these controversial and unclear studies on the relationship between insulin
resistance and oxidative stress, the present study aimed to evaluate the implications of
oxidative stress in insulin resistance in the gastrocnemius of high-fat diet-induced obese
mice.

2. Results
2.1. Biometrics and Physiological Parameters

The results of the physiological evaluations, such as body weight, dietary intake,
adiposity index, epididymal fat, fasting glucose, and kITT, are presented in Figure 1. It
was observed that the high-fat diet caused a significant increase in the body weight of
Swiss mice (HFD group); moreover, treatment with NAC for 15 days did not reduce the
body weight of these animals (HFD + NAC) (Figure 1a). Animals in the HFD and HFD
+ NAC groups showed lower food intake than those in the control group (Figure 1b);
however, there was no significant difference when food intake was adjusted by caloric
intake (Figure 1c). An analysis of the adiposity index revealed an increase in the percentage
of body fat in the HFD group. This did not change after NAC treatment (Figure 1d). On
evaluating fasting glucose levels, it was observed that the HFD group had higher fasting
blood glucose levels than the control group, and NAC treatment was able to significantly
reduce these values (Figure 1e), suggesting improved insulin resistance. In fact, kITT was
reduced in the HFD group, but NAC treatment significantly increased this parameter
(Figure 1f).
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Figure 1. Effects of NAC administration on the physiological parameters of obese mice. Body
weight (a), food intake (b), caloric intake (c), adiposity index (d), fasting glucose (e), and constant
rate of glucose decay—kITT (f). * p < 0.05 compared to the control (CNT) group; # p < 0.05 compared
to the obese (HFD) group.

2.2. Oxidants and Antioxidants

Oxidant production was estimated by the oxidation of DCFH-DA. The results suggest
that obesity is associated with increased oxidative stress. Figure 2a shows a significant
increase in the DCF levels in the HFD group compared to the control group. However, NAC
administration significantly reduced the DCF levels. We also evaluated the antioxidant
system. Catalase activity was reduced in the HFD group; however, it was increased after
NAC supplementation (Figure 2b). In addition, GSH concentration was reduced in the HFD
group. However, as expected, NAC treatment was effective in increasing it (Figure 2c).
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Figure 2. Effects of NAC administration on the production of oxidants in the gastrocnemius
muscle of obese mice. DCF (a), CAT activity (b), and glutathione reduced levels (GSH) (c). * p < 0.05
compared to the control (CNT) group; # p < 0.05 compared to the HFD group.

2.3. Inflammatory and Phosphatases Protein Levels

In this study, we evaluated the possible relationship between inflammation and oxida-
tive stress (Figure 3). As expected, the HFD group showed higher NFκB protein levels than
the control group; however, NAC supplementation was not effective in reducing NFκB pro-
tein levels (Figure 3a). Another inflammatory molecule, JNK, was also evaluated. The HFD
group exhibited higher levels of JNK phosphorylation than the control group. However,
NAC treatment was able to inhibit this phosphorylation (Figure 3b). Phosphatases may be
activated by both inflammation and oxidative stress signals and is involved in the process
of insulin resistance. Thus, PTP1B levels were evaluated. A significant increase in PTP1B
levels in the HFD group was observed, compared to the control group. NAC treatment
was efficient in greatly reducing the PTP1B levels (Figure 3c).

2.4. Insulin Signaling Transduction Protein Levels

Next, we evaluated the proteins levels of crucial molecules involved in insulin signal
transduction. The HFD group presented lower levels of IRS phosphorylation, compared
to the control group. However, treatment with NAC significantly increased the phospho-
rylation of IRS (Figure 4a). Next, we evaluated the association between IRS and PI3k
molecules. The results demonstrated that obesity reduced the immune complex (IRS/PI3k),
whereas antioxidant treatment significantly increased IRS/PI3K, compared to the HFD
group (Figure 4b). Finally, a significant reduction in Akt phosphorylation was observed in
the HFD group, compared to that in the control group. However, the HFD + NAC group
showed greater Akt phosphorylation, compared to the HFD group (Figure 4c).
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Figure 4. Effects of NAC administration on the expression of molecules involved in insulin signaling
in the gastrocnemius muscle of obese mice. Immunoprecipitation for analysis of the association
between IRS/phospho tyrosine (a) and between IRS/PI3K (b), and immunoblot analysis of Akt
phosphorylation (c). * p < 0.05 compared to the control (CNT) group; # p < 0.05 compared to the HFD
group.



Int. J. Mol. Sci. 2023, 24, 12088 6 of 12

3. Discussion

Obesity is a complex metabolic condition, significantly related to T2DM. The results
from metabolic and epidemiological studies provide strong evidence that the increasing
prevalence of obesity is closely associated with an increase in type 2 diabetes [13]. The
crucial link between obesity and T2DM is insulin resistance. Oxidative stress and inflam-
mation are key physiological and pathological events linking obesity, insulin resistance,
and the progression of T2DM. However, while there is strong and acceptable evidence of
the relationship between insulin resistance and inflammation, the involvement of oxidative
stress in this process is contradictory and unclear. Therefore, this study sought to evaluate
the effect of oxidative stress on insulin resistance in the gastrocnemius muscle of high-fat
diet-induced obese mice. High-fat diet-induced obese Swiss mice were orally supplemented
with NAC (a biosynthetic precursor of GSH) for 15 days. The principal results observed
were: (a) reduced oxidative parameters; (b) diminished levels of inflammatory molecules,
and (c) increased levels of insulin signaling molecules and insulin sensitivity as well as
reduced blood glucose levels. These results suggest that oxidative stress might be involved
in the process of insulin resistance.

In this study, we treated obese mice with NAC. NAC is an enzymatic antioxidant
derived from the amino acid cysteine (chemical formula; C5H9NO3S; molecular weight:
163.2 kDa) [21]. Its antioxidant functions are primarily attributed to its ability to reduce the
levels of extracellular amino acid, cysteine, to the intracellular levels. In addition, NAC
is an important source of the thiol group. Obese mice treated with NAC showed reduced
fasting glucose levels and increased kITT, suggesting the involvement of oxidative stress in
the mechanism of insulin sensitivity. Ma et al. (2016) demonstrated the protective effect
of NAC on insulin resistance in obese mice. The authors observed that administrating
NAC concomitant to a high-fat diet to mice yielded a better result for the ITT and the
glucose tolerance test (GTT) compared to the group only fed a high-fat diet. However,
these authors observed a reduction in the body weight in these animals; thus, the results
may be associated with reduced body weight [22]. In the present study, improvements in
the blood glucose and kITT parameters were observed without changes in body weight
and food intake. These results revealed an antioxidant action of NAC on glucose and
insulin sensitivity in obese mice, regardless of body weight and adiposity. NAC reducing
IR independently of weight loss is clinically interesting, because, for the diabetic patient,
losing weight is always difficult.

Next, we used DCF levels as a method to measure oxidative stress [23]. The results
showed that obesity elevated DCF levels, suggesting increased ROS. However, NAC
treatment was efficient in diminishing DCF levels. Utilizing obese mice (in vivo) and 3T3-
L1 adipocytes (in vitro), Houstis et al. observed increased DCF levels after the initiation of
insulin resistance [10]. Therefore, after treatment with an antioxidant, namely, MnTBAP, a
mimetic of SOD, the levels of DCF were reestablished; moreover, improvements in GTT,
ITT, and muscular glucose uptake were observed.

Studies have suggested that elevated oxidative stress in obesity can be attributed to
diminished antioxidant systems [7,24]. Therefore, we evaluated CAT activity and GSH
concentration. CAT activity was reduced in the HFD group, compared to the control group.
NAC treatment increased CAT activity, compared to the HFD group. Abu El-Saad et al.
(2016) demonstrated that NAC was effective in elevating CAT activity in hepatic tissue [25].
Barbosa et al. (2013) induced CAT overexpression and observed a diminution in oxidative
stress and improved glucose uptake [26]. In the present study, we evaluated GSH levels.
GSH, one of the most important and potent antioxidants in the human body, protects
against oxidative stress, acting directly by neutralizing various free radical species or by
donating electrons to maintain the reduced form of other essential antioxidant enzymes,
such as glutaredoxin and glutathione peroxidase [27]. Obese mice showed reductions in
GSH levels, compared to the control group. As expected, NAC treatment increased GSH
levels, compared to the HFD group.
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The ratio of oxidized glutathione to reduced glutathione (GSSG/GSH) is typically used
to estimate the redox state of biological systems. A recent longitudinal study, performed
by Monzo-Beltran et al., analyzed the GSSG/GSH ratio in morbidly obese individuals
subjected to bariatric surgery. The authors observed that obese individuals showed an
increased GSSG/GSH ratio, compared to lean subjects [28]. Three months after bariatric
surgery, the GSSG/GSH ratio was significantly reduced and remained reduced for one
year after surgery. Obese children with insulin resistance demonstrated enhanced levels of
oxidative stress biomarkers, such as lipoperoxides and oxidized GSH, in conjunction with
stunted antioxidant response after oral glucose loading [29].

A persistent association has been acknowledged among increased adipogenesis,
chronic inflammation, and the generation of oxidative stress in the obese state [13]. Oxida-
tive stress stimulates the generation of inflammatory mediators, and inflammation, in turn,
enhances the production of reactive oxygen species. Thus, the protein levels of inflamma-
tory molecules, such as NFκB and JNK (Figure 3), were evaluated. NFκB protein levels
increased in obese mice, compared to the control group. NAC treatment reduced NFκB
protein levels (17.21%); however, significant differences were not observed. However, the
protein levels of JNK phosphorylation were greatly reduced after NAC treatment (63.5%),
compared to the obese group. As already described previously, the effects of NAC on
inflammatory molecules occurs independent of loss of adiposity (Figure 1d). Previous
studies observed that elevated levels of ROS activate JNK and NFκB in skeletal muscles [30]
and cellular culture [31]. Nouri et al. (2017) showed that NAC treatment in hepatotoxicity-
induced oxidative stress in mice was effective in reducing protein levels of inflammatory
molecules [32].

After verifying that obesity increases oxidative stress (Figure 2a) and inflamma-
tory molecules (Figure 3a,b), and that NAC treatment improves the parameters of these
molecules and increases insulin sensitivity (Figure 1f), we hypothesized that crucial
molecules involved in insulin signal transduction could be altered after NAC treatment.
In fact, IRS1 and Akt phosphorylation and IRS1/PI3k association increased after NAC
treatment (Figure 4). In the present study, NAC was effective in greatly increasing both IRS1
(101.2%) and Akt (122.9%) phosphorylation and IRS1/PI3K association (111.1%). One of the
targets of oxidative stress is the activation of multiple serine kinase cascades. These kinases
are implicated in the insulin signaling pathway, including the insulin receptor (IR) and
insulin receptor substrate (IRS) family of proteins. It has been reported that H2O2 inhibited
insulin-stimulated glucose transport [33,34]. The activation of different signaling pathways,
such as NFκB and JNK, appears to be sensitive to oxidative stress and is related to impaired
insulin action, suggesting that the paths play a role in oxidative stress-induced IR [33] In
adipocytes and muscle cell lines, it was observed that hydrogen peroxide (H2O2) reduced
insulin signaling and, consequently, glucose transport [35]. H2O2 may induce serine 307
phosphorylation in IRS1, leading to reduced IRS1 protein expression and increased IRS
proteolysis [36,37]. In addition to oxidative stress, pro-inflammatory cytokines, including
TNFα, can induce serine 307 phosphorylation, thereby. decreasing the interaction of IRS1
and IR, and impairing signal transduction in a similar manner.

Another important mechanism associated with insulin resistance at the molecular
level is the level of protein tyrosine phosphatase (PTP1B) [38,39]. In the present study,
obese mice presented greatly increased PTP1B protein levels, compared to the control
group. In vivo studies demonstrated increased insulin sensitivity and decreased resistance
in mice lacking the protein tyrosine phosphatase-1B gene [40]. In humans, single nucleotide
polymorphisms of protein tyrosine phosphatase 1B gene were associated with obesity
in morbidly obese French subjects [41]. Interestingly, NAC treatment markedly reduced
(72.35%) PTP1B levels (Figure 3c), suggesting that increasing protein tyrosine phosphatase
could be another (additional to inflammatory molecules) mechanism by which oxidative
stress may induce insulin resistance. The mechanism by which oxidative stress modulates
PTP1B levels needs further investigation; however, reducing inflammatory status appears
to be the way forward. Studies have shown that subclinical inflammation increased the
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activity of phosphatases, such as PTT1B, and it is the principal mechanism for reducing IR
and IRS [42–44]. Therefore, in the present study, NAC altered inflammation (Figure 3a,b)
and might have had an effect on PTP1B protein levels (Figure 3c), and, accordingly, IRS
phosphorylation (Figure 4a) and IRS/PI3k association (Figure 4b).

4. Materials and Methods
4.1. Animals and Treatment

Eighteen male 4-week-old Swiss mice were randomly divided into two groups. Six
mice were fed a standard diet, relative to calories, corresponding to approximately 3.3 kcal/g
(Puro Lab 22PB, Porto Alegre, Brazil), as follows: carbohydrate, 70%; protein, 20%; fat, 10%.
Twelve mice were fed a high-fat diet, relative to calories, corresponding to approximately
5.35 kcal/g (PragSoluções, Jaú, Brazil) for 12 weeks, as follows: carbohydrate, 26%; protein,
15%; fat, 59%,. After obesity and insulin resistance were established, the animals were re-
distributed into three experimental groups: control (CNT: standard diet without treatment;
n = 6), obese group (OB: obese mice without NAC treatment, n = 6), and obese group treated
with NAC (OB + NAC: obese mice with NAC treatment, n = 6). This study was approved
by the ethics committee of Extremo Sul Catarinense University, under protocol number
042/2016-2. The administration of NAC (Zanbon, São Paulo, Brazil) was performed daily
for 15 days via oral gavage. NAC was administered at a concentration of 50 mg/kg per
day in a total volume of 0.5 mL in a single dose [23].

4.2. Adiposity Index

After the experimental period, the animals were euthanized (decapitated) and the
epididymal, mesenteric, perirenal, and retroperitoneal adipose tissues were extracted and
weighed for the calculation of the adiposity index, expressed as the percentage of total
body weight (gram of fat/gram of total body weight × 100).

4.3. Food and Calorie Intake Measurement

A known amount of food (measured in in grams) was fed to the mice daily. Every
24 hours, the remaining amount of food was weighed. In this way, we were able to roughly
estimate the daily food intake of the mice by calculating the difference in the weight
of food in two consecutive days. The calorie intake was calculated by converting the
grams intake to calories, based on the data offered by the mouse chow provider. So, this
amount of measured food intake was multiplied by the nutritional information provided
by manufacturers.

4.4. Insulin Tolerance Test (ITT)

Fasting insulin tolerance test was conducted 24 h after the last NAC treatment. The
first blood collection represented the zero time of the test. Next, Humulin NPH insulin
(1 U/kg body weight) was injected intraperitoneally and blood samples were collected
through the tail at 5 min, 10 min, 15 min, 20 min, 25 min, and 30 min for the determination
of blood glucose. The constant rate of glucose decay (kITT) was calculated using the formula
0.693/t1/2. The t1/2 of glucose was calculated from the curve of least squares analysis of
serum glucose concentration during the linear decay phase.

4.5. Dichlorohydrofluorescein Diacetate (DCFH-DA)

Reactive species levels were measured, based on the oxidation of
2′,7′-dichlorodihydrofluorescein (DCF) acetate to the 2′,7′-dichlorodihydrofluorescein fluo-
rescent compound, as previously described [45]. The sample was incubated with 80 mM
DCF-DA at 37 ◦C for 15 min. DCF-DA was de-esterified within the cells by endogenous
esterases to free ionized acid, DCFH. DCFH was oxidized to DCF by reactive species. The
formation of this oxidized fluorescent derivative was monitored at excitation and emission
wavelengths of 488 and 525 nm, respectively. The production of reactive species was quan-
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tified using the standard curve of DCF. The results are expressed as units of fluorescence
per milligram of protein.

4.6. Catalase Activity (CAT)

Catalase (CAT) activity was measured by the rate of decrease in hydrogen peroxide
(10 mM) absorbance at 240 nm [46]. To determine catalase activity, tissue samples were
sonicated in 50 mM phosphate buffer, and the resulting suspension was centrifuged at
3000× g for 10 min. The supernatant was used for the enzyme assay. Enzyme activity is
expressed as units per mg of protein. One unit is defined as 1 µmol of reduced hydrogen
peroxide per minute.

4.7. Glutathione Reduced Levels (GSH)

Glutathione reduced levels (GSH) were determined according to the method described
by Hissin and Hilf [47], with modifications. GSH was measured in tissue homogenates
after protein precipitation with 10% trichloroacetic acid. An aliquot of each sample was
added to 800 mM phosphate buffer (pH 7.4) containing 500 mM DTNB. Color development
resulting from the reaction between DTNB and thiols reached a maximum in 5 min and
was stable for more than 30 min. Absorbance was determined at 412 nm after 10 min. A
standard curve, constructed using reduced glutathione, was used to calculate the GSH
levels in the samples. The results are expressed as units of fluorescence per milligram of
protein.

4.8. Protein Content

The protein content of muscle homogenates was determined using bovine serum
albumin as the standard. Folin phenol reagent was added to bind to the protein. The
bound reagent slowly reduced, changing from yellow to blue. Absorbance was measured
at 700 nm. The results are expressed in milligram.

4.9. Western Blot

The gastrocnemius muscles were extracted and immediately homogenized in a specific
buffer containing 1% Triton X-100, 100 mM Tris (pH 7.4), 100 mM sodium pyrophosphate,
100 mM sodium fluoride, 10 mM ethylenediaminetetraacetic acid (EDTA), 10 mM sodium
vanadate, 2 mM phenylmethylsulfonyl fluoride (PMSF), and 0.1 mg/mL aprotinin at 4 ◦C
using Polytron MR 2100 (Kinematica, Luzern, Switzerland). The homogenate was cen-
trifuged at 11,000 rpm for 30 min at 4 ◦C. The proteins were resuspended and stored
in Laemmli buffer, containing 100 mmol/L dithiothreitol (DTT), until analysis. Further
aliquots, containing 125 µg of proteins, were transferred to polyacrylamide gel. Elec-
trophoresis was performed in a Mini-PROTEAN® Tetra electrophoresis system (Bio-Rad,
Hercules, CA, USA), with an electrophoresis buffer solution. Proteins separated by SDS-
PAGE were transferred to nitrocellulose membranes using Mini Trans-Blot® Electrophoretic
Transfer Cell (Bio-Rad) equipment. The nitrocellulose membranes containing the trans-
ferred proteins were incubated in blocking solution for 2 h at room temperature to decrease
non-specific protein binding. Subsequently, membranes were incubated with the following
specific primary antibodies acquired from Cell Signaling Biotechnology (Beverly, MA,
USA): NFκB p65, PTP1B, JNK pThr-185/pTyr-183, JNK, IRS1 pTyr-895, PI3k, Akt, Akt
pSer-437, and β-actin. In sequence, the membranes were incubated in a solution containing
peroxidase-conjugated secondary antibody for 2 h at room temperature. Then, membranes
were incubated for 2 min with enzymatic substrate and exposed to RX film in a cassette for
development. The intensity and area of the bands were captured using a scanner and, then,
quantified through the Scion Image program (Scion Corporation, Frederick, MD, USA).
Original membranes were stripped and reblotted with β-actin as the control protein.
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4.10. Immunoprecipitation

Volumes of samples with 1 mg protein concentrations were used for immunopre-
cipitation with specific antibodies. The samples were incubated for 12 h at 4 ◦C under
continuous agitation. Then, protein A-Sepharose was added to all samples for precipita-
tion of the antigen/antibody complex and continuously agitated for another 2 h. After
centrifugation at 11,000 rpm for another 15 min at 4 ◦C, the supernatant was discarded and
the precipitated material was washed thrice with wash buffer. The precipitated proteins
were treated with Laemmli buffer, containing 100 mM DTT, heated in boiling water for
5 min, and centrifuged for 1 min. The samples were then electrophoresed on SDS-PAGE
and transferred to nitrocellulose membranes.

4.11. Statistical Analysis

The results are expressed as the mean ± standard error of the mean (SEM). The
differences between groups were evaluated using one-way analysis of variance (ANOVA),
followed by Tukey’s post hoc test. Any p values less than 0.05 were considered significant.
GraphPad Prism® version 7.0 for Windows was used for data analysis.

5. Conclusions

The results of this study demonstrated that oxidative stress-associated obesity could
be a mechanism involved in the process of insulin resistance. In addition, NAC seems
to improve the IR, independent of weight loss, and dependent on chronic low-grade
inflammation reduction.
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