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Abstract: A branched DNA-based electrochemical biosensor was designed to sensitively detect
specific nucleic acids. On this platform, novel a branched DNA with three sticky ends could be used
as a biosensor to sensitively and specifically detect nucleic acids. Meanwhile, we also employed
branched DNA-modified AuNPs as a signal amplifier to further improve the sensitivity. Branched
DNA sensors, target DNA, and DNA-modified AuNPs formed a sandwich structure to produce
an electronic signal for target DNA detection. The reaction primarily involved DNA hybridization
without bulky thermal cyclers and enzymes. We proved that the hybridization reaction easily occurred
under different conditions, such as the NaCl concentration, reaction time, pH, and temperature, except
for a pH lower than 4. The limit of detection could go as low as 0.09 pM (S/N = 3) with excellent
specificity and selectivity. There was a correlation curve relationship between the peak current and
the logarithm of the target DNA concentration (0.10 pM to 10 nM). The correlation coefficient reached
0.987. The electrochemical platform enables a branched DNA nanostructure to determine nucleic
acids for disease diagnosis.

Keywords: amplifier; branched DNA; diagnosis; detection; nucleic acids

1. Introduction

Nowadays, irregular concentrations of particular nucleic acids in the human body are
more closely associated with the occurrence and progress of different tumors and other
pathological conditions [1,2]. Therefore, particular nucleic acids could be employed as
biomarkers in early-stage tests of disease diagnosis [3,4]. The detection platform with
easy operation for self-diagnosis could effectively improve the survival and curative ratio
of patients in resource-limited settings, particularly those with tumors or cancers. Tradi-
tional numerical strategies had been built to detect nucleic acids with high specificity and
sensitivity, such as northern blotting [5], DNA microarrays [6], and quantitative RT-PCR
(qRTPCR) [7,8]. However, those strategies generally require bulky thermal cycles, enzyme
involvement, costly equipment, complex operation, time, and technical personnel. The
drawbacks meant it was impossible for these technologies to satisfy the public needs in
resource-limited areas for disease self-diagnostics. In order to overcome those defects, new
strategies had been developed to improve the performance of nucleic acid detection systems
for Point-of-Care testing, such as fluorescence [9], colorimetry [10], electrochemistry [11],
and DNA nanomaterials [12]. Due to their sensitivity and simple operation, electrochem-
ical biosensors are becoming increasingly important as signal detectors to detect nucleic
acids, with their rapid response and low cost, in several fields such as food safety [13],
environmental [14], and diagnosis [15]. The sensitive detection of specific nucleic acids
was challenging for nucleic acid-based diseases because of the low abundance of nucleic
acids in the real specimen. As for nucleic acid detection, the key to solving this problem
lies in amplification strategies, which could amplify the signal response. So far, numerous
technologies for nucleic acid amplification have been proposed to develop a platform for
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nucleic acid determination, such as loop-mediated isothermal amplification (LAMP) [16,17],
rolling circle amplification (RCA) [18], the ligase chain reaction (LCR) [19], and nucleic acid
sequence-based amplification (NASBA) [20]. However, the above systems suffer from strict
conditions for enzyme storage and catalytic conditions such as environmental temperature
and pH, making these systems not ideal for convenient detection. Thus, detection strategies
free from enzymes are attracting increasing attention.

DNA nanomaterials possess unique molecular programmability and nanoscale con-
trollability, which have been extensively employed in molecular detection [21–23]. Isother-
mal detection systems based on DNA assembly do not need an enzyme with a rapid
reaction. DNA nanotechnology has opened up new avenues for nucleic acid-based diagnos-
tics [22,24]. However, it is still urgently needed to further increase the sensitivity via simple
operation without enzymes for Point-of-Care testing in disease diagnostics. Herein, we
designed branched DNA as a probe and DNA-modified AuNPs as an amplifier to construct
a nucleic acid detection platform, which did not require any enzymes, via Watson–Crick
base pairing in isothermal conditions [25]. In this system, branched DNA was first modi-
fied on the surface of the electrode realizing the recognition, and DNA-modified AuNPs
simultaneously amplified the target nucleic acid signal. The two strategies based on the
branched DNA nanostructure would effectively improve the sensitivity for Point-of-Care
testing. The platform shows great promise in rapid nucleic acid detection with excellent
specificity and selectivity.

2. Results
2.1. Mechanism of the Electrochemical Biosensor for Nucleic Acids Determination

Our detection system involved two essential parts to effectively improve the sensitivity
of specific nucleic acid detection: Branched DNA (Y1-DNA)-based target DNA (T-DNA)
recognition and DNA (Y2-DNA)-modified AuNPs-based signal amplification (Figure 1a,b).
As illustrated in Figure 1a, we initially used three single-stranded DNA to synthesize
Y1/Y2-DNA as a probe with three sticky ends, respectively (Table S1). Y1-DNA with
multiple sticky ends was designed and prepared for T-DNA recognition. One sticky
end of Y1-DNA with the thiol group (-SH) was first assembled on the gold electrode
through the Au-S bond. The other two sticky ends of Y1-DNA were employed to capture
and recognize T-DNA via hybridization. In addition, Y2-DNA-modified AuNPs were
synthesized as an amplifier to improve the sensitivity. From Figure 1b,c, we can see that Y1
and Y2 DNA contained different sticky ends, and the sticky ends of Y1-DNA and Y2-DNA
were complementary with the 3′ end and the 5′ end of T-DNA, respectively (Figure 1b).
Through this special sequence design, T-DNA acted as a linker, hybridizing with the
complementary sticky ends of Y1-DNA and Y2-DNA, leading to the formation of a DNA
sandwich nanostructure for the detection system. To further improve the sensitivity, we
chose AuNPs as an amplifier to increase the T-DNA electronic signal. Therefore, partial
sequences of T-DNA can also hybridize with Y2-DNA-modified AuNPs. In brief, T-DNA
participated in the two reactions simultaneously. Partial sequences of T-DNA hybridized
with Y1-DNA and other partial sequences linked to Y2-DNA-modified AuNPs. In the
detection process, T-DNA was recognized and linked to Y1-DNA on the surface of the
electrode, and it was further linked to the amplifier of AuNPs-DNA to increase the signal.
The two reactions produced signal changes to achieve T-DNA detections. (Figure 1c). The
hybridization recognition processes of hybridization between Y1-DNA and T-DNA altered
the surface structure of the electrode, which affected the electro active surface area and
electron transfer [Fe(CN)6]3−/4−. Thus, the recognition process of T-DNA induced a peak
current change (Figure 1d). The redox reaction for Fe2+/3+, which was seen as an electronic
medium, could easily occur on the electrode surface. The resistance of the electrode surface
was enhanced owing to the non-conductivity of the complexes when binding of the target
DNA-induced DNA nanostructures changed their structure. This impeded the proton
transfer of iron ions on the electrode surface, leading to a decrease in the peak current. The
DPV voltammogram signal decreased when the T-DNA and the amplifier were added,
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which further proved the mechanism (Figure 1e). Meanwhile, the resistance of the electrode
increased with the T-DNA and the amplifier. These results also agreed with the CV and
DPV values of the electrodes (Figure 1f). All the above results verified the successful
preparation of the biosensor.
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Figure 1. (a) The schematic illustration for branched DNA (Y1 and Y2-DNA) synthesis. Y-DNA was
prepared by annealing three ssDNA. (b) The hybridization between probe and amplifier triggered
by T-DNA. (c) The assay platform based on branched DNA and AuNPs-branched DNA. (d) Cyclic
voltammetry responses, (e) DPV response, and (f) Nyquist plots. The solid lines a, b, c, d, and
e in (d–f) represented the signal from bare gold electrode, Y1-DNA-modified gold electrode, Y1-
DNA-modified gold electrode, and the detection of T-DNA, amplifier on the Y2-DNA modified gold
electrode in 0.1 M KCl solution containing 5 mM [Fe(CN)6]3−/4−].

2.2. Characterization of the Branched-DNA-Based Sensor

Since the branched DNA represent the key point for the fabrication of the sensor,
polyacrylamide gel electrophoresis was first performed to validate the successful synthesis
and structure of Y1-DNA and Y2-DNA. The mixture of three oligo DNAs was heated
to 90 ◦C for 5 min and then allowed to cool on ice for 15 min, subsequently placed for
20 min at room temperature to form Y1-DNA and Y2-DNA. Then the products were
injected into gel electrophoresis. Figure 2 shows that the Y1 and Y2-DNA band was
apparently retarded compared with the ssDNA bands (ssDNAa1, ssDNAb1, ssDNAc1,
ssDNAa2, ssDNAb2, and ssDNAc2). Since Y-DNA with a larger size and higher molecular
weight theoretically moved slower than the small fragments of ssDNA, these results
demonstrated that Y1-DNA and Y2-DNA were successfully synthesized. Meanwhile,
the result also illustrated the hybridization of Y1-DNA, Y2-DNA, and T-DNA. The high
molecular weight of hybridization between Y1-DNA, Y2-DNA, and T-DNA was closer to
the gel hole than other samples. It demonstrated that T-DNA could effectively link with
Y1-DNA and Y2-DNA.
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Figure 2. Confirmation of branched DNA formation by 12% polyacrylamide gel electrophoresis
analysis. Gel electrophoresis analysis of ladder, target DNA, ssDNAa1, ssDNAb1, ssDNAc1, ssDNAa2,
ssDNAb2, ssDNAc2, Y1-DNA, Y1-DNA + T-DNA, Y2-DNA, Y2-DNA + T-DNA, and Y1-DNA +
T-DNA + Y2-DNA from Lanes 1 to 13, respectively. The concentrations of ssDNA were all 1 M.

In our detection system, Y1-DNA and Y2-DNA-modified AuNPs were used as the
probe and amplifier to detect T-DNA, respectively. To effectively increase the sensitivity,
Y2-DNA was modified using AuNPs to further enhance the detection signal of T-DNA. We
first synthesized and characterized the Y2-DNA-modified AuNPs by UV-vis, dynamic light
scattering (DLS), and electrophoresis (Figure 3). As can be seen in Figure 3a, the absorbance
of AuNPs shifted from 520 nm to 524 nm after the modification of Y2-DNA, indicating that
Y2-DNA was successfully attached to the surface of AuNPs. Then, dynamic light scattering
(DLS) analysis was carried out to evaluate the diameter of AuNPs and DNA-modified
AuNPs. The diameter of DNA-AuNPs was 50 nm, which was much larger than that of
the bare AuNPs (12 nm) (Figure 3b). In addition, the gel electrophoresis analysis was
further performed to investigate the DNA-AuNPs. AuNPs did not move in agarose gel,
while DNA-modified AuNPs could move, owing to the link between DNA and AuNPs
(Figure 3c). It also proved that DNA had been linked with AuNPs. All the above results
show that the DNA-modified AuNPs were successfully prepared.
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2.3. Optimization of the Assembly of Branched DNA Hybridization

In our system, the hybridization reaction played an important role in the synthesis
of the probe, amplifier, and target nucleic acid detection. Meanwhile, the sensitivity of
the detection platform also depended on the hybridization between T-DNA and Y-DNA.
Therefore, the effects of various conditions on the assembly of Y1-DNA and Y2-DNA
were systematically evaluated, including different NaCl concentrations, hybridization
times, temperatures, and pH. As illustrated in Figures S1 and S2, a concentration of
0 to 120 mM effectively synthesized Y1-DNA and Y2-DNA, respectively. Further, the
synthesized reaction time required was only 5 min. In addition, there was a wide range
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of pH from 5 to 11, excluding pH lower than 3. The result showed that Y1-DNA and
Y2-DNA could be prepared in various temperatures from 4 ◦C to 85 ◦C. Figures S1 and S2
results demonstrated that the probe (Y1-DNA) and amplifier (Y2-DNA) could be easily and
conveniently synthesized in a moderate environment.

In addition, the hybridization conditions between T-DNA and Y1-DNA/Y2-DNA were
also optimized in detail. The hybridization molecules of T-DNA and Y-DNA remained
in the electrophoresis gel hole with smears in the lane, demonstrating the successful
formation of assembly DNA, which had higher molecular weight than Y-DNA under
different conditions (Figure 4), indicating the effectiveness of recognition and amplification
in different conditions, excluding pH lower than 3. We found that the hybridization
reactions were completed in a very short time (5 min), indicating that recognition and
amplification could be finished in a short period of time.
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2.4. Hybridization Sensitivity for T-DNA by the Branched DNA-Based Electrochemical Platform

To examine the sensitivity of a branched-DNA-based sensor, a series of different con-
centrations of T-DNA were detected via the above detection strategy. Firstly, quantitative
analysis based on the Y1-DNA probe was performed using DPV under the experimental
conditions (pH = 8.0, incubation time was 15 min) to validate the T-DNA detection. The
electrochemical sensor was incubated in PBS solutions with various T-DNA concentrations
for 15 min (Figure 5a). With T-DNA concentrations increasing from 0.1 pM to 10 nM, the
peak current values decreased accordingly. The results indicated that T-DNA was captured
by the Y1-DNA on the surface of the electronic chip, and the electron transition between
the electrode and the solution was impeded.

Moreover, we further evaluated the sensitivity of the detection platform using Y2-DNA-
modified AuNPs (Figure 5b). In comparison with only the Y1-DNA probe, the frequency
shifts of the combination method of Y1-DNA and Y2-DNA-modified AuNPs as an amplifier
were dramatically enhanced (Figure 5c), which indicates that the amplifier could effectively
increase the sensitivity of the detection platform for T-DNA. The curvilinear relationship
between the peak current and the logarithm of the T-DNA concentration was obtained with
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a range from 0.10 pM to 10 nM and a correlation coefficient of 0.987. The equation was
Y = −21.57 + 3.79 logC − 0.41 logC2. The limit of detection was 0.09 pM (S/N = 3).
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Figure 5. The analytical performance of the detection system based on Y1-DNA and Y1-DNA/Y2-
DNA-modified AuNPs. Sensitivity of DPV response for Y1-DNA (a) and Y1-DNA/Y2-DNA-modified
AuNPs (b) incubated with different concentrations of T-DNA from 0.1 pM to 10 nM and the rela-
tionship between the peak currents and the concentrations of T-DNA (c), (d) the linear relationship
between the peak currents and the concentration target.

2.5. Selectivity and Recovery Test of the Electrochemical Sensor

Owing to the nonspecific adsorption between the probe and interferents in complicated
samples, the interferents tended to influence the test results and even cause false positives.
Therefore, selectivity is a critical parameter for evaluating the accuracy of practical sam-
ple detection. Therefore, we selected five single-stranded DNA with similar structures
(non-relevant DNA, NR-DNA) as interferents to test the selectivity of the sensors. The
concentrations of T-DNA, NR-DNA1, NR-DNA2, NR-DNA3, NR-DNA4, and NR-DNA5
were all 0.1 µM. An appreciable signal was observed only when T-DNA was added to the
detection system, whereas no obvious changes were observed when other interfering DNA
strands were added (Figure 6). The results indicated that the detection platform was highly
selective to T-DNA. The results demonstrated that the NR-DNA samples had no effect on
the frequency of the electrochemical biosensor. However, T-DNA significantly decreased
the frequency signal, and it indicated that the detection platform had great specificity
for T-DNA.
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In order to test the accuracy of the branched DNA detection system for the real
samples, we prepared simulated samples to validate the recovery of the detection platform.
Simulated samples included NR-DNA and T-DNA. As shown in Table 1, the recovery for
T-DNA was in a range of 91.8% to 97.3%, which was within the acceptable range. The
results demonstrated that the constructed biosensing system for T-DNA detection was
feasible for application in specific signal strand DNA detection with high accuracy.

Table 1. Recoveries of electrochemical detection system for specific nucleic acids (n = 3).

Sample Add DNA Found DNA Recovery (%)

1 5 pM 4.59 pM 91.8
2 50 pM 48.63 pM 97.3
3 500 pM 486.26 pM 97.3

3. Materials and Methods
3.1. Reagents and Materials

All DNA oligonucleotides were synthesized and purified by Jinweizhi Biotechnology
Co., Ltd. (Tianjin, China), and their base sequences are listed in Table S1. 6-Mercaptan-
1-hexanol (MCH) was purchased from Aladdin (Shanghai, China). Agarose, Tris (2-
carboxyethyl) hydrochloride (TCEP), TAE buffer, TBE buffer and Tris (hydroxymethyl)
aminomethane (Tris-HCl) were purchased from Beijing Solarbio (Beijing, China). The
piranha solution comprised 98% H2SO4 and 30% H2O2. The ultrapure water was obtained
using the UPH water purification system (18.2 MΩ, UPH-I).

All electrochemical measurements were performed on a CHI660E electrochemical
workstation (Shanghai Chenhua Instruments, Shanghai, China) with a conventional three-
electrode system composed of platinum wire as an auxiliary, a saturated calomel electrode
as a reference, and a 2-mm-diameter gold electrode (GE) as a working electrode. Agarose
gel electrophoresis and polyacrylamide gel electrophoresis (PAGE) experiments were
performed on the electrophoresis apparatus (Beijing Liuyi, Beijing, China). Gel images were
recorded on an imaging system (JY04S-3C). Centrifugation was performed by a centrifuge
(Eppendorf, Germany).

3.2. Synthesis of Branched DNA and DNA Modified AuNPs

Branched DNA (Y1 DNA) structures were synthesized by mixing the same molar
amount of oligonucleotide strands, ssDNAa1, ssDNAb1, and ssDNAc1, in the 80 mM NaCl
solution [25]. Using the above method, we also used ssDNAa2, ssDNAb2, and ssDNAc2
to synthesize branched DNA (Y2 DNA), which was utilized to modify the AuNPs as
an amplifier.
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AuNPs were prepared according to the literature [26]. Briefly, 10 mL of 38.8 mM
trisodium citrate was added to 100 mL of a boiling 1 mM HAuCl4 solution and the color of
the solution changed from light yellow to deep red. After boiling for 20 min with constant
rapid stirring, the AuNPs solution was cooled to room temperature and stored at 4 ◦C.
After that, Y2 DNA was added to 3 mL of the AuNPs solution to produce DNA-modified
AuNPs. The mixtures were incubated at room temperature for 16 h. It was “aged” in
Tris buffer solution (pH = 8.2) and 1 M NaCl for another 24 h. Finally, the solution was
centrifuged twice at 9000 rpm for 40 min to remove free DNA. The red precipitates were
dispersed in Tris buffer.

3.3. Electrode Pretreatment

The gold electrode was soaked in the piranha solution for 10 min and then thoroughly
rinsed with ultrapure water to remove other substances. Then, the pretreated electrode was
immersed in 0.5 mL of the 0.1 µM thiolated capture probe (a1-DNA) solution for 12 h at
4 ◦C. After the electrode was rinsed and immersed in 0.5 mL of 1 mM MCH solution for 1 h
to block the non-specific binding site at room temperature, the electrochemical biosensor
was rinsed with ultrapure water and used for the following operation.

3.4. Target DNA Detection by the Electrochemical Biosensor

The Y1-DNA with the –SH group was first modified with electrodes to capture the
target DNA via hybridization between the end point of branched DNA and half of the target
DNA. Further, another half of the target DNA was hybridized with DNA-modified AuNPs.
All the hybridization reactions occurred in the 80 mM NaCl solution. Electrochemical
detection was performed in a potassium ferricyanide solution, which contained 5 mM Fe
(CN)6

3−/4− and 0.1 M KCl.

3.5. Gel Analysis of the Hybridization Reaction

The hybridization reaction was verified by 12% native polyacrylamide gel electrophore-
sis (PAGE) in 1× TBE buffer and a 3% agarose gel electrophoresis analysis of the conditional
optimization in 1× TAE buffer.

4. Conclusions

In conclusion, novel branched DNA-electrochemical sensors were designed to suc-
cessfully detect nucleic acids with DNA-modified AuNPs as an amplifier without thermal
cycles and enzymes. The platform could rapidly and sensitively detect specific nucleic
acids at the same temperature. In this system, the branched DNA1 used as probes had
multiple sticky ends to effectively improve the sensitivity of target nucleic acids, while,
DNA-modified AuNPs used as an amplifier could further increase the detection signal of
target DNA. Under optimum conditions, the limit of detection of this detection platform
could go as low as 0.09 pM. The correlation curve relationship was presented between the
peak current and the logarithm of target DNA concentration, which ranged from 0.10 pM
to 10 nM. Additionally, the electrochemical detection platform also exhibited excellent
selectivity with an expeditious response. Owing to the rapid reaction, simple operation,
and enzyme-free nature, the detection platform shows great promise in applications such
as genetic diseases, clinical molecular diagnostics, and forensic identification.
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