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Abstract: The efficient production of silkworm silk is crucial to the silk industry. Silk protein
synthesis is regulated by the juvenile hormone (JH) and 20-Hydroxyecdysone (20E). Therefore, the
genetic regulation of silk production is a priority. JH binding protein (JHBP) transports JH from the
hemolymph to target organs and cells and protects it. In a previous study, we identified 41 genes
containing a JHBP domain in the Bombyx mori genome. Only one JHBP gene, BmJHBPd2, is highly
expressed in the posterior silk gland (PSG), and its function remains unknown. In the present study,
we investigated the expression levels of BmJHBPd2 and the major silk protein genes in the high-silk-
producing practical strain 872 (S872) and the low-silk-producing local strain Dazao. We found that
BmJHBPd2 was more highly expressed in S872 than in the Dazao strain, which is consistent with
the expression pattern of fibroin genes. A subcellular localization assay indicated that BmJHBPd2
is located in the cytoplasm. In vitro hormone induction experiments showed that BmJHBPd2 was
upregulated by juvenile hormone analogue (JHA) treatment. BmKr-h1 upregulation was significantly
inhibited by the overexpression of BmJHBPd2 (BmJHBPd2OE) at the cell level when induced by JHA.
However, overexpression of BmJHBPd2 in the PSG by transgenic methods led to the inhibition of silk
fibroin gene expression, resulting in a reduction in silk yield. Further investigation showed that in the
transgenic BmJHBPd2OE silkworm, the key transcription factor of the JH signaling pathway, Krüppel
homolog 1 (Kr-h1), was inhibited, and 20E signaling pathway genes, such as broad complex (Brc),
E74A, and ultraspiracle protein (USP), were upregulated. Our results indicate that BmJHBPd2 plays an
important role in the JH signaling pathway and is important for silk protein synthesis. Furthermore,
our findings help to elucidate the mechanisms by which JH regulates silk protein synthesis.

Keywords: juvenile hormone; juvenile hormone binding protein; silk protein; Bombyx mori

1. Introduction

The juvenile hormone (JH) plays a key role in insect development, metamorphosis,
and reproduction [1,2]. Juvenile hormone binding protein (JHBP) is the first key factor in
the JH signaling pathway. The JHBP or JH-JHBP complex is a vital member of the intricate
JH signaling transmission chain that binds to membrane receptors [3,4]. It broadens
our understanding of the crucial factors involved in the JH signaling pathway and its
mode of action in target organs and has far-reaching importance in pest control and other
practical applications.

JH is a hemiterpenoid compound secreted by the corpora allata [5]. JHBP is a carrier
protein that works in the hemolymph and cells. This protein transports hormone molecules
from the JH synthesis site in the corpora allata to the peripheral target cells and assists JH
molecules in entering the circulatory system. JHBP can also reduce the non-specific binding
of JH [6], protecting it from enzymatic degradation [7,8]. Intracellular JHBP can be divided
into cytoplasmic and nuclear JHBP, which are both involved in the effects of JH on target

Int. J. Mol. Sci. 2023, 24, 12650. https://doi.org/10.3390/ijms241612650 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241612650
https://doi.org/10.3390/ijms241612650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms241612650
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241612650?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 12650 2 of 13

genes. However, to date, the progress of related research has been relatively slow [9,10].
The expression level of JHBP, which was found to be predominant in the fat body of the
bamboo borer, was average from the third to the fifth stages. The expression level was the
highest at the early diapause stage, which continued until the middle diapause stage and
then decreased until the pupae stage [11]. In melon aphids, RNA interference has been
used to silence the expression of JHBP and block the transmission of JH signals, resulting
in mortality and thus allowing effective pest management [12]. Proteomic analysis of male
accessory gland secretions has shown that JHBPs affect female reproduction in oriental fruit
flies [13]. Therefore, these studies prove that JHBP is involved in metabolism, growth, and
reproduction. The JHBPs from this gene family are found in many lepidopteran species and
form a separate group from other genes [14,15]. To date, studies on the JHBP have focused
on many lepidopteran insects, including the tobacco hornworm (Manduca sexta) [16,17],
tobacco budworm (Heliothis virescen) [7,18], greater wax moth (Galleria mellonella) [19], and
silkworm (Bombyx mori) [20,21].

The domesticated silkworm is a typical lepidopteran holometabolous insect model
organism. As a natural protein fiber, the use of silk has been applied in many fields [22].
Silkworm silk glands primarily synthesize and secrete two types of silk proteins, namely
fibroin and sericin. Fibroin is composed of a heavy (Fib-H) and light (Fib-L) chain, and
glycoprotein 25 kDa (P25) is synthesized in the posterior silk gland (PSG) [23,24]. Previous
studies have found that increasing the amount of silk protein, injection, smearing, and
feeding on exogenous JH or JH analogs (JHAs) can prolong the larval stage of silkworms
and increase the RNA and DNA contents of the silk protein gene [25–28]. The mechanism
of action behind this remained unclear until recent results showed that Krüppel homolog
1 (Kr-h1) is involved in the repression of metamorphosis. In transgenic silkworms with
Kr-h1 overexpression, the silk glands were significantly enlarged [29]. Furthermore, JH
induces extended expression of the Bmfib-H gene, and BmKr-h1 may suppress larvae–pupae
metamorphosis by activating the expression of B. mori-derived dimmed (Bmdimm). Bmdimm
is a transcription factor involved in the regulation of silk gene transcription that activates
the transcription of the Bmfib-H gene in B. mori posterior silk gland (PSG) cells [30].

In previous studies, 41 JHBP genes were identified in silkworms, which contained
conserved structures of the binding proteins of JH. Microarray data have shown different
JHBP gene expression trends in silkworms. The expression of BmJHBP genes was generally
higher in the head, integument, midgut, fat body, testes, and ovaries. Expression levels also
differed among different tissues. The PSG had a specific and high expression of JHBPd2 [21].
Our study aimed to investigate the role of JHBPd2 in silk protein synthesis.

2. Results
2.1. Expression of BmJHBPd2 in Different Silk-Producing Strains

After many years of natural selection and artificial domestication, significant differ-
ences in silk production exist among different strains of silkworms. To analyze the mRNA
levels of BmJHBPd2 among different strains, the high-silk-producing practical strain 872
(S872) and low-silk-producing local strain Dazao were selected for further analysis to as-
certain the differences between the strains. This study investigated the indicators of four
main characteristics of S872 and Dazao. The pupae and cocoons of S872 were substantially
larger than those of the Dazao strain (Figure S1A). The whole cocoon weight, pupae, and
cocoon weight, particularly the shell weight percentage of S872, were significantly higher
than those of Dazao (Figure S1B). Considering the high efficiency of silk protein synthesis
by the silk glands of fifth instar larvae, the expression levels of genes in the PSG were
investigated. In this study, we determined the expression levels of major silk protein genes
using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR).
Bmfib-H, Bmfib-L, and BmP25 were specifically expressed in the PSG. The transcript levels of
Bmfib-H and Bmfib-L were higher in the S872 PSG than in that of Dazao at the third and fifth
day of the fifth instar (Figure 1A,B). BmP25 was expressed at the same level in both strains
(Figure 1C). Differences in the BmJHBPd2 expression were also analyzed. The transcript
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level of BmJHBPd2 in the S872 PSG was higher than that in Dazao on the third and fifth day
of the fifth instar. The expression level of BmJHBPd2 in S872 on the fifth day of the fifth
instar was significantly higher than that in Dazao (Figure 1D). These results suggest that
BmJHBPd2 may be involved in silk protein synthesis.
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Figure 1. The expression of BmJHBPd2 was different in the PSG among the two silk-producing strains
Dazao and S872. (A–D). Relative Bmfib-H, Bmfib-L, BmP25, and BmJHBPd2 mRNA levels in the PSG of
Dazao and S872 larvae on the 3rd and 5th day of the fifth instar as analyzed by real-time quantitative
reverse transcription polymerase chain reaction (qRT-PCR). BmRpl3 was used as an internal control.
The results are expressed as means ± standard deviation (SD) of three independent experiments;
* p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant.

2.2. Overexpression of BmJHBPd2 at the Cellular Level

JH regulates silk protein synthesis, and JHBP plays an important role in JH regulation
as a vital response factor. To further explore how BmJHBPd2 is involved in silk protein
synthesis, the expression of the genes associated with the silk protein synthesis and those
related to the JH signaling pathway in the exogenous JH induction were analyzed at the cel-
lular level. First, the BmJHBPd2 subcellular localization vector was constructed (Figure 2A).
Immunofluorescence experiments showed that FLAG-tagged BmJHBPd2 was localized
in the cytoplasm (Figure 2B). This result is consistent with that reported by Li et al. [21]
and implies that BmJHBPd2 cannot be secreted and plays a physiological role in cells.
The qRT-PCR analysis at the nucleic acid levels and Western blotting at the protein levels
showed that the intracellular overexpression of BmJHBPd2 was successful (Figure 3A).
BmE cells contain the signal transduction pathway for JH [30]. When adding JHA to
BmE cells, the expression of BmJHBPd2 was significantly upregulated. Furthermore, JHA
significantly upregulated the expression of the early response factor BmKr-h1, suggesting
that JHA significantly activated the JH downstream signaling pathway (Figure 3B). When
only BmJHBPd2 was overexpressed, Bmkr-h1 was nearly unexpressed, and there was no
change in the expression of the B. mori methoprene-tolerant 1 (BmMet1) gene (Figure 3C).
However, the upregulated expression level of BmKr-h1 in pSLfa1180-basic was higher than
that in pSLfa1180-BmJHBPd2 (Figure 3D). These results infer that the excessive expression
of BmJHBPd2 in the transfected cells reduced the amount of JH and then lowered the
expression of Bmkr-h1, since the overexpression of BmJHBPd2 may be sufficiently high,
as shown in Figure 3A, even though the expression of Bmkr-h1 in Figure 3B increased. In
addition, the expression of Bmfib-H was not detected in all experiments using BmE cells;
this may have been caused by the lack of transcription factors specific to silk protein genes
in the cells.



Int. J. Mol. Sci. 2023, 24, 12650 4 of 13

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 14 
 

 

the expression of Bmkr-h1, since the overexpression of BmJHBPd2 may be sufficiently 
high, as shown in Figure 3A, even though the expression of Bmkr-h1 in Figure 3B in-
creased. In addition, the expression of Bmfib-H was not detected in all experiments using 
BmE cells; this may have been caused by the lack of transcription factors specific to silk 
protein genes in the cells. 

 
Figure 2. Overexpression of BmJHBPd2 in BmE cells. (A). Structural map of subcellular-localized 
overexpression of the BmJHBPd2 vector. (B). Immunofluorescence experiment of BmJHBPd2 in BmE 
cells. 

 
Figure 3. BmJHBPd2 responds to juvenile hormone analogs (JHAs) in BmE cells. (A). Overexpression 
of BmJHBPd2 in BmE cells assayed by qRT-PCR and Western blotting using the flag tag antibody 
and tubulin as a control. (B). Expression of BmJHBPd2, Bmfib-H, BmKr-h1, and BmMet1 after adding 
JHA or DMSO to normal BmE cells. (C). Expression of Bmfib-H, BmKr-h1, and BmMet1 after overex-
pression of BmJHBPd2 assayed without adding JHA. (D). Bmfib-H and BmKr-h1 expression level in 

Figure 2. Overexpression of BmJHBPd2 in BmE cells. (A). Structural map of subcellular-localized
overexpression of the BmJHBPd2 vector. (B). Immunofluorescence experiment of BmJHBPd2 in
BmE cells.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 14 
 

 

the expression of Bmkr-h1, since the overexpression of BmJHBPd2 may be sufficiently 
high, as shown in Figure 3A, even though the expression of Bmkr-h1 in Figure 3B in-
creased. In addition, the expression of Bmfib-H was not detected in all experiments using 
BmE cells; this may have been caused by the lack of transcription factors specific to silk 
protein genes in the cells. 

 
Figure 2. Overexpression of BmJHBPd2 in BmE cells. (A). Structural map of subcellular-localized 
overexpression of the BmJHBPd2 vector. (B). Immunofluorescence experiment of BmJHBPd2 in BmE 
cells. 

 
Figure 3. BmJHBPd2 responds to juvenile hormone analogs (JHAs) in BmE cells. (A). Overexpression 
of BmJHBPd2 in BmE cells assayed by qRT-PCR and Western blotting using the flag tag antibody 
and tubulin as a control. (B). Expression of BmJHBPd2, Bmfib-H, BmKr-h1, and BmMet1 after adding 
JHA or DMSO to normal BmE cells. (C). Expression of Bmfib-H, BmKr-h1, and BmMet1 after overex-
pression of BmJHBPd2 assayed without adding JHA. (D). Bmfib-H and BmKr-h1 expression level in 

Figure 3. BmJHBPd2 responds to juvenile hormone analogs (JHAs) in BmE cells. (A). Overexpression
of BmJHBPd2 in BmE cells assayed by qRT-PCR and Western blotting using the flag tag antibody and
tubulin as a control. (B). Expression of BmJHBPd2, Bmfib-H, BmKr-h1, and BmMet1 after adding JHA
or DMSO to normal BmE cells. (C). Expression of Bmfib-H, BmKr-h1, and BmMet1 after overexpression
of BmJHBPd2 assayed without adding JHA. (D). Bmfib-H and BmKr-h1 expression level in BmE cells
overexpressing BmJHBPd2 after adding JHA. The experiments of (B–D) were assayed using qRT-PCR,
and BmRpl3 expression was used as an internal control. Results are expressed as the means ± S.D. of
three independent experiments. *** p < 0.001; ns, not significant.
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2.3. Transgenic Overexpression of BmJHBPd2 in the Silk Gland

To further explore the biological function of BmJHBPd2 in the silk gland, a piggyBac
transgenic vector containing a combination of BmJHBPd2 and a Myc foreign label with
the Fib-L promoter, Fib-L terminator, and pBac [3xP3 EGFP] was constructed (Figure 4A).
The vector and helper plasmids were injected into 271 pre-blastoderm eggs, of which
136 hatched and developed to the adult stage. An EGFP-positive brood was obtained and
used to establish the transgenic overexpression line (Figure 4B). Then, we obtained four
positive G2 generations, and the results of the investigations on all four G2 generations
showed that the synthesis of silk proteins was affected. One G3 generation was conserved
and continued to be reared and investigated, and the result remained the same. The mRNA
levels of BmJHBPd2 in the PSG of larvae on the third day of the fifth instar larvae (L5D3) of
the transgenic and wild-type (WT) lines were detected using qRT-PCR. The result showed
that BmJHBPd2 levels were substantially higher in the transgenic line than that in the WT
line (Figure 4C). To confirm whether BmJHBPd2 with a Myc-tag was synthesized in the
transgenic line, proteins were extracted from the PSG of L5D3 for Western blotting. The
signals with the Myc antibody were only detected in the transgenic line (BmJHBPd2OE) but
not in the WT line (Figure 4D). These results indicated that BmJHBPd2 was overexpressed
in the PSG.
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Figure 4. Overexpression of BmJHBPd2 in the posterior silk gland. (A). Schematic diagram of carrier
construction. (B). Screening of transgenic moths; transgenic-positive individual moths under white
light and green fluorescence. (C). Overexpression of BmJHBPd2 assayed using qRT-PCR; BmRpl3 was
used as an internal control. (D). Detection of BmJHBPd2 at the protein level using a Myc tag antibody
and tubulin as a control. Results are expressed as means ± S.D. of three independent experiments.
*** p < 0.001.

2.4. Overexpression of BmJHBPd2 Affects Silk Synthesis and Silk Yield

This study investigated the strain overexpressing the BmJHBPd2 gene obtained above,
predominantly focusing on the silk gland and yield of fifth instar larvae. The BmJHBPd2OE
line was raised to the L5D3 stage, and its silk glands were dissected and observed. There
was no pronounced difference in the biological characteristics of the silk glands (Figure 5A).
However, we found that the overexpression of BmJHBPd2 resulted in thinner and smaller
cocoon shells than those in the WT lines (Figure 5B). Further observation of the cocoon shells
of the two lines showed that the whole cocoon weight, cocoon weight, pupae weight, and
cocoon shell rate were significantly reduced in the BmJHBPd2OE line (Figure 5C–F). Based
on these differences in cocoon shells between the BmJHBPd2OE line and WT line, we chose
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the L5D3 stage to determine the mRNA levels of silk protein-related transcription factors
and silk fibroin genes in both lines. Among the silk fibroins tested, Bmfib-H and Bmfib-L were
significantly downregulated at the L5D3 in the BmJHBPd2OE line (Figure 5G,H), except
for BmP25, which did not differ significantly between the two lines (Figure 5I). Among the
silk-related transcription factors, the expression of Bmsage and Bmdimm was significantly
downregulated in the BmJHBPd2OE line (Figure 5J,K). However, the expression of Bmsgf-1
was significantly upregulated (Figure 5L). These results indicate that this study successfully
overexpressed the BmJHBPd2 gene, although the expression of the silk fibroin gene and silk
fibroin-related transcription factors in the BmJHBPd2OE line was significantly reduced,
which affected the silk yield.
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the fifth instar and cocoon of the BmJHBPd2OE and WT lines. (G–L). Expression of silk fibroin
protein gene and silk protein transcription factor in the WT and transgenic lines. BmRpl3 expression
was used as a control. Results are expressed as means ± S.D. of three independent experiments.
** p < 0.01; *** p < 0.001; ns, not significant.

2.5. Overexpression of BmJHBPd2 Led to Repression of Silk Synthesis by Inhibiting Bmkr-h1
Expression in the Silk Glands

JHBPd2 affected the expression of Kr-h1 in the JH pathway at the cellular level. There-
fore, the major JH regulatory pathway genes were investigated in the silk glands of the
BmJHBPd2OE and WT lines. According to qRT-PCR, the relative expression level of
the early response factor, BmKr-h1, in the JH pathway was significantly reduced in the
BmJHBPd2OE line (Figure 6A). JH receptors, such as Met1, methoprene-tolerant 2 (Met2),
and steroid receptor co-activator (SRC), were also downregulated (Figure 6C,D). The key
enzymes of the JH metabolic pathway, JH esterase (JHE), and JH epoxide hydrolase (JHEH),
were significantly downregulated (Figure S2A,B). Therefore, both the major genes in the
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JH pathway and the JH-degrading enzymes were downregulated, indicating that the JH
pathway was affected by overexpression of BmJHBPd2.
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Kr-h1 can directly inhibit the biosynthesis of 20-hydroxyecdysone (20E) and the expres-
sion of some early transcription factors in 20E [31]. Therefore, the expression of some early
transcription factors in 20E was investigated. This study found that the early transcription
factor B. mori broad complex (BmBrc) of 20E was significantly upregulated (Figure 7A).
The relative expression levels of E74A and ultraspiracle protein (USP) were significantly
upregulated in the BmJHBPd2OE line (Figure 7B,C). Meanwhile, those of the ecdysteroid
receptor (EcR), hormone receptor 3 (HR3), and E75A did not differ significantly between the
two lines (Figure 7D–F). These results suggest that overexpression of BmJHBPd2 increases
the expression of early transcription factors in the 20E signaling pathway.
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signaling pathway in silk glands assayed using qRT-PCR. The following 20E signaling pathway–
related genes were selected: Brc (A), E74A (B), USP (C), EcR (D), HR3 (E), and E75A (F). BmRpl3
was used as a control. Results are expressed as means ± S.D. of three independent experiments.
** p < 0.01; ns, not significant.

3. Discussion

The most valuable aspect of silkworm studies is the potential for increased production
of silk [22]. In order to increase silk production, it is important to understand the process of
silk protein synthesis [32]. In our study, we found a correlation between BmJHBPd2 and
silk protein gene expression and silk yield. At the cellular level, BmJHBPd2 was induced
by JHA and suppressed JH signaling by inhibiting the expression of Bmkr-h1. Individual
experiments showed that overexpression of BmJHBPd2 promoted the expression of 20E-
related transcription factors by inhibiting the expression of Bmkr-h1, thereby decreasing the
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expression of silk protein genes and silk production. Our results indicate that BmJHBPd2
plays an important role in regulating JH signaling in silk glands. Simply increasing the
expression of JHPBd2 does not increase silk yield; rather, silk protein synthesis is inhibited.
Our research provides a reference for future genetic modifications to improve silk yield.

As a specific carrier of the endocrine hormone JH in silkworms, JHBP protects and
transports synthesized and secreted JH from the corpora allata [6]. Given that the organs
are used for silk protein synthesis and secretion, silk glands grow rapidly during the fifth
instar. Although JH has been found to be largely absent from the blood of fifth instar
silkworms [33], to date, there have been no reports on whether the silk glands of fifth instar
silkworms contain JH. Based on the functional studies, the findings of this study suggest
that the silk glands of fifth instar silkworms are likely to contain JH and that JHBPd2 may
play a role in regulating the concentration gradient of JH in the functioning of silk glands.
The rationale is that the overexpression of JHBPd2 alone in the PSG increases its protein
production, and JH entering the silk gland without reaching the JH concentration in the
blood binds to the overexpressed JHBPd2. This can result in a decrease in free JH in the
silk gland, which, in turn, reduces the expression of Kr-h1. As a key transcription factor
connecting the JH and the 20E pathways, Kr-h1 can directly inhibit the biosynthesis of
20E [31], thereby inhibiting insect growth. Kr-h1 also directly binds to the Kr-h1 binding site
(KBS) elements of E93, Brc, and E75 promoters to inhibit their expression [34–37]. During
crosstalk between the JH and 20E pathways, Kr-h1 is located upstream of the 20E pathway
genes and inhibits their expression. The 20E transcription factors, such as Brc, strongly
repress silk protein synthesis [38]. Consequently, the expression of silk proteins is reduced,
which then leads to decreased silk yield.

The expression pattern of the JHBPd2 gene is highly similar to that of the silk fibroin
gene, both of which are highly expressed at the fifth instar stage and are mainly expressed
in the PSG. This indicates a close relationship with silk fibroin synthesis [39]. The larval
stage of silkworms was found to be positively correlated with the silk yield [40,41]. The
expression of JHBPd2 was significantly higher in high-silk-yield varieties than in low-
silk-yield varieties, and there was a positive correlation between its expression and silk
yield. However, the overexpression of JHBPd2 was found to inhibit silk yield. This
study also conducted an in-depth analysis of this issue. This contradictory results suggest
that JHBPd2 plays a role in the regulation of JH concentration. The larval stage of high-
silk-yield S872, especially at the end of the fifth instar, is 2–3 days longer than that of
the low-silk-yield variety Dazao. This suggests that S872 contains more JH than Dazao
in vivo, which can be inferred from applying JH to the silkworm body surface, prolonging
the developmental time of the silkworm [30]. With more JH in the high-silk-yield S872,
there is a corresponding increase in JH content in the silk gland, which requires more
JHBPd2 protein to bind and protect JH. Therefore, the silk glands of the high-silk-yield
S872 have more time to synthesize more silk protein and, thus, produce more silk. After
the overexpression of BmJHBPd2, because the JH signaling pathway in the silkworm was
affected, the balance of JH concentration in the silk gland was disrupted, which inhibited
silk protein synthesis. Our results also indicate that simply changing a gene that is positively
associated with silk production may not improve silk yield. Silk yield is a quantitative
trait controlled by multiple genes. Varieties with high silk yields can result from artificial
selection, which is the result of the synergistic regulation of multiple genes. Altering only
one gene, such as JHBPd2 in this study, may disrupt homeostasis in vivo, which, in turn,
inhibits silk protein synthesis. Therefore, further research is required to determine how to
improve silk production through genetic manipulation. Further research on the regulatory
mechanism of silk protein synthesis is expected to identify the most critical factors affecting
silk protein synthesis.

In this study, we did not measure JH in the silk glands of the JHBPd2OE line due
to limited material availability; however, we performed JH assays on normal silk gland
tissues and found that silk glands contained JH. We propose the following regarding the
expression of BmJHBPd2 in the PSG (Figure 8). JH is transported into PSG cells from the
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hemolymph early in the fifth instar stage. Free JH then binds to the nuclear receptor BmMet
and forms a complex with BmSRC [42]. This complex activates the expression of BmKr-h1
and, subsequently, the expression of the transcription factor Bmdimm to regulate Bmfib-
H [30]. Simultaneously, JH induces the upregulated expression of BmJHBPd2 (Figure 3B).
Cytoplasmic BmJHBPd2 can bind to redundant JH and slowly release it to maintain the
JH level, which continuously regulates gene expression for silk synthesis. Therefore, there
are two potential sources of JH in the silk glands, one of which possibly originates from
the blood. There is a consensus that JH is released into the blood after synthesis by the
pharyngeal lateral body and that JH in the blood is bound by JHBP and transported to
various tissues and organs. However, it is difficult to understand that at the fifth instar,
JH is essentially undetectable in the blood. Therefore, it is unlikely that other tissues and
organs contain JH. However, at the early age of the fifth instar, JH is likely synthesized
by the corpora allata and then transported to other tissues and organs after being bound
by JHBP in each organ. Here, JHBP functions as a sponge, which slowly releases JH and
regulates the growth and development of each tissue and organ. The issue of the catch and
release should be addressed in future research. However, the silk gland may synthesize
JH independently. Although the corpora allata is the main JH-synthesizing organ, the
possibility that other tissues and organs may synthesize JH cannot be excluded. In addition,
a substantial number of JH synthesis enzymes have been detected in silk glands. Further
confirmation of this is required.
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Figure 8. Function prediction model of BmJHBPd2 in the PSG. JH is transported into PSG cells from
the hemolymph and functions in two ways. 1©: Free JH binds to the nuclear receptor BmMet and
forms a complex with BmSRC. ×: Free JH degradation in cytoplasm. 2©: Cytoplasmic BmJHBPd2 can
bind to redundant JH and slowly release it to maintain the JH level. And then, JH enters the nucleus
and binds to the nuclear receptor BmMet and forms a complex with BmSRC.

4. Materials and Methods
4.1. Silkworm Strains and Cell Culture

Bombyx mori, the low-silk-producing strain Dazao, and the high-silk-producing strain
872 (S872), were provided by the State Key Laboratory of Silkworm Genome Biology,
Southwest University in Chongqing, China. Silkworm eggs were cultured at a standard
temperature of 25 ◦C under 12 h light and 12 h dark cycle conditions. The larvae were reared
with fresh mulberry leaves with 75% relative humidity. The B. mori cell line, BmE [43],
originally derived from embryo cells and was maintained at 27 ◦C in Grace’s medium
supplemented with 10% FBS (HyClone, San Angelo, TX, USA).
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4.2. RNA Preparation and Quantitative Real Time-PCR (qRT-PCR)

Total RNA was extracted from the cells and silk glands using TRIzol™ reagent (Invitro-
gen, Waltam, MA, USA). The GoScrip™ Reverse Transcription system (Promega Madison,
WI, USA) was used for RT-PCR. The semiquantitative RT-PCR conditions were as follows:
95 ◦C for 10 s, followed by 25 cycles at 95 ◦C for 10 s, 55 ◦C for 15 s, 72 ◦C for 1 min, 72 ◦C
for 7 min, and then maintained at 16 ◦C. Reverse transcription was performed using the
PrimeScript™ RT reagent Kit with gDNA Eraser (Takara, Shiga, Japan). Quantitative PCR
was performed using SYBR® Premix Ex Taq™ II (Takara) and qPCR reaction under the
following conditions: 95 ◦C for 10 s, followed by 40 cycles of treatment at 95 ◦C for 5 s,
and 60 ◦C for 31 s. The silkworm ribosomal protein L3 (BmRpl3) was used as the internal
marker gene. Three independent replicates were performed for each experiment.

4.3. Subcellular Localization

Primers for amplifying the ORF of BmJHBPd2 are listed in Table S2. Target fragments
were obtained by gel purification and cloned into an pSLfa1180 (pSLfa1180-A4-EGFP-
SV40) expression vector (maintained in our laboratory) between BamHI and NotI sites.
Highly purified plasmid DNA was prepared using Qiagen Plasmid Midi kits (Qiagen,
Dusseldorf, Germany). For the subcellular localization assay of silkworm BmJHBPd2,
BmE cells were seeded onto coverslips in 24-well plates. After 12 h of culture, pSLfa1180-
Basic, pSLfa1180-A4-EGFP, and pSLfa1180[A4-EGFP-BmJHBPd2-SV40] were separately
transfected into BmE cells at 1 µg per well. Cells were transfected with expression plasmids
using the X-tremeGENE HP DNA Transfection Reagent (Roche Applied Science, Penzberg,
Germany). After transfection for 48 h, cells were fixed for 10 min at room temperature with
4% (v/v) formaldehyde in PBS. They were then blocked for 30 min in PBS containing 0.1%
(w/v) BSA and 5% (v/v) goat serum. The samples were treated with a primary antibody
(anti-FLAG monoclonal M2 mouse (Sigma-Aldrich, St. Louis, MO, USA)) for 1 h before
being incubated with a secondary antibody (anti-mouse Alexa 488) for 30 min at room
temperature. The samples were then mounted using a mounting medium containing 4,6-
diamidino-2-phenylindole (DAPI) and photographed using a confocal microscope (FV1000;
Olympus, Tokyo, Japan).

4.4. Western Blotting

Radio-immunoprecipitation assay (RIPA) lysis buffer (Beyotime, Shanghai, China)
was used to extract proteins from the cells and the PSG. The lysate was divided evenly
and then centrifuged for 5 min at 12,000× g. Protease inhibitors were then added to the
supernatants. Protein concentrations were measured using a bicinchoninic acid (BCA)
protein assay kit (Beyotime, Shanghai, China). The proteins were separated using 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
onto a polyvinylidene difluoride (PVDF) membrane (Roche, Basel, Switzerland). The
PVDF membrane was blocked using 5% skimmed milk overnight at 4 ◦C and incubated
with a primary antibody against BmJHBPd2 (1:10,000) for 2 h at 37 ◦C. After washing the
PVDF membrane six times at 5 min intervals, the membranes were incubated with the
secondary antibody goat anti-rabbit IgG (1: 20,000), labeled with horseradish peroxidase
(HRP) (Sigma-Aldrich, St. Louis, MO, USA), and visualized with SuperSignal™ West
Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific, Waltham, USA) using the
automatic exposing pattern of Genome XRQ (Gene Company, Hong Kong, China).

4.5. Statistical Method for Cocoon Layer Proportion

The whole cocoon was weighed and then gently peeled; following this, the pupa was
removed, the epidermis was shed, and the remaining cocoon was then weighed again.
The ratio of this weight to the whole cocoon weight was determined as the cocoon layer
ratio, which was measured in each of 15 individuals of transgenic and wild-type silkworms
of Dazao.
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4.6. Plasmid Construction to Obtain Transgenic Silkworms

To construct the transgenic overexpression lines, we used the pBac [3xp3-EGFP] system.
JHBPd2 was driven by the PSG-specific Fib-L promoter to obtain the pBac [3xp3-EGFP-
Fib-L-BmJHBPd2-myc] (Figure 4A). The target gene, BmJHBPd2, was amplified by PCR
using cDNA from the silk gland tissue of the Dazao cultivar, using that of the third day
of the fifth instar as the template. The 5’ end of BmJHBPd2-F was selected to add the
BamH I (Takara, Tokyo, Japan) restriction endonuclease site. The 5’ end of BmJHBPd2-R
was selected to add the NotI (Takara) restriction endonuclease site and Myc foreign label
sequence for amplification. Full-length PCR products were digested with BamHI and NotI
and connected to the 1180 vector skeleton with the Fib-L promoter to construct the psl1180
[FibL-BmJHBPd2-myc] expression vector. The AscI (Takara) enzyme was used to digest the
psl1180 [FibL-BmJHBPd2-myc] carrier and pBac [3xp3-EGFP] vector. Solution I (Takara) was
used to construct an overexpression vector. The primers used to construct the plasmids are
listed in Table S1 of the Supplementary Materials.

4.7. Silkworm Germline Transformation

For silkworm germline transformation, the ultrapure plasmid of BmJHBPd2 overex-
pression transgenic vector and helper plasmid were mixed at a 1:1 volume ratio, and the
final concentration for embryo injection was 300–500 ng/µL. After being sealed, they were
moved into an artificial culture room and incubated at 25 ◦C for 10–12 days until the larvae
hatched. After hatching by injecting the silkworm eggs, the G0 generation could not be
screened for transgenic individuals [44]. Males and females were randomly mated and laid
eggs for the G1 generation. The eggs of the G1 generation eggs were fluorescently screened
at around the sixth day of development. Egg circles with eyes emitting green fluorescence
were screened as positive individual egg circles and raised to produce the next genera-
tion. Homozygous third-generation transgenic silkworms were used for molecular-level
detection in subsequent experiments.

4.8. Statistical Analysis

All the data were statistically analyzed using Student’s t-tests. Asterisks indicate
significant differences (* p < 0.05, ** p <0.01, and *** p < 0.001). ns is not statistically different.

4.9. JHA Treatment

BmE cells were seeded onto coverslips in 24-well plates. After 12 h of culture,
pSLfa1180-Basic and pSLfa1180-BmJHBPd2 were separately transfected into BmE cells at
1 µg per well. After transfection for 8 h, the medium was changed. JHA was melted in
DMSO [30]. We then added 1 ng JHA (Sigma-Aldrich, Methoprene, 40596-69-8) to each
well, and the cell RNA was extracted after hormone treatment for 12 h.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241612650/s1.
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