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Abstract: Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major under-
lying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for
AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an
increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal
pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregati-
bacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological
evidence elucidating the association between these pathogens and AS-related diseases, and the
diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disrup-
tion, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of
foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic
plaques. Notably, the intricate interplay among bacteria underscores the complex impact of peri-
odontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal
pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for
the prevention and management of AS.

Keywords: atherosclerosis; CVD; periodontal pathogens; Porphyromonas gingivalis; Aggregatibacter
actinomycetemcomitans; Fusobacterium nucleatum; plaque; instability

1. Introduction

Atherosclerotic cardiovascular disease (CVD) is a major public health problem of
all humankind. It is the primary contributor to death and disability and accounts for
1/3 of the deaths in the world [1,2]. Atherosclerosis (AS) is one of the most common
causes of CVD. Stenosis, obstruction or rupture of blood vessels can lead to ischemic CVDs
such as myocardial infarction, stroke, and limb ischemia [3]. AS is considered to be a
chronic inflammatory disease of the arterial wall caused by a variety of stimulating factors,
characterized by the formation, progression, and instability of atherosclerotic plaques. It
often involves medium and large arteries. The development of AS is a long-term and slow
accumulation process. It usually begins with the injury of the vascular endothelial barrier
and is followed by cholesterol-rich lipoprotein accumulating subcutaneously. Vascular
smooth muscle cells (VSMCs) migrate from vascular media to subendothelium, proliferate
and synthesize extracellular matrix (ECM), resulting in intimal thickening, which is called
diffuse intimal thickening (DIT). Subsequently, the resident VSMCs and blood monocyte-
derived macrophages recruited in the subendothelial space uncontrolled uptake modified
lipoproteins by scavenger receptors, transforming into lipid-rich cells called “foam cells”
and leading to the formation and enlargement of AS plaques. With the death of cells and
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the disfunction of efferocytosis, the arterial plaque gradually becomes unstable, exhibits
necrosis and calcification, or even ruptures and detaches to form a thrombus [4].

Traditional risk factors for AS include lifestyle factors, primarily smoking, dyslipi-
demia, hypertension, and altered glucose metabolism [5]. Studies in recent decades have
revealed that infection plays an important role in AS. Beginning with Fabricant and col-
leagues, who induced AS in chickens by Marek’s disease virus infection and prevented
atherosclerotic changes by vaccination [6], microbial infections such as herpes simplex
virus [7], Chlamydia pneumoniae [8], Porphyromonas gingivalis (Pg) [9], Helicobacter pylori [10],
influenza A virus [11], hepatitis C virus [12], cytomegalovirus [13], and HIV [14] have all
been identified as risk factors for AS.

As one of the four major human bacterial reservoirs, more than 700 bacterial species
exist in the oral cavity [15,16]. It is worth noting that these bacteria maintain an ecological
balance within a healthy periodontium. However, in the presence of periodontal disease,
microbial dysbiosis emerges, leading to a shift from Gram-positive anaerobic bacteria to
Gram-negative anaerobic bacteria. Consequently, certain bacteria opportunistically acquire
pathogenic capabilities, further exacerbating the pathogenesis of the disease [17,18]. Local
or systemic infections of oral origin are prevalent in the human population; for example,
periodontitis is the sixth most prevalent disease on a worldwide scale, with a global preva-
lence of 45–50% [19]. It not only contributes to the destruction of local tissues but is also
related to the development of a variety of systemic diseases such as AS. The American
Heart Association (AHA) acknowledges the correlation between periodontal disease (PD)
and atherosclerotic cardiovascular disease, irrespective of known confounding factors [20].
Epidemiologic evidence shows that the incidence of AS in patients with periodontitis is
1.27 times higher than that in patients without periodontitis [21]. In a Japanese study, the
prevalence and severity of overall arterial stiffness, as assessed using the Cardio-Ankle
Vascular Index, were 2.12-fold higher in elderly patients with severe periodontitis than in a
control population (95% CI = 1.09–4.11) [22]. While current evidence does not elucidate a
specific predilection of periodontal pathogens for the occurrence sites of AS, research has
indicated a significant correlation between periodontitis and AS in the carotid, coronary,
and peripheral arteries. In a study conducted by Robert Berent et al., it was found that
the prevalence of periodontal disease was 55.6% in patients with coronary heart disease
(CHD), while it was 41.9% in non-CHD individuals (p < 0.01), underscoring a noteworthy
association between PD and CHD (OR = 1.9; 95% CI = 1.2–3.1) [23]. Periodontitis has been
demonstrated to correlate with an elevated risk of CHD (OR = 1.24 (95% CI 1.01–1.51) to
1.34 (95% CI 1.10–1.63)), as well as an increased likelihood of experiencing a myocardial
infarction (OR = 1.49; 95%CI = 1.21–1.83) [24]. Interventional therapy with stent implan-
tation stands as the principal approach for vascular reconstruction in CVD. However,
some patients still develop in-stent restenosis (ISR), which remains a major challenge in
current treatments [25]. The existing research has demonstrated that oral infection serves
as an independent risk factor for the occurrence of ISR in patients with acute coronary
syndrome (ACS) (OR = 1.202, 95% CI = 1.085–1.333, p < 0.01) [26]. Stages III and IV peri-
odontitis are associated with an elevated incidence of ISR following coronary angioplasty
(OR = 5.82) [27]. Furthermore, patients who experience ISR after percutaneous coronary
intervention tend to have a higher severity of periodontal disease, among which 64.1%
are classified as having Stage IV periodontitis [28]. Similar to coronary arteries, in carotid
atherosclerosis, it is crucial to consider not only the extent of stenosis but also certain
distinctive features of vulnerable plaques. These characteristics encompass intraplaque
hemorrhage, plaque ulcerations, relative volume of calcification, and overall plaque burden.
These factors have been demonstrated to offer distinct supplementary insights into the
likelihood of recurrent stroke and in-stent restenosis [29,30]. A study revealed a positive
correlation between periodontal pathogen load and carotid intima-media thickness (IMT).
The average carotid IMT increased from 0.84 to 0.86 mm with the accumulation of bacterial
burden, further escalating to 0.87 mm (p = 0.04) [31]. In the population-based Malmo
Offspring Study, it was validated that moderate to severe periodontitis is significantly
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connected with an elevated risk of carotid plaque (OR = 1.76; 95% CI = 1.11–2.78) [32].
Through linear regression analysis, it was estimated that each additional periodontal pocket
depth of ≥4 mm is projected to increase the total carotid plaque area by 0.34 mm2 [32]. In
males, there is a significant correlation between periodontitis with high clinical periodontal
disease index and calcified carotid artery atheromas (OR = 1.83; 95% CI = 1.28 to 2.64;
p < 0.01) [33]. Peripheral arterial disease (PAD) is a prevalent condition affecting the blood
vessels of the limbs. It manifests as insufficient blood flow to the limbs due to arterial steno-
sis, commonly resulting in intermittent claudication and other associated symptoms [34,35].
Among the various etiologies of PAD, AS stands as the primary underlying cause [34].
According to a primary healthcare assessment conducted in the United States, approxi-
mately 50% of patients with PAD exhibit comorbidities such as coronary artery disease
(CAD) or cerebrovascular disease [36]. In comparison to non-PAD individuals, those with
PAD have a significantly elevated risk of developing periodontitis and a greater incidence
of tooth loss [37,38]. Furthermore, several studies have indicated periodontitis is signif-
icantly linked to PAD [37,39–42], along with a significant correlation between tooth loss
and increased PAD risk [43,44]. An investigation conducted among Asian Indians revealed
that individuals with periodontitis had higher peripheral arterial pulse wave velocity and
arterial stiffness index, indicating greater vascular narrowing and hardening [45].

Oral bacteria can cause temporary bacteremia during some therapy like periodontal
treatment, tooth extraction or during daily oral hygiene practices such as chewing, brushing,
and flossing, especially in subjects with existing periodontitis and dental pulp infections.
Periodontal pathogens can reach distant organs through the blood. Researchers have
detected DNA of periodontitis pathogen from atherosclerotic plaques [46,47], providing
direct evidence for the link between periodontitis and AS. The main periodontal pathogens
detected in the plaques include Pg, Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium
nucleatum (Fn), Prevotella intermedia (Pi), Tannerella forsythia (Tf ), Treponema denticola (Td),
and Campylobacter rectus (Cr). In addition, several benign species associated with dental
plaque on the tooth surface were detected in the plaques [48].

Periodontitis has been established as a contributing factor in the regulation of AS, but
the specific mechanisms remain unclear. In this review, we present the characteristics and
virulence factors of several major periodontal pathogens and provide a summary of the
available evidence regarding the link between them and AS in humans and animals, as
well as highlighting the roles of these pathogens in different pathological processes of AS,
with the hope of providing references for future researches on prevention and treatment
of AS.

2. Porphyromonas gingivalis

Pg is a dark, lytic, nonmotile, Gram-negative obligate anaerobes that derive energy
from the fermentation of amino acids, which facilitates its survival in the subgingival
sulcus and periodontal pockets. Pg is a main pathogen of periodontitis, and it forms the
“red complex” with Tf and Td, which is responsible for the severe clinical manifestation
of periodontal disease. Pg is one of the most common bacteria found in the subgingival
biofilm of patients with periodontitis [49,50]. A retrospective study conducted in Germany
involving 7804 adults diagnosed with periodontitis reported a detection rate of 68.2% for
Pg in the biofilm of periodontal pockets [51]. Pg has a variety of virulence factors, such as
lipopolysaccharide (LPS) on the bacterial outer membrane, which can activate the pathogen-
related pattern recognition receptor signaling pathway, cause inflammatory response and
the secretion of cytokines. Gingipains are trypsin-like cysteine proteinases generated by
Pg that can cleave laminin, fibronectin, and collagen, activate complement pathways, and
induce dysregulation of coagulation and fibrinolytic pathways. Additionally, Pg possesses
fimbriae, capsules, lipoteichoic acid, hemagglutinin, outer membrane proteins, and outer
membrane vesicles. These components facilitate Pg to colonize and invade cells, destruct
tissue, as well as escape from immune surveillance, inhibit the host immune response, and
prolong its survival time.
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2.1. The Association between Pg Exposure and AS in Humans and Animals

In recent years, the effect of Pg in the progress of AS has been confirmed by a large
number of studies. Multiple studies have employed polymerase chain reaction (PCR) to
examine bacterial presence in human arterial tissues, and Pg is among the predominant
bacteria frequently detected in atherosclerotic plaques [46,52–54]. Adrian Brun’s group
utilized a combined approach of nested PCR and real-time PCR to successfully identify
Pg with high specificity in highly calcified AS plaques of humans [54]. In patients with
AS, the serum concentrations of IgG targeting Pg and Pg-heat shock protein (HSP) 60 are
higher than in healthy individuals [55]. Moreover, Pg-HSP60 shares common antigenic
epitopes with human T cells and/or B cells, suggesting that Pg and its HSP60 may be
involved in the immunoregulatory processes of AS [55]. A clinical study conducted in
Japan demonstrated that patients with type 2 diabetes (DB) with higher serum concen-
trations of anti-Pg IgG presented a higher degree of stenosis in the carotid artery plaque
segment compared to patients with lower IgG concentrations (12.0% ± 2.2% for the former,
5.5% ± 1.4% for the latter, p = 0.009) [56]. Pg was also detected in saliva, supragingival
and subgingival plaque of abdominal aortic aneurysm (AAA) patients and the level of Pg
and plasma antibodies are correlated with AAA diameter and thrombus volume [57]. A
case–control study revealed that Pg is an independent risk factor for stroke, and elevated
levels of Pg antibodies in the serum are related to an increased risk of stroke with a multi-
variate OR of 1.63 (95% CI = 1.06–2.50) for males and an OR of 2.30 (95% CI = 1.39–3.78)
for females [58]. Some studies have successively confirmed that Pg infection through oral
infection, intragastric administration or intravenous injection, can lead to significant en-
largement of atherosclerotic plaques in ApoE-/- mice-established AS animal model [59–62],
and may worsen the plaque instability [63,64] as well. The level of serum anti-Pg IgG
and systemic pro-inflammatory cytokines in mice is significantly elevated followed by Pg
infection [60,65]. Pg can also invade the ischemic myocardium of mice with myocardial
infarction and promote cardiac rupture, thereby increasing the mortality rate in mice [66].
Below, we will review the promotion effects of Pg on AS and its related mechanisms in the
order of AS pathological processes.

2.2. Mechanistic Investigations on the Effect of Pg in Different Courses of AS
2.2.1. Endothelial Barrier Disruption

Endothelial dysfunction is an early cardiovascular response to stimuli and is con-
sidered an “alarm” of AS. After entrance to the blood, Pg adheres to the cell surface of
endothelial cells (ECs) via a variety of adhesins (including fimA and HagB) to interact
with E-selectin, vascular cell adhesion molecule 1 (VCAM-1), intercellular cell adhesion
molecule 1 (ICAM-1), and other molecules on the cell surface [67–69]. It can also be inter-
nalized into ECs by lipid rafts on the cell membrane. Pg also stimulates the expression of
adhesion molecules, toll-like receptors (TLRs) signaling pathway factors, and chemokine
in ECs [70–72], while fimA-deficient mutant loses these capabilities [70,71]. Activation of
autophagy is one of the mechanisms by which Pg escapes the host’s immune defense. After
entering the host cell, Pg can stimulate the cell autophagy pathway, and be transported
from the phagosome to the autophagosome, and to the late autophagosome. There, Pg can
prevent its maturity as autolytic enzyme autolysosome, thereby avoiding being degraded.
Pg can also take advantage of the abundant proteins in autophagic vesicles for division and
replication [73]. Through inhibition of the autophagy pathway in ECs with 3-methyladenine
or Wortmannin, approximately 78% of internalizing Pg eventually localized to vacuoles
containing cathepsin L and were degraded [73,74]. Pg also employs lysine-specific gingi-
pains (Kgp) to initiate the proteolysis of receptor-interacting protein kinase 1 (RIPK1),
RIPK2, and poly (ADP-ribose) polymerase (PARP), thereby actively engaging in tumor
necrosis factor (TNF)-mediated cell death and nucleotide-binding oligomerization domain
(NOD)-mediated host defense pathways. This intricate process facilitates immune evasion
by Pg and facilitates its intracellular survival, ultimately promoting the development of
chronic inflammation in arteries [75].
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Pg can suppress the proliferation of vascular ECs and induce cell apoptosis, thus
destroying the endothelial barrier [76]. It is evidenced that gingipains can cleave neural
cadherin and vascular endothelial cadherin, and degrade integrin β1, making ECs dis-
connect from the ECM, and come to anoikis [77,78]. Systemic inflammation induced by
Pg can also promote the endothelial–mesenchymal transition (EndMT) of ECs, thereby
promoting the fibrosis of arterial plaques and destroying the permeability and integrity of
the vessel wall [65]. Pg-activated ECs secrete angiotensin II and pro-inflammatory cytokines
such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and granulocyte-
macrophage colony-stimulating factor (GM-CSF), amplifying vascular inflammation and
arterial hypertension [79].

Vascular oxidative stress is one of the pathological mechanisms of many cardiovascu-
lar diseases, including AS, hypercholesterolemia, hypertension, and diabetes mellitus [80].
Excessive or sustained reactive oxygen species (ROS) are the main characteristic of ox-
idative stress. Pg can promote ROS production in multiple ways. It is identified that
Pg can motivate DNA methyltransferase 1 (DNMT-1) to methylate basic helix-loop-helix
ARNT like 1 (BMAL1) promoter via activating TLRs-NF-κB signal axis, followed by the
restrain of BMAL1 expression and release of circadian locomotor output cycles kaput
(CLOCK). In turn, CLOCK phosphorylates P65 and further enhances the NF-κB signal,
which aggravates oxidative stress and inflammatory response in human aortic ECs, thereby
aggravating vascular endothelial injury and promoting the progress of AS [46]. Pg is
also able to reduce the antioxidant mechanism and accelerate the oxidative damage of
ECs through the NOS/BH4/Nrf2/GSK-3β pathway [81]. It is known that excessive ROS
accumulation, mitochondrial oxidative stress damage, disrupted mitochondrial dynamics,
and an inadequate energy supply caused by mitochondrial dysfunction can aggravate AS.
A recent study reveals that Pg induced mitochondrial fission and dysfunction in ECs by
promoting the phosphorylation and recruitment of dynamin-related protein 1 (Drp1), an
indicator of mitochondrial fission, leading to the increase in mitochondrial ROS, as well
as the decrease in mitochondrial membrane potential and ATP [82], which threaten the
integrity of vascular endothelial.

2.2.2. Monocyte Adherence and Aggregation

Monocyte recruitment to the endothelium is a crucial step in AS. Endothelium injury
causes the subsequent chemotaxis and aggregation of monocytes to the subendothelium.
Pg upregulates the expression of MCP-1, ICAM-1, VCAM-1, and E- selectin in ECs, and
the expression of C-C chemokine receptor 2 (CCR2) and integrinαMβ2 in monocytes,
promotes the adhesion and aggregation of monocytes to the endothelium [83–87]. The NF-
κB pathway plays a vital role in this process. Restraint of the NF-κB pathway can abrogate
ICAM-1 expression in ECs [88]. NOD1, an intracellular pattern recognition reporter, is
overexpressed in Pg-infected ECs. After NOD1 recognizes Pg, the expression of ICAM-1 and
VCAM-1 in ECs is up-regulated through the NF-κB signaling pathway [84]. Gas6 inhibits
Pg-LPS-induced monocyte–endothelial cell interaction in vitro through the Akt/NF-κB
pathway [89]. Macrophage migration inhibitory factor (MIF) secreted is augmented in
Pg-infected ECs, which binds to CD74 and CXCR4 on the surface of ECs to form a receptor–
ligand complex and activates ECs to express more ICAM-1 [90]. Exposure to Pg induces the
increased expression of these adhesion molecules and attracts a large number of monocytes
to accumulate in the subendothelium of the artery, which results in extensive secretion of
inflammatory factors and exacerbates vascular and systemic inflammation [65,91]. Cyclic
diadenylate monophosphate (c-di-AMP) can mitigate the effect of Pg on AS by activating
trained immunity and regulating microecological balance, including relieving the elevation
in gene expression of IL-6, IL-1β, TNF-α, and interferon β; ECM remodeling enzymes
matrix metalloproteinase (MMP)-2 and MMP-9; and adhesion molecules ICAM-1 and
VCAM-1 [92].
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2.2.3. Foam Cell Formation

The formation of foam cells is a hallmark of AS. Macrophages serve as one of the
primary sources of foam cells in plaque. Pg and its components, including outer membrane
vesicles (OMVs), can boost the binding and phagocytosis of macrophages to low-density
lipoprotein (LDL), and macrophage-mediated modification of LDL [93]. Pg can increase
the expression of CD36, a scavenger receptor that mediates cholesterol uptake through
the c-Jun-AP-1 pathway [94] or ERK/NF-κB [95], as well as lysosomal integral membrane
protein 2 (LIMP2) involved in cholesterol transport [96,97], so as to intensify the lipid
accumulation of macrophages. Pg-infected macrophages up-regulate fatty acid binding
protein 4 (FABP4), an intracellular transport protein for fatty acids, presenting more intake
of fatty acids [98]. Moreover, a notable positive association was observed between serum
Pg antibody and FABP4 level in clinical periodontitis patients, suggesting that Pg can
promote AS and other systemic diseases by affecting FABP4 [98]. Pg also enhances the
activity of calpain of macrophages in a dose-dependent manner, increases the degradation
of ATP-binding cassette transporter A1 (ABCA1), and subsequently hinders the excretion
of cholesterol [94], contributing to foam cell formation of macrophages. Additionally,
Pg also boosts the oxidation of high-density lipoprotein (HDL), impairing its reverse
cholesterol transport function and shifting its role from a protective factor against AS to a
pro-atherogenic factor [99].

2.2.4. Calcification and Angiogenesis in Plaque

In the advanced stages of AS, the presence of calcium deposition within plaques,
known as calcification, is frequently observed. Calcified plaques contribute to luminal
narrowing and impede blood flow. However, it is worth noting that there is a prevailing
viewpoint suggesting that calcified plaques exhibit greater stability and reduced suscepti-
bility to rupture compared to non-calcified plaques. VSMCs also constitute a large portion
of the plaque. Pg promotes phenotypic transformation, apoptosis, and matrix vesicle
release of VSMCs, and consequently intensifies inorganic phosphate-induced vascular
calcification [100]. Pg boosted VSMCs proliferation and intimal hyperplasia, and the ex-
pression of vascular cell proliferative phenotypic markers S100 calcium-binding protein
A9 (S100A9) and embryonic isoform of smooth muscle myosin heavy chain (SMemb) was
observed higher on the surface of VSMCs of Pg-infected mice and in aneurysm specimens
from Pg-infected patients [101,102]. Microarray analysis suggested that Pg may promote
VSMCs proliferation through 25 pathways, including the transforming growth factor-β
(TGF-β), Notch, MAPK, ErbB, calcium signaling pathways, and so on [103]. OMV of
Pg up-regulates runt-related transcription factor 2 (Runx2) via ERK1/2 signaling, which
drives SMC differentiation and calcification activation, and eventually exacerbates vascular
calcification [104]. In one study where human VSMCs and periodontal ligament cells were
co-cultured, VSMCs presented a higher degree of calcification under the stimulation of
Pg-LPS than those cultured alone, which indicated the effect of periodontitis on vascular
calcification [105].

In response to the oxygen and nutrient demands, new blood vessels gradually form
within the growing plaque, while they are often structurally abnormal and fragile. Angio-
genesis may cause leakage of blood cells and inflammatory cells into the plaque, or even
rupture and lead to intraplaque hemorrhage. Microarray analysis revealed that gingipains
influence the focal adhesion activation, ECM receptor interactions, and the actin cytoskele-
ton pathway of Pg-mediated VSMCs, suggesting an impact on VSMC motility, phenotype
transition, and angiogenesis processes [106]. Pg and its gingipains have been demonstrated
to facilitate the upregulation of the high angiopoietin 2 (Angpt2)/Angpt1 expression ratio
in VSMCs, manifesting their potential involvement in promoting vascular neogenesis, SMC
proliferation, and pro-inflammatory phenotypic changes. Conversely, fimbriae and LPS
lack the ability to elicit similar effects [107]. Furthermore, Pg can stimulate VSMCs to
generate tissue factor (TF) pathway inhibitor, which serves as the primary endogenous
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inhibitor responsible for regulating the TF-mediated blood coagulation cascade, and may
promote the occurrence of acute coronary symptoms [108].

2.2.5. Plaque Destabilization

There is currently a dearth of research regarding the association between Pg and
plaque destabilization in AS. A study conducted in 2017 demonstrated that Pg can facilitate
the imbalance between Th17 and Treg cells, and encourage intra-plaque inflammation
by modulating T cell differentiation during the progression of AS. This contributed to an
enlarged AS lesion area, accompanied by an escalation in macrophage content and a reduc-
tion in VSMC area, thereby fostering plaque instability [63]. Pg also triggered macrophages
to secret MMP9, thereby inducing the fragmentation of vascular type IV collagen, which
weakened the structural support of the plaque and worsen its destabilized [109]. Be, the
heightened vascular inflammation, also impairs plaque stability [110]. Moreover, Hgp44,
the bacterial surface adhesin of Pg, which is cleaved by Arg-specific gingipain (Rgp) and
Kgp, can interact with circulating reactive IgG against Pg, Fc γRIIa receptors, and GPIb α

receptors on the platelet surface, leading to platelet aggregation and escalating the risk of
AS-related cardiovascular events [111] (Figure 1) (Table 1).
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Figure 1. The mechanisms of Pg in AS. Pg infection leads to upregulation of adhesion molecules
and chemokine secretion in ECs [70–72,84,88–90], promoting adhesion and aggregation of mono-
cytes in the bloodstream [83–87]. Pg can activate autophagy in ECs, allowing it to evade immune
responses by residing in autophagic vesicles [73,74]. Pg also inhibits EC proliferation [76], promotes
EC apoptosis [75–78], epithelial–mesenchymal transition [65], oxidative stress, and inflammatory
factor secretion [46,81,82], ultimately disrupting the vascular endothelial barrier. Under Pg stim-
ulation, macrophages produce more inflammatory mediators [92], leading to increased lipid de-
position [93–99] and exacerbating the inflammatory environment within the plaque. Pg promotes
proliferation [103,107], phenotypic transformation [100,106,107], and calcification [104] of VSMCs.
Pg-induced imbalance in the differentiation of Th17 and Treg cells worsens inflammation within
the plaque [63]. Increased secretion of MMP9 by macrophages promotes collagen degradation and
plaque instability [109]. Pg promotes platelet aggregation and thrombus formation by interacting
with IgG and Fc γRIIa receptors [111] (drawn by Figdraw).
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Table 1. The roles of Pg in AS-related cells.

Targeting Cell Effection on Cells Pathways Association with AS of
Mice

Association with AS
of Human

ECs

Upregulation of adhesion
factors and chemokine

TLRs signaling pathway
[70–72];

NF-κB pathway [83,87,88];
MIF-CD47-CXCR4

receptor–ligand complex [90]

Plaque growth [59–62];
increased serum IgG against

Pg and systemic
pro-inflammatory

cytokines [60,65]; plaque
instability [58,59]; cardiac

rupture [66]

High detective rate in AS
plaques [45,51–53]; high
serum IgG to Pg and IgG
to Pg HSP60 [55]; more

serious carotid stenosis for
type 2 DB with more

serum anti-Pg IgG [56];
patients; abdominal aortic
aneurysm [57]; stroke [58]

Pg intracellular survival and
immune escape Autophagy [73,74]

TNF-mediated cell death
Kgp initiates proteolysis of
RIPK1, RIPK2, and PARP in

ECs [75]
Suppression of cell

proliferation [76]

Cell anoikis

Neural cadherin and vascular
endothelial cadherin cleavage
and integrin β1 degradation

by gingipains [77,78]

EndMT Inflammation-induced by
Pg [65]

Oxidative stress and
inflammatory response

TLRs-NF-κB-Bmal1- NF-κB
pathway [46];

NOS/BH4/Nrf2/GSK-3β
pathway [81];

mitochondrial fission and
dysfunction via

phosphorylation and
recruitment of Drp1 [82]

Macrophages

Adhesion and aggregation
to the endothelium

Through CCR2 and integrin
αMβ2 [83–87]

Release of inflammation
molecules [65,91,92]

Lipid accumulation

modification of LDL [93]
Upregulation of CD36 via the
c-Jun-AP-1 pathway [94] or

ERK/NF-κB [95]
Upregulation of LIMP2 [96,97]

and FABP4 [98]
Degradation of ABCA1 [94];

oxidation of HDL [99]
MMP9 activation [109]

VSMCs

Proliferation

TGF-β and Notch signaling
pathways and so on [103];

upregulation of the
Angpt2/Angpt1 ratio [107]

Differentiation and
calcification

Upregulation of Runx2 via
ERK1/2 signaling by OMV of

Pg [104]

Phenotype transition
Upregulation of the

Angpt2/Angpt1 ratio
[100,106,107]

Th17 and Treg
cells Th17/Treg imbalance Upregulation of IL-6 [63]

Platelets Aggregation

Interaction between Hgp44 of
Pg, reactive IgG, Fc γRIIa

receptors, and GPIb α
receptors on platelet

surface [111]

3. Aggregatibacter actinomycetemcomitans

Aa, a Gram-negative facultent-anaerobic coccobacillus, is the predominant bacterium
isolated from caries in adolescents and adults with stage III or IV periodontitis [112] and
can lead to premature tooth loss. Aa is also one of the major bacteria in the subgingival
biofilm of patients with periodontitis [50]. Ramin Akhi et al. observed that the levels
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of salivary IgA antibodies to MAA-LDL (p = 0.034) and Aa-HSP60 (p = 0.045) increased
with an elevated number of teeth with probing depths of 4–5 mm, which may suggest the
cross-activation of the humoral immune may potentially mediate the association between
PD and systemic disorders [113]. Pili is an important structure for Aa adhesion to the host.
Isolated Aa pili contained a low molecular mass protein (about 6.5 kDa), called Flp, and
a small amount of a 54-kda protein, called Fup [114]. Examination of the binding of Aa
to hydroxyapatite surfaces coated with saliva exhibited a highly adhesive interaction that
seemed to rely on the formation of glycoconjugates [115]. In an oral colonization model
infected with the Flp mutant of Aa, the absence of soft tissue or plaque colonization, as
well as the absence of bone loss, in the Flp mutant of Aa, provides compelling evidence
supporting the critical role of Flp in Aa’s virulence [116].

3.1. The Association between Aa Exposure and AS in Humans and Animals

Epidemiological investigations have shown a significant association between Aa and
coronary disease. According to a meta-analysis conducted in 2022, the prevalence of Aa in
clinical coronary atherosclerotic plaques was found to be 46.2% (95% CI: 20.6–74.0) [117].
Kozarov E. et al. revealed that the prevalence of Aa positivity in plaques among elderly AS
patients is approximately 55.5% [118]. Serologic evidence described that rheumatic arthritis
(RA) patients with Aa or Aa leukotoxin (LtxA) exposure has higher coronary artery calcifi-
cation, thicker IMT, and lower ankle-brachial index (ABI, a surrogate for peripheral AS),
indicating greater progression of AS [119]. In the context of ruptured cerebral aneurysms,
the detection rate of Aa is notably higher, estimated at around 14% [120]. A Finnish study
in 2012 demonstrated that after adjusting for CVD risk factors, a 10-fold increase in Aa level
of saliva was associated with an odds ratio (OR) of 7.47 (95% CI = 1.57–35.5, p = 0.012) for
stable CAD, and an OR of 4.31 (95% CI = 1.06–17.5, p = 0.041) for ACS [121]. As well, serum
IgA levels targeting Aa exhibited a correlation with ACS (OR = 3.13, 95% CI = 1.38–7.12,
p = 0.006) [121]. Molecular mimicry results indicate a potential effect of Aa in the pathogen-
esis of AS through the activation of cross-reactive immune responses [122]. Aa possesses
multiple serotypes. On the basis of structural features of the LPS o antigen, seven serotypes
of Aa (“a”–“g”) have been identified [123–126]. Statistically, serotypes “b” and “c”, which
are linked to periodontal probing depth and the burden of periodontal inflammation,
happen to be the most common serotypes in patients with CAD (59.3%) (p = 0.040) and
with the severity of CAD [127]. In ApoE-/- mice, both Aa and Aa LPS can promote AS
progression and plaque lipid deposition, and the virulence ranked from highest to lowest
was Aa > heat-inactivated Aa > Aa LPS [128]. Aa infection can alter the serum lipopro-
tein profiles with augmented very low-density lipoprotein (VLDL), LDL, and HDL [129].
Oxidized LDL (ox-LDL) levels and the expression of oxidative stress-related molecules
such as myeloperoxidase (MPO), the receptor for advanced glycation endproducts (RAGE),
inducible nitric oxide synthase (iNOS), NADPH oxidase-related genes Nox-1, Nox-2, and
Nox-4 are also increased after Aa administration, indicating that Aa plays a central role in
oxidative stress and oxidation of low-density lipoprotein [128]. It has also been proposed
that Aa did not affect the serum cholesterol level and the expression of hepatic fatty acid
synthase (FAS) and HMG CoA reductase in ApoE-/- mice, but the inflammatory factors
and chemokines in serum, innate immune signaling molecules such as TLR2 and TLR4,
adhesion molecules (ICAM-1, E-selectin, and P-selectin), chemokines (C-C motif chemokine
ligand (CCL)19, CCL21, CCR7, and MCP-1), scavenger receptors lectin-like oxidized low-
density lipoprotein receptor-1 (LOX-1) and high-sensitive C-reactive protein (hsCRP) in the
aorta were significantly upregulated compared with the control group [130].

3.2. Mechanistic Investigations on the Effect of Aa in AS

Aa is known to generate two types of toxins, LtxA and cytolethal-distending toxins
(Cdts). LtxA binds with lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18),
the receptor for LtxA on leukocytes [131–133], to induce macrophages pyroptosis and acti-
vation of inflammasome to release inflammatory cytokines and induce secondary immune
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response [134]. Aa has a significant impact on inflammation as well as the aggregation
and adhesion of monocytes by up-regulating ICAM-1 and VCAM-1 on ECs [135] and
macrophages [136,137]. LtxA can also arrest the G2/M phase of the cell cycle in microvas-
cular ECs, thus hindering cell proliferation and driving cell apoptosis [135]. LPS of Aa can
induce TNF-α and IL-1β production, and restrain the expression of scavenger receptor class
B type-I (SR-BI) and ABCA1 in macrophages, followed by augmented cholesterol accumu-
lation [138]. Infection with Aa elevates serum and intramural levels of TH17 cell-related
factors, such as IL-1β, IL-17, IL-6, TGF-β, and IL-1β, indicating a potential induction of
TH17 activation and the promotion of vascular inflammation [139]. This evidence illus-
trates a certain correlation between Aa and CVD. Cdts, a heterotrimeric AB2 toxin, can be
internalized into cells and induce cell-cycle retardation and apoptosis in lymphocytes and
other cell types [140]. However, the research on the role of Cdts and other virulence factors
of Aa in AS is still inadequate (Figure 2) (Table 2).
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Figure 2. The mechanisms of Aa in AS. Aa infection upregulates the expression of adhesion molecules
ICAM-1 and VCAM-1 in ECs, promoting adhesion and aggregation of monocytes to subendothelium.
Aa also induces apoptosis in EC, leading to disruption of the vascular endothelial barrier. Under
Aa stimulation, macrophages exhibit increased secretion of inflammatory cytokines and foam cell
formation. Aa also promotes macrophage pyroptosis (drawn by Figdraw).
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Table 2. The roles of Aa in AS-related cells.

Targeting Cell Effection on Cells Pathways Association with AS of Mice Association with AS
of Human

ECs

Upregulation of ICAM-1
and VCAM-1; [135] Plaque lipid deposition [128];

proatherogenic lipoprotein
profiles [129]; increased serum

ox-LDL and oxidative
stress [128]; elevated serum
inflammatory factors and

chemokines [130],
upregulation of innate

immune signaling molecules,
adhesion molecules,

chemokines, LOX-1, and
hsCRP in the aorta [130]

A 55.5% positivity in
plaques among elderly AS

patients [118]; higher
coronary artery calcification,

thicker carotid IMT, and
lower ABI [119]; ruptured
cerebral aneurysms [120];

stable CAD [121]; ACS [121]

suppression of cell
proliferation; promotion of

cell apoptosis

LtxA arrests G2/M phase of
cell cycle [135]

Monocytes

Pyroptosis, release of
inflammatory cytokines

LtxA of Aa binds with LFA-1
and activates the

inflammasome [134]

aggregation and adhesion Upregulation of
ICAM-1 [136,137]

Release of inflammatory
cytokines, increased

cholesterol accumulation

Downregulation of SR-BI and
ABCA1 [138]

4. Fusobacterium nucleatum

Fn is a species of bacteria that belongs to the genus Fusobacterium. It is a Gram-
negative anaerobic bacterium. Fn acts as a bridge bacterium, facilitating the adherence
of other bacteria to form complex microbial communities. It exhibits various virulence
factors that contribute to its pathogenicity, including adhesins such as adhesin FadA and
Fap2 [141], outer membrane proteins like radial proteins D [141], hemagglutinins, secreted
toxins like butyric acid [142], LPS, and some proteases.

4.1. The Association between Fn Exposure and AS in Humans and Animals

In recent years, considerable attention has been directed toward the involvement
of Fn in extra-oral infections, encompassing conditions such as colorectal cancer [143]
and RA [144]. A substantial body of research has established a link between Fn and
CVD [145,146]. In a study involving 31 resected carotid endarterectomy specimens, the posi-
tivity rate of Fn detection was found to be 34% [147]. It has been frequently identified within
atherosclerotic plaques, and it stands as one of the predominant periodontal pathogens de-
tected in ruptured cerebral aneurysms [120]. The presence of Fn in atherosclerotic plaques
and blood vessels increases proportionally with the severity of periodontal disease [148].
It is shown that subjects with stable CAD exhibit elevated levels of subgingival-specific
IgA targeting Fn [149], compared to subjects without significant coronary stenosis. In
ApoE-/- mice, oral administration of Fn significantly increased plasma triglyceride (TG) and
cholesterol levels, facilitating the development of AS, and inducing a transition of plaques
toward an unstable phenotype [150,151]. GroEL is a heat shock protein produced by Fn.
ApoE-/- mice injected with GroEL exhibited elevated serum levels of AS risk factors such as
IL-6, CRP, and LDL, while the concentration of HDL decreased [152].

4.2. Mechanistic Investigations on the Effect of Fn in AS

Recent studies have elucidated that Fn can enhance EC permeability and reduce the
abundance of EC adhesion molecule-1, leading to endothelial dysfunction [153]. Fn has
been shown to impair ECs proliferation and induce apoptosis [154,155]. Fn and its GroEL Fn
are capable to upregulate the expression of chemotactic factors, including MCP1 and IL-8,
as well as cell adhesion molecules including ICAM-1, VCAM-1, and E-selectin in ECs [152].
Fn also disrupts lipid metabolism and transport processes. Fn fosters hepatic glycolysis and
lipid synthesis through the PI3K/Akt/mTOR signaling pathway, thus uplifting plasma
lipid concentrations and exacerbating AS in mice [150]. Fn-infected macrophages exhibit an
activation of the PI3K-AKT/MAPK/NF-κB signaling pathway, propelling the inflammatory
responses and cholesterol uptake, concurrently reducing lipid excretion, leading to lipid
deposition [156]. Another study revealed that Fn stimulates macrophages to undergo
abnormal pro-inflammatory responses, M1 polarization, and cell apoptosis, triggering the
release of inflammatory cytokines such as IL-6, IL-1β, IL-17, and TNF-α. This process,
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in turn, modulates the expression of lipid metabolism-related genes, including scavenger
receptor A1 (SR-A1), cholesterol acyltransferase 1 (ACAT-1), ABCA1, and ATP-binding cassette
transporter G1 (ABCG1), promoting the accumulation of cholesterol in macrophages induced
by ox-LDL [151]. In addition, Fn upregulates FABP4 via a JNK-dependent mechanism in
macrophages, thereby augmenting lipid uptake by macrophages [98] (Figure 3) (Table 3).
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Figure 3. The mechanisms of Fn in AS. Fn infection disrupts the intercellular connections between
EC, simultaneously inhibiting EC proliferation and promoting EC apoptosis, leading to increased
endothelial permeability. Fn also upregulates the expression of adhesion molecules and chemokines
in EC, promoting the adhesion and migration of monocytes toward the sub-endothelial space.
Under Fn stimulation, macrophages undergo M1 polarization, resulting in increased production
of inflammatory mediators. Macrophage lipid deposition and cell apoptosis are also heightened,
fostering the progression of plaque enlargement and an inflammatory environment within the plaque.
(Draw by Figdraw).

Table 3. The roles of Fn in AS-related cells.

Targeting Cell Effection on Cells Pathways Association with AS of Mice Association with AS
of Human

ECs

Increased permeability
Impaired proliferation and

induced apoptosis

Reduction of EC adhesion
molecule-1 [153]

[154,155]

Increased plasma TG and
cholesterol levels [150,151];

elevated serum levels of IL-6,
CRP, and LDL, decreased

levels of HDL [152]

A positivity rate of 34%
in carotid

endarterectomy
specimens [147];

ruptured cerebral
aneurysms [120]; stable

CAD [149]

Upregulated chemotactic
factors and cell adhesion

molecules
[152]

Hepatic cells Glycolysis and lipid
synthesis

PI3K/Akt/mTOR signaling
pathway [150]

Monocytes

Inflammatory responses PI3K-AKT/MAPK/NF-κB
signaling pathway [156]

M1 polarization;
cell apoptosis cholesterol

accumulation

modulation of lipid
metabolism-related genes
including SR-A1, ACAT-1,
ABCA1 and ABCG1 [151];

upregulation of FABP4 via a
JNK-dependent mechanism [98]
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5. Prevotella intermedia

Pi, a Gram-negative bacterium, is a dominant bacterium of periodontitis and is pre-
dominant in adult patients with periodontitis [157,158]. Two genotypes, I and II, have been
identified for Pi [159]. In 1992, Harou N N Shan et al. identified a new genetic group in
the Pi strain, which was significantly different from genotype I in terms of DNA–DNA hy-
bridization characteristics and peptidase and lipase activities. The new species was named
Prevotella nigrescens (Pn) [160]. Pi and Pn can simultaneously exist in oral mucosa, the
tongue, and tonsils, as well as in subgingival plaque in deep periodontal pockets [161,162].
Some studies have proposed that Pn strains are associated with healthy sites, whereas
Pi strains are isolated from deeper sites of periodontal lesions and are thought to con-
nect with periodontal breakdown [163–165]. In addition to periodontitis, Pi is also found
to be abundant in colorectal cancer [166]. Moreover, Pi has been linked to subclinical
hypothyroidism [167], infectious endocarditis [168], and other related conditions.

5.1. The Association between Pi Exposure and AS in Humans and Animals

It was observed the positive rate of Pi in the atherosclerotic artery was found to
be 31% [47]. A multiple regression model adjusting for known cardiovascular risk fac-
tors illustrated that the level of IgA to Pi in patient saliva and IgA against LDL were
significantly associated with stable CAD and ACS [169]. Multivariate logistic regression
analysis displayed that Pn infection was linked to increased cross-sectional intimamedia
area (OR = 4.08; p = 0.034) [170]. In smokers, Pi antibody levels were significantly related
to CHD (OR = 1.5), while in never-smokers, it was Pn that was associated with CHD
(OR = 1.5) [171]. Serum anti-Pi antibodies showed a significant correlation with the in-
ternal carotid artery (ICA) AS (OR = 16.58, 95% CI = 3.96–78.93, p < 0.0001) [172]. After
excluding ICA AS, a strong relationship between anti-Pi antibodies and atherosclerotic
stroke was observed (OR = 23.6, 95% CI = 2.65–298.2, p = 0.008) [172]. Despite the lack of
straight evidence for the relevance between Pi and AS, some studies suggest a role for Pi in
AS-associated cells.

5.2. Mechanistic Investigations on the Effect of Pi in AS

Currently, research on the impact of Pi on macrophages is limited. The pro-inflammatory
effect of Pi on macrophages may aggravate the progression of AS. LPS is the major virulence
factor of Pi. Similar to the LPS of Pg, the LPS of Pi differs greatly in the structure from
LPS of Escherichia coli. Pi-LPS contains fewer and longer fatty acids than E. coli-type
lipid A [173]. Pi-derived LPS can attract the production of macrophage inflammatory
mediators such as nitric oxide (NO), IL-1β, and IL-6 through TLR4 signaling pathway [174].
In addition, a novel non-endotoxin protein, prevotella glycoprotein, was isolated from
Pi, which is composed of carbohydrates and protein and is free of fatty acids [175]. PCG
raises IL-8 production by human monocyte THP-1 cells and motivates human and mouse
monocytes through CD14 and TLR2 but not TLR4-dependent pathways [176]. For other
cells associated with AS, there are in vitro invasion assays indicating that Pi can invade and
infect primary cultures of human coronary artery ECs and coronary artery VSMCs [177].
In the future, more studies are needed to reveal the effect of Pi on AS and its mechanism
(Table 4).
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Table 4. The roles of Pi, Tf, Td, and Cr in AS-related cells.

Bacteria Targeting Cell Effection on Cells Pathways Association with AS of Mice Association with AS
of Human

Pi Macrophages

Release of
inflammatory

cytokines

TLR4 signaling
pathway [174];

-

Stable CAD and
ACS [169]; thicker
intimamedia [170];

CHD in
smokers [171];

stroke [172]

IL-8 production

CD14 and TLR2
signaling pathway

activated by PCG of
Pi [176]

Tf Macrophages

Release of
pro-inflammatory

mediators
[178–180] Plaque enlargement, increased serum

levels of CRP and LDL, decreased
serum level of HDL, and expression of

cholesterol efflux-related gene
expression in liver [181]; lowered serum

NO level and increased SAA [182];
intraplaque hemorrhage [183]

CAD and ACS [169]

Foam cell formation [181]

Td ECs

Facilitating
chemotaxis and
aggregation of

monocytes to the
subendothelium

Upregulation of IL-8
and MCP-1 [184]

Enlarged arterial plaques, decreased
serum NO levels, and increased

serum VLDL and ox-LDL levels [185]

CHD in ever
smokers [171];

elevated levels of TG
and reduced levels of

HDL [186]

Cr Macrophages IL-6 secretion TLR4 signaling
pathway [187] -

Stable CAD and
ACS [149]; thick
carotid arterial

walls [188]

6. Tannerella forsythia

Tf is an anaerobic Gram-negative member of the Cytophaga-Bacteroides family. It was
first isolated by the Forsyth Institute in the 1970s from subjects with advanced progressive
periodontitis, and originally described as Fusiform Bacteroides [158]. According to the 16S
rRNA phylogenetic analysis, it was reclassified to Tf [189,190]. Tf is one of the members of
the “red complex”, and participates in the development of gingivitis and periodontitis. Mul-
tiple research studies have successfully detected Tf in the subgingival biofilm of patients
using various techniques [50]. Several potential virulence factors have been discovered in
T. forsythia, including trypsin-like [191] and PrtH proteases [192], NanH [193], a leucine-
rich repeat protein BspA [194], alpha-D-glucosidase, N-acetyl-beta-glucosaminidase [195],
components of the bacterial S-layer, and methylglyoxal [196].

6.1. The Association between Tf Exposure and AS in Humans and Animals

In a study, the detection rate of Tf in the atherosclerotic artery was remarkably high,
reaching 53% [47]. Patients with CAD and ACS demonstrated a pronounced elevation in
saliva levels of IgA to Tf relative to individuals without CAD [169]. In animal models of
AS, Tf and BspA promote plaque enlargement and increase serum levels of CRP and LDL,
while the level of HDL, and the expression of liver X receptor (LXR)α, LXRβ, and ABCA1 in
liver tissue of AS mice are lessened [181]. Oral infection of Tf significantly lowers the serum
NO level in mice, and increases the degree of serum acute phase reactant SAA, which is a
subclinical inflammatory marker of chronic disease characterized by inflammation [182].
Tf is also significantly connected with intraplaque hemorrhage and plays a potential role in
neutrophil activation within hemorrhagic carotid plaques, which ultimately exacerbates
plaque vulnerability [183].
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6.2. Mechanistic Investigations on the Effect of Tf in AS

The mechanisms underlying the involvement of Tf in the promotion of AS remain
inadequately understood. Existing research findings indicate that Tf and its components,
including LPS and OMVs, can enhance the secretion of pro-inflammatory mediators by
macrophages, including IL-1β, IL-6, TNF-α, and IL-8 [178–180], while S-layer-deficient Tf
mutants yield a remarkably higher secretion level [179]. Similarly, infection of mice with
Tf mutant strains lacking an intact S-layer glycan core has been shown to provoke robust
Th17 cell responses and researchers considered that the surface glycosylation of Tf may
contribute to its persistence within the host by restraining Th17 responses [197]. Tf and
BspA can also induce THP-1 to form foam cells [181]. This evidence manifests that Tf may
evade recognition by the innate immune system, elicit a chronic inflammatory response,
and catalyze foam cell formation in AS plaque (Table 4).

7. Treponema denticola

Td is a Gram-negative bacterium from the Spirochetes family. As a partner of the “red-
complex” organisms, Td is commonly found in the oral cavity, especially in subgingival
plaque. Td possesses several virulence factors, such as the major outer sheath protein (MSP),
ortholog of oligopeptide transporter unit (OppA), factor H-like protein-1 binding proteins,
coaggregation, dentilisin, lipooligosaccharide [198], peptidoglycan, and cystalysin, which
assist Td in adhesion, locomotion, immune escape and destruction of host cells [199].

7.1. The Association between Td Exposure and AS in Humans and Animals

PCR testing of vascular plaques showed that the detection rate of Td is 6%, which is the
lowest among periodontal bacteria [47]. In former smokers, Td antibody titers are higher
and significantly associated with CHD (OR = 1.7; 95% CI = 1.2–2.3) [171]. In the context
of stage III or IV periodontitis, the presence of Td was found to be linked with elevated
levels of TG and reduced levels of HDL (OR = 3.03; 95% CI = 1.2–7.2) [186]. Sasanka
S. Chukkapalli et al. discovered that mice orally infected with Td had enlarged arterial
plaques, decreased serum NO levels, and increased serum VLDL and ox-LDL levels [185].

7.2. Mechanistic Investigations on the Effect of Td in AS

Td can activate human ECs by inducing IL-8 and MCP-1 expression [184], which
facilitates the chemotaxis and aggregation of monocytes to the subendothelium (Table 4).

8. Campylobacter rectus

Cr is a Gram-negative anaerobic bacterium. It was initially named and identified in
1981 as Wolinella recta, and was reclassified as Campylobacter in 1991 based on phylogenetic
analysis [200]. It is common in the oral cavity and gastrointestinal tract and mainly partici-
pates in oral and periodontal infections, but it is also detected in cases of severe infection
outside the gastrointestinal tract [201].

8.1. The Association between Cr Exposure and AS in Humans and Animals

Subjects with CAD showed elevated levels of subgingival Cr-specific IgA compared to
individuals without significant coronary stenosis (IQR = 1.20; p = 0.009), and the difference
was pronounced in the group with ACS (IQR = 1.16; p = 0.050) [149]. Elevated antibody
titer to Cr was linked to thick carotid arterial walls (OR = 2.3, 95%CI = 1.83–2.84) [188].

8.2. Mechanistic Investigations on the Effect of Cr in AS

Similar to other oral bacteria, Cr possesses potent TLR4 stimulating activity, effectively
triggering the macrophage TLR4 signaling pathway and inducing IL-6 secretion [187].
Currently, there is a lack of evidence of how Cr affects AS, and further research is needed
(Figure 4) (Table 4).
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Figure 4. An overview of the mechanisms of Pi, Tf, Td, and Cr in AS. Td infection induces the
secretion of IL-8 and MCP1 by ECs, promoting the adhesion and aggregation of monocytes towards
the sub-endothelial space. Pi, Cr, and Tf can activate macrophages via the TLR2/4 signaling pathway,
leading to increased production of inflammatory mediators. Additionally, Tf can also promote
macrophage-derived foam cell formation induced by ox-LDL (drawn by Figdraw).

9. Interactions between Bacteria

In practical scenarios, infections commonly involve polymicrobial communities rather
than single bacterial species. Interactions among different periodontal pathogens play a
pivotal role in the pathogenesis of these infections. For instance, Pg primarily utilizes gingi-
pains to aggregate with Tf, facilitating macrophage-mediated engulfment and clearance
of Tf, while mutation of either Kgp or Rgp in the coinfecting Pg resulted in a diminished
enhancement of Tf phagocytosis [202]. The invasive capacity of Pg significantly increases
when co-cultured with Fn compared to Pg incubated alone, possibly because Fn facili-
tates Pg adhesion to cells [203]. Cr can provide a protoheme for Pg growth [204]. Most
periodontal pathogens primarily belong to Gram-negative bacteria and exhibit common
features such as LPS and OMV, which can activate inflammatory responses. Meanwhile,
they possess unique virulence factors contributing to their pathogenicity. Indeed, similar
to periodontitis, the complex interplay of competition and cooperation among different
microorganisms shapes the property and functionality of the oral biofilm. Interspecies
signaling within the community regulates various activities, including gene expression,
nutrient acquisition, and DNA exchange, enabling the bacterial consortium to exhibit
multifaceted microbial synergistic interactions [205]. It has been established in animal
studies that polymicrobial infections may intensify tissue destruction in comparison to
single-species infections. For instance, co-infection of Pg and Tf results in more pronounced
bone loss and inflammatory response on the surfaces of the maxilla, mandible, palate, and
cheeks in rats, surpassing the effects observed with individual Pg or Tf infections [206].
The co-infection of Fn and Tf has been shown to significantly increase the infiltration of in-
flammatory cells in gingiva and heighten osteoclast activity in the alveolar bone [207]. Mice
infected with multiple periodontal bacteria exhibits marked alterations in serum levels of
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AS-related molecules [208,209]. HIV-infected individuals co-infected with hepatitis C virus
face an elevated risk of CVD and the occurrence of atherosclerotic CVD events [210,211]. In
future investigations, it is crucial not only to elucidate the specific mechanisms by which
each pathogenic bacterium contributes to AS, but also to explore the collective impact of
polymicrobial infections on AS pathology.

The oral mucosa and intestinal mucosa exhibit a physical continuity, establishing a
direct link between the oral microbiota and gut microbiota [212]. Approximately 1.5 × 1012

oral bacteria are ingested daily through saliva swallowing [213]. Oral microbiota can
colonize the intestine, forming a dual microbial ecosystem and the immune mechanism
that connects oral and gut health [214], which provides a potential pathway for PD to
extend its impact systemically through the gastrointestinal tract. Accumulating evidence
indicates the active participation of the oral–gut axis in the pathogenesis of several diseases;
for example, a cross-sectional study observed compositional changes in the oral and gut
microbiota of hypertensive patients, as well as that certain common periodontal bacteria
undergo ectopic colonization in the intestines and saliva-derived Veillonella exhibits the most
significant variations in abundance [215]. Animal investigations have further corroborated
a causal relationship between oral–gut microbial transmission and the exacerbation of
hypertension [215]. It has been implicated that oral pathogens and their byproducts, along
with inflammatory mediators, can cause dysbiosis in the intestinal ecosystem, gaining
access to the systemic circulation through compromised intestinal barrier, and aggravating
liver cirrhosis [216]. The oral microbiota associated with periodontitis exacerbates intestinal
inflammation and compromises the integrity of the intestinal barrier in PAP mice. This
disruption leads to dysregulation of the gut microbiota, which worsens the progression of
Alzheimer’s disease through the intricate gut–brain crosstalk in mouse models [217].

A substantial body of research has been conducted to explore the respective roles of
oral microbiota and gut microbiota in AS; however, the involvement of the oral–gut axis in
AS is less understood. Comparative analysis of microbial populations in AS plaques, oral
cavity, and intestines has revealed notable similarities in microbial abundance between AS
plaques and the oral cavity, while the intestines exhibit the highest microbial richness [218].
Remarkably, several bacterial taxa, such as Firmicutes, Clostridia, Veillonella, Streptococcus,
and so on, are found to be shared in these anatomical sites [218]. The established influ-
ence of the gut microbiota on AS involves several mechanisms, such as the activation
of inflammatory pathways, modulation of lipid metabolism, and generation of specific
metabolites [219–221]. The compromised gut barrier and dysbiosis caused by periodontitis
may participate in the progression of AS through these mechanisms. In a recent study
conducted by Guowu Gan et al., it was discovered that chronic apical periodontitis induced
by Pg infection in mice resulted in significant alterations in the composition and diversity
of the gut microbiota. Specifically, they observed significant differences in the abundance
of 37 taxa, wherein an increase in the relative abundance of Firmicutes, Chloroflexi, and
Cyanobacteria, along with a decrease in Bacteroidetes, correlated with the progression of
AS (p < 0.05) [222]. In the context of chronic apical periodontitis, ApoE-/- mice exhibited
elevated serum levels of trimethylamine N-oxide (TMAO), a gut-derived metabolite that
indicates the risk of cardiovascular events [223]. Co-occurrence analysis demonstrated a
significant positive correlation (p < 0.05) between the relative abundances of Lachnospiraceae
and Porphyromonadaceae with both the percentage of lesion area and TMAO levels, sug-
gesting that chronic apical periodontitis exacerbates atherosclerotic lesions by modulating
the gut microbiota and its metabolites [223]. The aforementioned findings imply that the
gut microbiota may serve as a pivotal link between oral infection and the pathogenesis
of AS. The oral–gut axis holds intrinsic potential in the development of AS and in-depth
explorations are needed. Microbiota status holds promising prospects for the identification
of potential indicators for disease risk assessment and prognostic evaluation, as well as
novel therapeutic strategies. Compared to blood biochemistry testing, the detection of
samples from the oral cavity and gut offers a more non-invasive and convenient approach.
Moreover, the development of strategies aimed at manipulating the diversity of oral and
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gut microbiota, such as targeted oral hygiene protocols, dietary nutrition interventions, and
the administration of prebiotics, may hold promise for the prevention and treatment of AS.

10. Conclusions

In conclusion, this comprehensive review primarily summarizes the epidemiological
evidence linking periodontal pathogens to AS and highlights the existing research on the
mechanisms by which periodontal bacteria contribute to the progression of AS. It empha-
sizes that periodontal pathogens are important risk factors for AS and underscores the need
for further research in this area, as there is still a lack of comprehensive understanding.
Furthermore, it raises awareness of the complex interactions exhibited by periodontal
bacterial co-infections and the oral–gut axis in the context of AS.

At last, although the evidence linking periodontal pathogens to AS is accumulating,
the current body of evidence is inadequate to establish the effectiveness of periodontal
treatment in preventing or ameliorating AS. Future studies should also concentrate on
investigating the potential impact of periodontal interventions on the prevention and man-
agement of AS. Moreover, it should be noted that the current research on the relationship
between periodontal bacteria and AS primarily relies on conventional detection methods.
However, the application of innovative techniques such as single-cell sequencing and
spatial omics in this field remains largely unexplored. The integration of these advanced
methodologies is expected to facilitate a more comprehensive understanding of the role of
periodontal bacteria in the cellular and intercellular interactions within the AS microen-
vironment [97]. Consequently, this will provide crucial theoretical foundations for the
prevention and treatment of both periodontal disease and atherosclerosis.
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Aa: Aggregatibacter actinomycetemcomitans; AAA: abdominal aortic aneurysm; ABCA1:
ATP-binding cassette transporter A1; ABCG1: ATP-binding cassette transporter G1; ABI:
ankle brachial index; ACAT-1: cholesterol acyltransferase 1; ACS: acute coronary syndrome;
AHA: the American Heart Association; Angpt2: Angiopoietin 2; AS: Atherosclerosis;
BMAL1: basic helix-loop-helix ARNT like 1; CCL19: C-C motif chemokine ligand 19;
CCR2: C-C chemokine receptor 2; Cdts: cytolethal-distending toxins; CHD: coronary heart
disease; CLOCK: circadian locomotor output cycles kaput; Cr: Campylobacter rectus; CVD:
cardiovascular disease; DIT: diffuse intimal thickening; DNMT-1: DNA methyltransferase
1; Drp1: dynamin-related protein 1; ECM: extracellular matrix; ECs: endothelial cells;
EndMT: endothelial–mesenchymal transition; FABP4: fatty acid binding protein 4; FAS:
fatty acid synthase; Fn: Fusobacterium nucleatum; GM-CSF: granulocyte-macrophage colony-
stimulating factor; HDL: high density lipoprotein; hsCRP: high-sensitive C-reactive protein;
HSP: heat shock protein; ICAM-1: intercellular cell adhesion molecule 1; IL-6: interleukin-6;
IMT: intima-media thickness; iNOS: inducible nitric oxide synthase; Kgp: lysine-specific
gingipains; LDL: low-density lipoprotein; LFA-1: lymphocyte function-associated antigen-
1; LIPM2: lysosomal integral membrane protein 2; LOX-1: lectin-like oxidized low-density
lipoprotein receptor-1; LPS: lipopolysaccharide; LtxA: leukotoxin; LXR: liver X receptor;
MCP-1: monocyte chemoattractant protein-1; MIF: migration inhibitory factor; MMP: ma-
trix metalloproteinas; MPO: myeloperoxidase; MSP: major outer sheath protein; NO: nitric
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oxide; NOD: nucleotide-binding oligomerization domain; OMVs: outer membrane vesicles;
OppA: ortholog of oligopeptide transporter unit; Ox-LDL: oxidized LDL; PAD: peripheral
arterial disease; PARP: poly (ADP-ribose) polymerase; PCR: polymerase chain reaction; PD:
periodontal disease; Pg: Porphyromonas gingivalis; Pi: Prevotella intermedia; Pn: Prevotella
nigrescens; RA: rheumatic arthritis; RAGE: receptor for advanced glycation endproducts;
Rgp: Arg-specific gingipain; RIPK1: receptor interacting protein kinase 1; ROS: reactive
oxygen species; Runx2: runt-related transcription factor 2; S100A9: S100 calcium-binding
protein A9; Smemb: embryonic isoform of smooth muscle myosin heavy chain; SR-A1:
scavenger receptor A1; SR-BI: scavenger receptor class B type-I; Td: Treponema denticola; Tf :
Tannerella forsythia; TF: tissue factor; TGF-β: transforming growth factor-β; TLRs: toll-like
receptors; TMAO: Trimethylamine N-oxide; TNF: tumor necrosis factor; VCAM-1: vascular
cell adhesion molecule 1; VLDL: very low-density lipoprotein; VSMCs: vascular smooth
muscle cells.
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