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Abstract: Nonalcoholic fatty liver disease (NAFLD), the most prominent cause of chronic liver
disease worldwide, is a rapidly growing epidemic. It consists of a wide range of liver diseases,
from steatosis to nonalcoholic steatohepatitis, and predisposes patients to liver fibrosis, cirrhosis,
and even hepatocellular carcinoma. NAFLD is strongly correlated with obesity; however, it has
been extensively reported among lean/nonobese individuals in recent years. Although lean patients
demonstrate a lower prevalence of diabetes mellitus, central obesity, dyslipidemia, hypertension,
and metabolic syndrome, a percentage of these patients may develop steatohepatitis, advanced liver
fibrosis, and cardiovascular disease, and have increased all-cause mortality. The pathophysiological
mechanisms of lean NAFLD remain vague. Studies have reported that lean NAFLD demonstrates a
close association with environmental factors, genetic predisposition, and epigenetic modifications.
In this review, we aim to discuss and summarize the epigenetic mechanisms involved in lean
NAFLD and to introduce the interaction between epigenetic patterns and genetic or non genetic
factors. Several epigenetic mechanisms have been implicated in the regulation of lean NAFLD. These
include DNA methylation, histone modifications, and noncoding-RNA-mediated gene regulation.
Epigenetics is an area of special interest in the setting of lean NAFLD as it could provide new insights
into the therapeutic options and noninvasive biomarkers that target this under-recognized and
challenging disorder.

Keywords: epigenetics; nonalcoholic fatty liver disease; lean NAFLD; nonobese NAFLD; epigenetic
regulation; DNA methylation; histone modification; noncoding RNAs

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a common liver condition affecting ap-
proximately 25% of the global population (20–30% of the Western population [1,2] and up
to 34.2% of obese children) [3]. It is defined as a chronic liver disease, characterized by
steatosis in liver cells, in patients with no remarkable alcohol consumption and without
other liver disorders [4]. NAFLD encompasses a wide range of liver diseases, from simple
fat accumulation to more advanced stages such as nonalcoholic steatohepatitis (NASH),
liver cirrhosis, and even hepatocellular carcinoma (HCC) [5]. Although NAFLD is typically
asymptomatic, 25% of patients with NASH may progress to liver cirrhosis, and 10% may
develop decompensated liver disease [6]. Currently, liver-related mortality constitutes
the third leading cause of death in NAFLD individuals [7,8]; however, due to its rapidly
increasing prevalence, NASH-related fibrosis is expected to become the primary cause of
liver transplantation in the near future [9,10]. In parallel, the rising prevalence of NAFLD,
due to its close relation to other comorbidities such as obesity, cardiovascular disorders,
type 2 diabetes mellitus (T2DM), and other metabolic abnormalities, further increases the
morbidity and mortality rates of this disorder [11,12].

The increasing occurrence of NAFLD is strongly related to the worldwide obesity
crisis [13]; however, up to 10–20% of individuals diagnosed with NAFLD present with
normal body mass index (BMI) [14,15]. This specific group is referred to as “lean NAFLD”
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or “nonobese NAFLD” [14–16]. The lean NAFLD phenotype was initially observed in
Asian populations, but it can also occur in other ethnic groups and may indicate visceral
obesity in the absence of systemic obesity [17]. As NAFLD is mainly associated with the
Western definition of obesity and metabolic syndrome, it may go under-recognized or
completely undetected in lean populations [18]. The global incidence of lean NAFLD
is substantially rising [19]. Beyond Asians, lean NAFLD has also been documented in
other populations, with an incidence of 8–20% [20]. The increasing incidence of NAFLD is
reported by many studies, which either use the obesity definition as defined by the World
Health Organization (WHO) or an ethnicity-based BMI cutoff [21]. Although the lean
NAFLD phenotype typically presents with a less severe form of the disease, it may also
exhibit a wide range of histopathological characteristics associated with NASH, including
steatosis, hepatocyte ballooning, lobular inflammation, and liver fibrosis [22]. Furthermore,
individuals with lean NAFLD encounter comparable complications and comorbidities to
obese patients [23,24]. Recently, lean NAFLD has been categorized into two subtypes based
on disease epidemiology, prognosis, and natural history [25]. Type 1 mainly occurs in
patients with visceral adiposity and insulin resistance, whereas type 2 refers to a condition
that affects patients with hepatic steatosis caused by monogenic diseases [25,26]. Most lean
NAFLD patients fall into type 1, meeting the BMI criteria for being lean but exhibiting
obesity based on waist circumference or other body composition measures [25,26]. The
NAFLD pathophysiology in this subtype is likely similar to that seen in overweight and
obese NAFLD individuals, as hepatic steatosis and lipotoxicity are promoted by excessive
food consumption, particularly simple carbohydrates and a sedentary lifestyle [27]. On
the other hand, lean NAFLD in the absence of visceral adiposity may be promoted by the
occurrence of rare genetic variants [28,29].

This evidence suggests that NAFLD in both obese and lean individuals imposes a
significant burden on society. Thus, the elucidation of molecular mechanisms underlying
the disease pathogenesis is crucial, especially in lean NAFLD, which has been characterized
as an under-recognized and challenging disorder. In this review, we will focus on the
epigenetic modulation in lean NAFLD and discuss the recent progress regarding the role of
epigenetics in this condition as well as the underlying mechanisms. In addition, we will
further discuss the potential application of epigenetic modulators in clinical practice using
them as biomarkers and novel therapeutic targets in lean NAFLD treatment.

2. NAFLD Pathogenesis—The Role of Epigenetics

The pathogenesis of NAFLD is complex and involves multiple elements, including
genetic, metabolic, and environmental factors. Although the exact mechanisms are not
fully understood, several key factors have been closely implicated in the development
and progression of NAFLD. Growing evidence highlights the critical role of epigenetic
regulation in the development and progression of NAFLD [25,30–33].

Epigenetics involves heritable modifications to the structure and biochemistry of chro-
matin, without altering the DNA sequence [34,35]. The epigenetic mechanisms modulate
diverse physiological and pathological processes via the regulation of gene expression
through alterations in epigenetic code accessibility within the chromatin [36]. Epigenetic
modulation can be performed at various levels; however, three major epigenetic codes that
have been extensively studied are DNA methylation, histone modifications, and noncoding
RNA (ncRNA) [37–39]. Diverse biological functions and phenotype–environment interplay
in response to various stressor stimuli are substantially influenced by epigenetic pathways
promoting phenotypic plasticity [40,41]. Epigenetic regulatory mechanisms are reversible,
as lifestyle and environmental changes can determine epigenetic patterns during life and
have the potential for dynamic modulation; thus, epigenetic-associated alterations to genes
and proteins may serve as future therapeutic strategies in the clinical setting [42,43].

These modifications can alter the expression of the genes involved in lipid metabolism,
inflammation, and oxidative stress, all of which contribute to the development of NAFLD.
Cytosine and histone modifications, as well as alterations in the localization of nucle-
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osomes occurring at the molecular level, are potential drivers of epigenetic regulatory
mechanisms [44]. Growing evidence suggests that lean NAFLD progression is substantially
influenced by multiple epigenetic mechanisms [32,45]. Among these epigenetic alterations,
the modifications of the amino-terminal ends of histones are particularly important for
maintaining the chromatin structure and regulating gene expression [46]. Additionally,
abnormal DNA methylation serves as an initial event in the development of cancer in
patients with NAFLD [47]. Furthermore, the assessment of circulating microRNA (miRNA)
profiles holds promise as a noninvasive approach to evaluate and monitor the severity of
liver disease [33,48].

3. DNA Methylation

DNA methylation, a key player in epigenetic transcriptional silencing, is a heritable
epigenetic process that involves the covalent transfer of a methyl group (CH3) to the C5
position of the cytosine ring of DNA to form 5-methylcytosine; this process is catalyzed by
DNA methyltransferases (DNMTs) [49] (Figure 1).
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creased incidence in lean NASH patients. Differential methylation regions and differentially 
methylated genes have been observed in both lean and obese mice during the progression of non-
alcoholic steatohepatitis to hepatocellular carcinoma. This figure was generated using BioRender, 
available online at: https://biorender.com (accessed on 25 July 2023). Abbreviations: DNMTs, DNA 
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tidylethanolamine N-methyltransferase; NASH, nonalcoholic steatohepatitis; NAFLD, nonalco-

Figure 1. DNA methylation in lean NAFLD. DNA methylation is a post-translational modification
through which methyl groups (Me) are added to DNA on the CpG islands and regulates transcrip-
tional gene expression, particularly gene silencing. The rs7946-PEMT genetic variant in the PEMT
gene has been related to increased risk for lean NAFLD, whereas Val175Met-PEMT has increased
incidence in lean NASH patients. Differential methylation regions and differentially methylated
genes have been observed in both lean and obese mice during the progression of nonalcoholic steato-
hepatitis to hepatocellular carcinoma. This figure was generated using BioRender, available online at:
https://biorender.com (accessed on 25 July 2023). Abbreviations: DNMTs, DNA methyltransferases;
SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; PEMT, phosphatidylethanolamine
N-methyltransferase; NASH, nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease;
PE, phosphatidylethanolamine; PC, phosphatidylcholine; DMRs, differentially methylated regions;
HCC, hepatocellular carcinoma.
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DNA methylation can cooperatively regulate the chromatin state through the inter-
actions among DNMTs and components of the chromatin machinery [49]. Through the
deposition of histone marks at methylation sites, DNA methylation can be stably inherited
without altering the DNA sequences [50]. The identification of aberrant DNA methyla-
tion patterns may potentially supply novel treatment targets and biological tools for the
diagnosis and/or prognosis of NAFLD [51].

Recent data have shown that blood DNA methylation markers may differentiate
NAFLD patients with nonsignificant liver fibrosis from those with significant fibrosis [52].
Several genes have been identified as potential blood methylation biomarkers for the
diagnosis of liver fibrosis in NAFLD, including CISTR, IFT140, and RGS14 [52]. Such
genes that include differentially methylated probes in their DNA could potentially pro-
vide some evidence on the role of DNA methylation in the liver fibrosis progression of
NAFLD patients.

Phosphatidylethanolamine N-methyltransferase (PEMT) is a 22.3 kDa transmembrane
protein, which is responsible for the transfer of methyl groups to cytosine and the cat-
alyzation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) [53] (Figure 1).
Although liver is the tissue with major PEMT activity, low levels of PEMT in adipocytes
have been associated with lipid droplet formation [54]. Experimental animal studies have
shown that PEMT activity is necessary for the maintenance of the hepatic membranes’
integrity and PC production when dietary choline availability is limited [55,56]. PEMT is
also required for the proper secretion of very low-density lipoproteins [57].

Whole-exome sequencing was performed to investigate causative alterations in the
common DNA nucleotide sequences related to disrupted liver fatty acid metabolism in pa-
tients with lean NAFLD [58]. The variants in PEMT and oxysterol-binding protein-related
protein10 (OSBPL10) genes, which are commonly related to dietary choline intake and
cholesterol metabolic modulation, respectively, were identified as potential biomarkers and
were then processed for further validation [58]. Although no association was demonstrated
between the variant rs2290532-OSBPL10A and the risk of lean NAFLD, a significant associ-
ation was observed between the variant rs7946-PEMT and the susceptibility to disease [58]
(Figure 1). A previous study reported that the variant Val175Met of the PEMT gene could
be a prognostic biomarker for susceptibility to NASH, as this genetic variant was more
frequently demonstrated in lean NASH patients [59] (Figure 1).

PEMT knockout (KO) mice have been used as genetic models for lean NAFLD [56].
Studies have shown that, although PEMT KO mice demonstrated protection against diet-
induced obesity and insulin resistance [60], they were more susceptible to diet-induced
fatty liver and steatohepatitis [60]. On the other hand, a choline-deficient diet was unable
to substitute the de novo synthesis of intracellular PC in the liver [55,60].

Experimental diet-induced lean NAFLD models include those of choline-deficient
amino acid-defined (CDAA) diet [61], methionine–choline-deficient (MCD) diet [62], and
high-fat–high-fructose diet or combined diets [63]. In the MCD diet, the absence of methio-
nine and choline resulted in impaired PC and very low-density lipoprotein production [64].
This resulted in decreased triglyceride clearance and the promotion of lipid accumulation
in the liver [65]. Mice fed with an MCD diet typically experienced a weight loss of around
40% [66]. Compared with these mice, PEMT KO mice did not experience significant weight
loss and displayed a better phenotypic resemblance to lean NAFLD mice [67]. PEMT KO
mice in a high-fat diet exhibited several phenotypic similarities with MCD-fed mice [68];
however, MCD-fed mice displayed decreased liver weight relative to body weight [60].

Differentially methylated regions (DMRs) have been implicated in the development of
hepatocarcinogenesis in lean (choline-deficient model) versus obese (choline-supplemented
model) mice with NASH [69]. Obese mice displayed a greater number of DMRs during
the progression from NASH to HCC, compared with nonobese mice [69]. In lean mice
with NASH-HCC, variations in methylation were observed in the genes associated with
cancer progression and prognosis, including HCC-related genes such as CHCHD2, FSCN1,
and ZDHHC12, as well as the genes involved in lipid metabolism such as PNPLA6 and
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LDLRAP1 [69]. Conversely, in obese mice with NASH-HCC, methylation differences were
found in the genes already known to be linked with HCC, such as RNF217, GJA8, PTPRE,
PSAPL1, and LRRC8D [69]. Hypomethylated DMRs in obese NASH-HCC mice were
enriched in the genes related to Wnt signaling pathways, suggesting that HCC progression
in obese mice is potentially influenced by the hypomethylation of the genes associated
with the Wnt signaling pathway, whereas in lean mice, it may be affected by alternative
signaling pathways, such as those related to lipid metabolism [69].

DNA Methylation Differences between Obese and Lean NAFLD

DNA methylation can influence gene expression patterns and may contribute to
various physiological and pathological processes, including obesity and NAFLD. DNA
methylation changes have been observed in the genes related to lipid metabolism, insulin
sensitivity, and inflammation in obese NAFLD [51,70]. Altered methylation patterns in
these genes may contribute to the development and progression of NAFLD in obese indi-
viduals [51,70]. The epigenetic regulation of adipogenesis has also been described in obese
NAFLD. DNA methylation patterns in the genes involved in adipocyte differentiation and
adipogenesis might be altered in such patients. These changes can affect how adipocytes
store and release fatty acids, which can influence the overall hepatic lipid [70,71]. In parallel,
epigenetic modifications in obesity-related inflammation can contribute to the progression
of obese NAFLD to more severe stages [72]. Lastly, alterations in DNA methylation have
been reported in pathways regulating insulin sensitivity and glucose metabolism, as insulin
resistance is a common feature of obesity and NAFLD [73].

4. Histone Modification

The packaging of chromosomal DNA within nuclei is facilitated by positively-charged
proteins, called histones, which are tightly bound to negatively charged DNA and assemble
into nucleosome complexes [74,75]. Histones serve as the primary protein components
of chromatin and are crucial for gene regulation. There are five major families of histone
proteins, namely H1, H2A, H2B, H3, and H4 [76] (Figure 2).
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imbalance has been observed in lean individuals with MAFLD. Methylation and acetylation of
histones have resulted in the stimulation of genes closely related to lipogenic and inflammatory
processes and the downregulation of genes associated with fatty acid oxidation. In lean MAFLD,
a significant reduction in macroH2A1.1 and macroH2A1.2 histone variants has been observed.
Macrophage epigenome modifications in lean MAFLD downregulate the bile acid signaling and
induce an inflammatory response, leading to more severe liver disease. This figure was generated
using BioRender, available online at: https://biorender.com (accessed on 25 July 2023). Abbrevia-
tions: HATs, histone acetyltransferases; KDMs, histone lysine demethylases; TF, transcription factor;
MAFLD, metabolic-associated fatty liver disease; TLR, Toll-like receptor; LPS, lipopolysaccharide.

The packaging of nuclear chromatin is modulated through various mechanisms. One
of these mechanisms is the replacement of canonical histones with the histone variants
that are incorporated into chromatin [77]. These histone variants play an essential role,
highlighting their importance in epigenetic regulation [78–80]. Among these variants,
macroH2A1 is a variant of the H2A family and exists in two alternatively exon-spliced
isoforms: macroH2A1.1 and macroH2A1.2 [80,81]. These isoforms are critical for the
regulation of cell proliferation and plasticity [80–82]. There is a great number of distinct
histone post-translational modifications; these modifications not only play an essential role
in regulating the chromatin structure but also actively recruit remodeling enzymes that use
ATP-derived energy to reposition nucleosomes [83]. The recruitment of various proteins
with specific enzymatic functions is now a well-established concept for how modifications
exert their functional activities [83].

Histone Modification in Lean MAFLD Patients

In 2020, a group of international experts suggested changing the term NAFLD to
metabolic-associated fatty liver disease (MAFLD) to address some of the limitations and
challenges associated with the NAFLD terminology [84]. MAFLD places a stronger empha-
sis on the metabolic aspects of the disease. The diagnostic criteria for MAFLD are broader
and include not only the presence of liver fat but also the presence of metabolic risk factors
such as obesity, diabetes, insulin resistance, or evidence of metabolic dysregulation. This
change aims to better capture the complex interactions between liver fat accumulation and
metabolic health [84]. Similar to NAFLD, MAFLD is mostly observed in obese patients,
but it can also occur in lean individuals. A recent study revealed a novel circulating his-
tone signature by using a rapid and noninvasive imaging technology called ImageStream
(X), which has the ability to differentiate the severity of steatosis in individuals with lean
MAFLD [85]. This assay can be used for the detection of potential human lean MAFLD
markers, via the analysis of intact histones and histone complexes, which are released into
the blood circulation as “liquid biopsies” from dying cells [85]. In particular, a significant
decrease in the expression of histone variants macroH2A1.1 and macroH2A1.2 was ob-
served, either individually or as a natural dimer with H2B [85] (Figure 2). Notably, the
downregulation of macroH2A1.2 was nearly twice as significant as that of macroH2A1.1 in
lean patients with steatosis grade 3 compared with those with grade 1 [85] (Figure 2). In
contrast, the expression of these histones did not change significantly in the overweight
subgroup [85].

A recent study revealed that changes in the macrophage epigenome of lean MAFLD
patients can repress the bile acid-associated signaling pathway and the anti-inflammatory
responses downstream [86] (Figure 2). A metabolic–epigenetic axis governs both the
inflammatory and metabolic responses in macrophages, as well as the production of proin-
flammatory cytokines. Metabolic endotoxemia has been shown to have a widespread
impact on the structure of chromatin [87]. Transcriptome analysis and epigenomic repro-
gramming analysis showed that, in lean MAFLD patients, metabolic endotoxemia induces
the activation of proinflammatory genes and the secretion of Toll-like receptor 4 (TLR4),
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which hampers bile acid signaling [86]. These events culminate in an augmented produc-
tion and secretion of bile acids accompanied by suppressed bile acid signaling, which aligns
with the loss of metabolic adaptation and the progression of liver disease [86] (Figure 2).

5. Noncoding RNAs

Noncoding RNAs (ncRNAs) constitute a substantial part of the transcriptome and
lack discernible protein-coding functions. However, ncRNAs have been involved in a
wide range of biological processes, including disease pathogenesis [88]. Advancements
in sequencing technology and data analysis have allowed researchers to discover nu-
merous ncRNAs, including long noncoding RNAs (lncRNAs) [89], circular RNAs (circR-
NAs) [90], and small ncRNAs [91]. miRNAs, a subgroup of small ncRNAs, are endogenous
single-stranded RNAs that play a crucial role in the regulation of biological processes and
epigenetic mechanisms [92,93] (Figure 3).
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Figure 3. miRNA structure and biogenesis. MicroRNA (miRNA) genes, a subgroup of small non-
coding RNAs, are typically transcribed by an RNA polymerase II within the nucleus to generate
pri-miRNA transcripts. The microprocessor complex, comprising the dimeric RNA-binding protein
DGCR8 and the RNase III enzyme Drosha, facilitates the cleavage of pri-miRNA, producing the
pre-miRNA precursor. Subsequently, exportin 5 (XPO5) transports the pre-miRNA to the cytoplasm.
In the cytoplasm, the pre-miRNA is cleaved into a mature double-stranded miRNA by the Dicer
enzyme and the transactivation response element RNA-binding protein (TRBP) complex. Upon
maturation, the mature miRNA becomes part of the miRNA-associated multiprotein RNA-induced
silencing complex (mi-RISC). Following that, the mature miRNA binds to complementary regions on
the target mRNA, guiding and modulating its expression through base pairing. Generally, mature
miRNA binds to specific mRNA 3′-untranslated sequences (3′-UTR) via partially complementary
regions, leading to the inhibition of mRNA translation into proteins. However, if miRNA and mRNA
exhibit high complementarity, this can result in the cleavage of the target mRNA. This figure was
generated using BioRender, available online at: https://biorender.com (accessed on 25 July 2023).
Abbreviations: miRNA, microRNA; pol II, polymerase II; DGCR8, DGCR8 microprocessor com-
plex subunit; miRISC, miRNA-induced silencing complex; TRBP, transactivation response element
RNA-binding protein.

https://biorender.com


Int. J. Mol. Sci. 2023, 24, 12864 8 of 15

The dysregulation of miRNA expression profiles has been implicated in the pathophys-
iology of various diseases, and distinct miRNA expression profiles have been identified to
be associated with NAFLD [94,95]. Particularly, miRNAs have emerged as reliable circulat-
ing biomarkers for the noninvasive diagnosis and assessment of NAFLD severity [96].

miRNA miR-122, which exhibits high expression levels in the human liver, has been
found to accelerate the progression of NAFLD [97]. Conversely, both miR-122 and miR-223
have shown potential in ameliorating NAFLD [98]. Additionally, a study by Liu et al.
suggested that the expression of miR-192 contributes to the progression of NAFLD [99].
These miRNAs have also been proposed as diagnostic biomarkers for liver injury and
potential therapeutic targets [100]. However, limited research has explored the role of
miRNAs in detecting lean NAFLD in the absence of obesity.

A recent study investigated the role of serum miRNAs in lean NAFLD and their po-
tential as biomarkers [101]. Serum miR-4488 expression levels were found to be augmented
in lean NAFLD patients compared with obese NAFLD patients and healthy controls [101]
(Figure 4).
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Figure 4. Role of miRNAs in lean NAFLD. Several miRNAs have been implicated in the pathogenesis
of lean NAFLD and have been suggested as potential biomarkers for lean NAFLD diagnosis and
prognosis. This figure was generated using BioRender, available online at: https://biorender.com
(accessed on 25 July 2023). Abbreviations: miRNA, microRNA; NAFLD, nonalcoholic fatty liver
disease; TNF, tumor necrosis factor; p53, protein P53; PPARa, peroxisome proliferator-activated
receptor alpha; msRNA, microRNA-sized small RNA.

Gene Ontology (GO) and Kyoto Encyclopedia Genes and Genomes (KEGG) enrich-
ment analyses were used to identify the miR-4488 target gene prediction and pathway
analysis [101]. The choline metabolism in tumorigenesis, the signaling pathway of tumor
necrosis factor (TNF), and the p53 signaling pathway were found enriched, suggesting
that miR-4488 may affect the lean NAFLD progression by taking part in these signaling

https://biorender.com
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pathways [101] (Figure 4). In parallel, various genes such as ARHGAP1, SLC10A1, SIX5,
CTNNA1, and WTIP were identified as miR-4488 regulatory targets associated with lean
NAFLD [101] (Figure 4).

The circulating levels of miR-122, an essential factor for glucose and lipid metabolism [102],
and miR-33a/b*, a main modulator of fatty acid and cholesterol homeostasis [103], were
investigated in relation to their hepatic expression in women with NAFLD [104]. The ex-
pression of miR-33b* in the liver was related to the presence of obesity, as it was increased in
morbidly obese compared with moderately obese and normal-weight NAFLD women [104]
(Figure 4). In contrast, the hepatic expression of miR-122 was reduced in the morbidly obese
cohort compared with the moderately obese subpopulation [104]. In this regard, previous
research has indicated that various miRNAs play a role in the regulation of adiposity and
insulin sensitivity. A positive association between increased levels of circulating miR-122
and both obesity and insulin resistance in young adults has been demonstrated [105].
Additionally, there is evidence of dysregulation of circulating miRNAs in cases of severe
obesity, with significant alterations in this miRNA profile occurring as a result of weight
loss induced by bariatric surgery [106].

Vonhögen et al. proposed the use of miR-216a as a biomarker for obesity and its
associated metabolic diseases in women [107]. In this study, the miR-216a gene was
identified as an obesity-susceptibility locus, containing CpG islands that exhibit varying
levels of DNA methylation between obese and nonobese children. Moreover, the DNA
methylation patterns at this locus were correlated with distinct circulating miR-216a plasma
levels in both obese and nonobese women [107] (Figure 4).

The characterization of the intestinal microbiome in NAFLD patients revealed an
increase in the bacterium Escherichia Shigella; this increase was closely related to NAFLD
severity independently of obesity [108]. However, a study in rats showed that the species E
fergusonii promoted the development of lean NAFLD, as nonobese animals demonstrated
hepatic steatosis and hepatocyte ballooning [108] (Figure 4). The presence of E fergusonii
impaired the host lipid metabolism via the suppression of lipid β-oxidation in the liver
and the induction of de novo lipogenesis [108] (Figure 4). In deep sequencing analysis,
E fergusonii-derived microRNA-sized, small RNA (msRNA) 23,487 was found to reduce
the expression of host hepatic peroxisome proliferator-activated receptor α (PPARa) [108].
Through this process, the aggregation of lipids in the liver may be promoted via the
secretion of msRNA 23487, potentially contributing to steatohepatitis and the fibrosis
pathogenesis of lean NAFLD in rats [108] (Figure 4).

NAFLD-associated fibrosis and sarcopenia share common pathophysiological path-
ways, including chronic inflammation, insulin resistance, and changes in the modulation of
various proteins and hormones, which possibly explain the bidirectional influence between
these disorders [109]. In Western NAFLD patients, sarcopenia has been related to the sever-
ity of liver fibrosis and steatosis [110]. The prevalence of skeletal muscle loss is frequently
observed in lean NAFLD patients, whereas the frequency of sarcopenic obesity is rare in
NAFLD patients [111]. Regular exercise and diet modification are effective strategies in
alleviating steatosis in lean NAFLD [112]. A recent study has shown that lifelong regular
exercise in rats improved skeletal muscle atrophy, impaired autophagy, mitochondria dys-
function, and apoptosis. This amelioration in skeletal muscle aging may be the result of the
augmented miR-486 expression and the following activation of the PI3K/Akt pathway and
the indirect suppression of HIPPO signaling [113] (Figure 4).

Cell-to-cell communication is mediated by extracellular vesicles (EVs), which have
been used as biomarkers and drug carriers [114,115]. Microvesicles, apoptotic bodies,
and exosomes constitute the main types of EVs; exosomes are membrane-bound EVs
that contribute to antigen presentation, intercellular communication, and mRNA and
miRNA shuttling [116]. MiRNAs can be enclosed within exosomes and released from
cells. Ying et al. showed that in obese mice adipose tissue macrophages (ATMs) released
exosomes containing miRNAs (Exos) [117]. Exos administration in lean mice caused
glucose intolerance and insulin resistance [117]. Conversely, the administration of ATM
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Exos of lean mice in obese recipients critically improved glucose tolerance and insulin
sensitivity [117]. One of the specific miRNAs found in abundance in obese ATM Exos was
miR-155, known to target PPARγ, suggesting that this miRNA may be the causal factor for
insulin resistance induction [117].

Translational research in the field of miRNAs holds promise for the development of
novel diagnostic and therapeutic strategies that aim to treat lean NAFLD, considering the
critical regulatory role of miRNAs for this condition. This avenue of research may lead to
innovative approaches that can effectively diagnose and treat lean NAFLD by targeting
miRNA-related mechanisms.

ncRNA Differences between Obese and Lean NAFLD

When comparing obese and lean individuals with NAFLD, studies have focused on
differences in the expression and function of various types of ncRNAs. ncRNA-mediated
epigenetic alterations influence a variety of metabolic pathways and cellular activities in
the hepatic tissue, including oxidative stress, inflammatory immune response, hepatic
glucose and lipid metabolism, and even tumorigenesis [118]. The differential expression
of miRNAs has been observed between obese and lean individuals with NAFLD. These
miRNAs can target the genes involved in lipid metabolism, inflammation, fibrosis, and
other pathways relevant to NAFLD progression [119–121]. CircRNAs are a type of ncRNA
that form closed-loop structures due to a covalent bond between 3′ and 5′ ends [122]. They
can act as microRNA sponges or regulate protein function. Altered circRNA expression
profiles have been associated with NAFLD and obesity, affecting the pathways involved in
insulin resistance and lipid metabolism [123]. Lastly, several lncRNAs have been found to
be dysregulated in NAFLD, potentially influencing the pathways related to inflammation,
lipid metabolism, and fibrosis [118].

6. Conclusions and Prospects

The underlying mechanisms of NAFLD are multifaceted; both genetic and nongenetic
factors are essential for the initiation and development of this disorder. Lean or nonobese
NAFLD is characterized as an even more complex and multifactorial disorder. While
certain risk factors like patients’ age and genetic code are unchangeable, other risk factors
can be modified during life depending on lifestyle alterations and medical interventions.
Understanding the epigenetic regulation of lean NAFLD is crucial for the identification of
potential therapeutic targets and the development of personalized treatment strategies. In
future research, precision medicine based on gene alterations, including the use of RNA
interference and anti-sense oligonucleotides, could potentially modify the influence of
genes on the pathogenesis and severity of NAFLD, making genetics a modifiable factor.
Future studies on the role of genetics and epigenetics will enhance our understanding of the
underlying mechanisms of lean or nonobese NAFLD, thereby enabling the development of
potential therapeutic strategies. Acquiring a better understanding of modifiable risk factors
would also facilitate the prevention or delay of NAFLD progression.

Additionally, therapeutic strategies encompass the potential regulation of the enzymes
responsible for epigenetic modifications of DNA and proteins. In parallel, the regulation
of gene expression is influenced by miRNAs. Assessing circulating miRNA profiles holds
promise as a noninvasive method to evaluate and monitor the severity of liver diseases.
However, independent validations are necessary to further establish the reliability and
effectiveness of this approach. Lastly, future research in genomic regions with DMRs may
highlight them as novel biomarkers for the progression of carcinogenesis or as a therapeutic
approach, which indicates the significance of studying epigenetic alterations.

Although there is much to be learned about the influence of epigenetic modifications on
the mechanisms contributing to NAFLD pathogenesis in humans, efforts to gain knowledge
on the epigenetic-based diagnostic and therapeutic potency and evaluation tools would
have a beneficial impact on precision medicine in metabolic diseases and overall human
health. Incorporating molecular diagnosis into the clinical assessment of individuals
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with lean NAFLD has the potential to yield precise diagnostic information, allowing for
targeted therapeutics.
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