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Abstract: Trimethylglycine (glycine betaine, GB) is an important organic osmolyte that accumulates
in various plant species in response to environmental stresses and has significant potential as a
bioactive agent with low environmental impact. It is assumed that the hydration of GB is playing an
important role in the protective mechanism. The hydration and aggregation properties of GB have
not yet been studied in detail at the atomistic level. In this work, noncovalent interactions in the GB
dimer and its complexes with water and crystalline monohydrate are studied. Depending on the
object, periodic and non-periodic DFT calculations are used. Particular attention is paid to the metric
parameters and enthalpies of intermolecular hydrogen bonds. The identification of noncovalent
interactions is carried out by means of the Bader analysis of periodic or non-periodic electron density.
The enthalpy of hydrogen bonds is estimated using the Rosenberg formula (PCCP 2 (2000) 2699).
The specific proton donor properties of glycine betaine are due to its ability to form intermolecular
C–H···O bonds with the oxygen atom of a water molecule or the carboxylate group of a neighboring
GB. The enthalpy of these bonds can be significantly greater than 10 kJ/mol. The water molecule that
forms a hydrogen bond with the carboxylate group of GB also interacts with its CH groups through
lone pairs of electrons. The C–H···O bonds contribute up to 40% of the total entropy of the GB–water
interaction, which is about 45 kJ/mol. The possibility of identifying C–H···O bonds by the proton
nuclear magnetic resonance method is discussed.

Keywords: trimethylglycine; intra- and intermolecular interactions; intermolecular H-bonds; C–H
stretching vibrations; 1H chemical shifts

1. Introduction

In recent years, much attention has been paid to the study of the interaction between
trimethylglycine (glycine betaine, GB) and water in order to understand the structure–
performance relationships for chemical, biological and pharmaceutical applications [1,2].
Experimental and theoretical investigations [3–10] have provided valuable insights into the
solvent effects on the zwitterionic GB. In contrast to the solvation of aliphatic amino acid
zwitterions [11–14], where the hydration shells of the amino group (NH3

+), carboxylate
group (COO−) and methylene group (CH2) should be considered [15,16], it is necessary to
focus on the interaction of COO− with water in GB. Such interaction has been studied in
detail for carboxylate ions [17,18], subunits of photosystem II [19], anion of diclofenac [20]
and anions of some drug compounds [21]. In these cases, the main attention has been
paid to the description of intermolecular hydrogen bonds (H-bonds) formed by the COO−

group of a solute with water molecules. However, GB has several significant differences

Int. J. Mol. Sci. 2023, 24, 12971. https://doi.org/10.3390/ijms241612971 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241612971
https://doi.org/10.3390/ijms241612971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0009-0006-7374-626X
https://orcid.org/0000-0002-7020-0134
https://orcid.org/0000-0002-0511-9903
https://doi.org/10.3390/ijms241612971
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241612971?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 12971 2 of 16

from the above compounds. First, it exists as a zwitterion not only in condensed media, but
also in vacuum. Second, the presence of a methylene group in the GB zwitterion indicates
the presence of acidic protons capable of forming intermolecular C–H···O bonds. The latter
play an important role in biologically active systems [22,23] and multicomponent drug
crystals [24,25]. As a result, GB can be treated uniformly in vacuum and in the condensed
phase. (Proton transfer should be considered for amino acids in vacuum. This complicates
the theoretical treatment and often leads to the use of different calculation levels for amino
acids in vacuum and in crystals [26]). In addition, the structure of its hydration shell may
differ from that of aliphatic amino acids, since GB can form C–H···Ow bonds [10], where
“w” denotes the oxygen atom of the water molecule.

This study assumes that a certain noncovalent intermolecular interaction is due to the
existence of a bond path (i.e., a bond critical point) [27] between a pair of atoms belonging
to different molecules. The identification of noncovalent interactions is based on the Bader
analysis of the electron density obtained for the optimized non-periodic or crystalline
structures using density functional theory (DFT). The enthalpy of intermolecular H-bonds
is estimated using the Rosenberg approach [28], and the energy of intermolecular H···H-
bonds is evaluated using the properties of electron density at the bond critical point [29].
The applicability of these approaches to estimating the enthalpy/energy of intermolecular
H-bonds is given elsewhere [30]. A detailed study of the intramolecular H-bonds [10,31] is
beyond the scope of this study.

We will focus on the geometry and enthalpy of intermolecular H-bonds in the GB water
complexes, its dimer and crystalline monohydrate. At the first stage, the microsolvation of
the GB zwitterion is considered and the obtained configurations of hydration shells with
different numbers of water molecules are compared with those in amino acid zwitterions
and carboxylate ions. At the second stage, the structure of the GB dimer is calculated and
the enthalpy of noncovalent interactions in it is estimated. At the third stage, the enthalpy
of noncovalent interactions in GB crystalline monohydrate is evaluated. The obtained
results allowed us to reveal the specific proton-donor properties of GB compared to amino
acid zwitterions or carboxylate ions, and led to a valuable understanding of the interaction
between GB and water. It should be emphasized that the same theoretical level was used
for non-periodic and periodic DFT calculations.

2. Results
2.1. Metric Parameters and Enthalpy of Intermolecular H-Bonds in Complexes of GB with Water

The paper considers GB complexes with water, in which water molecules form Ow–
H···O bonds with COO− and C–H···Ow bonds with the C–H of the methylene and methyl
groups. Sequential hydration, i.e., the successive addition of water molecules to the
respective zwitterion or ion, is usually studied [12,18,32,33]. The number of water molecules
forming the first solvation shell of GB, i.e., interacting with GB through H-bonds, is about
7 [34]. In this case, up to five water molecules interact directly with COO− [18,35]. The
energy of structures in which the water molecules do not interact directly with the COO−

group (Figure 8 in [18]) is usually much higher than the energy of the global minimum
structure (>>kBT, where kB is the Boltzmann constant and T = 300 K). The localization
of such structures is beyond the scope of this work. For “incomplete” hydration shells,
in addition to the structure of the global minimum, there are several possible structures
corresponding to local minima whose energy is quite close to that of the global minimum.
The energies of the structures of the low-lying local and global minima may be very close,
~ kBT, and their relative stability can vary depending on the calculation level [32]. In this
work, the main attention is paid to the type, number, metric parameters and enthalpies of
intermolecular H-bonds in the structures of the global minimum and several low-lying local
minima of GB•(H2O)n complexes, where n = 1, 2, . . .5. The calculations were performed
in the B3LYP/6-311++G**, wB97XD/aug-cc-pVDZ and B3LYP/6-31G** approximations,
since the latter approximation was used in the calculations of the GB crystalline hydrate.
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An exact determination of the relative energies of the local minima structures is not within
this research focus.

For simplicity, the term “global minimum structure” will be used below to designate
the structure of the GB•(H2O)n complex found in the B3LYP/6-31G** approximation. Such
a structure of the GB•(H2O) complex is shown in Figure 1 (upper panel). The water bridges
the carboxylate group and the C–H of the methylene and methyl groups. It forms the
Ow–H···O bond of moderate strength [36] ~27 kJ/mol as a proton donor and two C–H···Ow
bonds as proton acceptors. The total enthalpy of the latter is ~23 kJ/mol (Table S1).
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Figure 1. The global minimum structures of GB•(H2O) (upper panel) and GB•(H2O)2 (lower panel).
H-bonds are indicated by dotted lines.

The considered structure of GB•(H2O) is similar to the 1Z-a structure of the glycine
zwitterion with water [32]. However, this is inconsistent with the structures of global
minima found for the acetate ion [18,33] and for the GB•(H2O) complex [10]. A possible
reason for this difference is related to the fact that C–H···Ow bonds were not considered or
were missing in [10,18,33]. The enthalpies of intermolecular H-bonds in the low-lying local
minima structures of GB•(H2O) are given in Table S2. All structures have one Ow–H···O
bond and two C–H···Ow bonds(Figure S1). In the B3LYP/6-311++G** and wB97XD/aug-
cc-pVDZ approximations, all three structures are characterized by very close stability.

Figure 1 (lower panel) shows the global minimum structure of the GB•(H2O)2 complex.
It is “unique” because it is not realized in partially hydrated amino acid zwitterions [12,32]
and acetate ions [18,33]. The total enthalpy of two Ow–H···O bonds is ~55 kJ/mol, and
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the total enthalpy of four C–H···Ow bonds is about 45 kJ/mol (Table S1). The structures
corresponding to the local minima are shown in Figure S2, and the enthalpies of the
intermolecular H-bonds occurring in them are listed in Table S3.

In Figure 2 (upper panel), the structure of the global minimum GB•(H2O)3 is shown.
It resembles microsolvated structures of GB with three water molecules (see Figure 3a
in Ref. [9]). The total enthalpy of four Ow–H···O bonds is ~100 kJ/mol, and the total
enthalpy of two C–H···Ow bonds is less than 30 kJ/mol (Table S1). A feature of this
structure is the presence of a water molecule that does not form H-bonds with GB. The
structures corresponding to the low-lying local minima structures are shown in Figure S3,
and the enthalpies of the intermolecular H-bonds occurring in these structures are listed in
Table S4.
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The global minimum structures of GB•(H2O)4 and GB•(H2O)5 are shown in Figure 2
(lower panel) and Figure 3, respectively. All the water molecules in them form H-bonds
with the COO− group. According to Tables S1 and S5, the number of C–H···Ow bonds in the
structures of the considered complexes may be comparable to the number of Ow–H···O bonds.
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The results obtained allow us to draw the following conclusions. The B3LYP/6-31G**
approximation gives the metric parameters and enthalpies of the Ow–H···O bonds very
close to the values calculated in the B3LYP/6-311++G** approximation. At the same
time, B3LYP/6-31G** systematically overestimates the metric parameters and enthalpies
of the C–H···Ow bonds (~2 kJ/mol) compared to B3LYP/6-311++G**. The results of the
wB97XD/aug-cc-pVDZ calculations lie between the values obtained by B3LYP with modest
and extended basis sets. The enthalpies of the H-bonds found using Equation (1) are in
reasonable agreement with the energies estimated from Equation (2). All this points to the
reliability of the obtained results.

Scheme 1 reflects the following specific features of GB complexes with water molecules.
In structures with n = 1 and 2, Ow–H···O bonds as well as C–H···Ow bonds contribute
equally to the total energy of the complexes. In complexes with n = 3, 4 and 5, the
proportion of C–H···Ow bonds increases with the number of water molecules and reaches
32% in the case of the GB•(H2O)5 structure. From Scheme 1, it can be seen that Ow–H··O
bonds account on average for ~60% of the total energy of intermolecular interactions in
the considered complex. About 40% of the energy is associated with the formation of
C–H···Ow bonds.
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Similar to crystalline hydrates [37,38], the water molecule can form three H-bonds
with gGB: either two Ow–H···O bonds as a proton donor and one C–H···Ow bond as a
proton acceptor, or vice versa with a total enthalpy of about 45 kJ/mol. As a result, the total
enthalpy of intermolecular H-bonds in the GB•(H2O)5 complex is greater than 200 kJ/mol.

2.2. GB Dimer in Vacuum

Intermolecular interactions of organic molecules and ions in gas [39–43] and con-
densed phases [44–48] have been studied experimentally and theoretically during the last
two decades. The quantitative description of the intermolecular interaction in the GB dimer
deserves special attention for the following reason. The interaction of two zwitterions in
vacuum allows us to compare the interaction energy obtained by two approaches: total
energies and Bader’s approach [27]. In the latter case, several empirical approaches have
been proposed to estimate the energy of noncovalent interactions [49,50].

The mutual orientation of the molecules in the GB dimer is shown in Figure 4. From
the data given in Table 1, it can be concluded that the GB dimer is stabilized by a large
number of intermolecular C–H···O bonds. These bonds are formed by the hydrogens of the
methylene and methyl groups of one GB molecule with the oxygen of the carbonyl group of
another GB molecule, with enthalpies ranging from ~10 to ~14 kJ/mol. The total enthalpy of
these bonds is about 75 kJ/mol (B3LYP/6-31G**) and 71.5 kJ/mol (wB97XD/aug-cc-pVDZ).
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Table 1. H···O distances R(H···O) in GB dimer calculated using B3LYP/6-31G** and wB97XD/aug-
cc-pVDZ and intermolecular H-bond enthalpies, computed using Equation (1).

Fragment a
R(H···O), Å –∆HHB, kJ/mol

B3LYP/6-31G** wB97XD/aug-cc-pVDZ B3LYP/6-31G** wB97XD/aug-cc-pVDZ

C–H36···O2 2.435 (139.6) 2.347 (143.2) 10.0 11.1
C–H32···O2 2.250 (144.7) 2.386 (141.2) 12.7 10.6
C–H37···O2 2.142 (147.5) 2.175 (148.7) 14.7 14.0
C–H19···O21 2.142 (147.5) 2.176 (148.7) 14.7 14.0
C–H11···O21 2.250 (144.7) 2.386 (141.2) 12.7 10.6
C–H15···O21 2.435 (139.6) 2.347 (143.2) 10.0 11.1

Total enthalpy 74.8 71.5
a See Figure 4.

The interaction energy in the dimer was also calculated using the energy of the GB
molecule and its dimer, taking into account the BSSE error (Section 4.1). In this case, the
equilibrium geometry of the dimer obtained in the corresponding approximation was used.
The value of the interaction energy in the GB dimer, calculated from the total energies taking
into account the BSSE error, is 110 kJ/mol (B3LYP/6-31G**) and 145 kJ/mol (wB97XD/aug-
cc-pVDZ). Thus, B3LYP/6-31G** significantly underestimates the interaction energy in the
dimer compared to wB97XD/aug-cc-pVDZ.

The different interaction energies obtained using the total energy and the Bader
approach are explained by the significant dipole–dipole interaction in the dimer due to the
large value of the dipole moment of the GB molecule, 10.8 D (B3LYP/6-31G**) and 12.0 D
(wB97XD/aug-cc-pVDZ).

2.3. The GB Crystalline Monohydrate

A quantitative description of noncovalent interactions in molecular crystals is not
easy. From an experimental point of view, there must be a known number of noncovalent
interactions of the same type, such as in water ice [51]. Then, the enthalpy of the desired
interaction can be estimated from the enthalpy of sublimation. From a computational point
of view, it is necessary to identify noncovalent interactions (there are many short contacts
in molecular crystals) and estimate the energy of each interaction (formulas using different
electron density characteristics lead to different energy values [52]). The crystalline hydrates
of organic molecules are convenient objects for studying noncovalent interactions in solids
because (i) they are often formed under traditional crystallization conditions [53–55], and
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(ii) the enthalpies of intermolecular H-bonds can be obtained by a method using the metric
properties of these bonds [28].

Intermolecular interactions in the GB crystalline monohydrate can be divided into two
types: water–GB and GB–GB. (Water—water interactions are not realized in this crystal).
Table 2 shows the water–betaine interaction energies. These interactions are shown in
Figure 5. It follows that the B3LYP/6-31G** and PBE-D3/6-31G** approximations lead to
close values of the distances H···O and –∆HHB in the considered crystal; the total enthalpy
of water–betaine interactions is greater than that of betaine–betaine interactions. This
indicates the structure-determining role of the water molecule.

Table 2. H···O distances R(H···O) in GB crystalline monohydrate, calculated using periodic DFT in
the B3LYP/6-31G** and PBE-D3/6-31G** approximations, and intermolecular H-bond enthalpies,
computed using Equation (1).

Fragment a R(H···O), Å –∆HHB, kJ/mol

B3LYP PBE-D3 B3LYP PBE-D3

Water–GB interactions
O–H12···O1 1.676 1.656 31.1 32.3
O–H13···O2 1.649 1.633 32.7 33.7
O3···H11–C 1.989 1.964 18.5 19.2
O3···H2–C 2.277 2.258 12.2 12.5
O3···H4–C 2.442 2.459 9.9 9.7
O3···H8–C 2.481 2.475 9.4 9.5
O3···H3–C 2.543 2.528 8.7 8.9
O3···H7–C 2.665 2.531 7.6 8.9
O3···H9–C 2.671 2.663 7.5 7.6

Total enthalpy 137.6 142.3

GB–GB interactions
O1···H3–C 2.188 2.175 13.8 14.1
O1···H5–C 2.522 2.486 8.9 9.4
O1···H6–C 2.647 2.641 7.7 7.8
O1···H7–C 2.527 2.518 8.9 9.0
O1···H9–C 2.275 2.263 12.3 12.5
O1···H10–C 2.205 2.201 13.5 13.6
O2···H6–C 2.168 2.158 14.2 14.4
O2···H8–C 2.630 2.628 7.9 7.9
O2···H10–C 2.253 2.228 12.6 13.1

Total enthalpy 99.8 101.8
a see Figure 5. The atomic number used is included in the CDC file 760253.cif of GB crystalline monohydrate [56].

A comparison of Table S1 and Table 2 shows that:

(1) In the GB crystalline monohydrate, there is a significant strengthening of classical
H-bonds in comparison with GB–water complexes in the gas phase;

(2) The number of C–H···Ow bonds in the crystalline monohydrate also increases in
comparison with the GB–water complexes in the gas phase.

In GB crystalline monohydrate [56], a large number of GB–GB intermolecular interac-
tions are also realized, as seen in Table 2. A comparison of Tables 1 and 2 shows that:

(1) In the GB crystalline monohydrate, the energy of the C–H···O bond does not change
significantly compared to the corresponding bonds in the GB dimer in the gas phase;

(2) The number of intermolecular bonds in a crystal is much larger than in a dimer. This
is due to the fact that in the considered crystal, the GB and water molecules interact
with several neighboring GB molecules.
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From the data presented in Tables S6 and S7, it follows that H···H interactions are also
realized in the dimer and crystalline monohydrate of GB, the energy of which varies from 4
to 9 kJ/mol. The energy of such interactions can reach 20 kJ/mol [57].

3. Discussion

Interatomic surfaces in gradient fields of electron density, ρ, and electrostatic potential,
ϕ, allowed us to identify the atomic ρ -basins and ϕ -basins, respectively. The first one
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defines chemically bonded atoms and the second one determines electrically neutral atomic
fragments within a common electron-nuclear system. We remember that the electron
density within each ϕ-basin is attracted to the corresponding nucleus. Considering the
superposition of the ρ-basins and ϕ-basins of adjacent atoms A and B of a different kind,
we note that the part of the electron density belonging to atom A falls into the ϕ-basin
of atom B. Figure 6 shows that the ρ-basin and ϕ-basin overlap, forming intermolecular
hydrogen bonds: Ow–H···O and C–H··· Ow (these regions are shaded). The size of these
regions not only indicates a significant electrostatic contribution to the formation of the
H-bonds, but also that the acidity of the H2 atom is comparable to that of the H21 atom.
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points are drawn in red.

The question is whether it is possible to identify C–H···O bonds by any experimental
method. IR spectroscopy [58] and proton nuclear magnetic resonance (1H NMR) [59,60]
seem to be the most suitable.

The calculated frequencies of the C–H stretching vibrations of the methylene and
methyl groups of GB are in the range of 3060–3180 cm−1. Unscaled values of the frequen-
cies are in agreement with the available experimental data [61]. In the GB complex with five
water molecules, the frequency of these vibrations is in the range of 3075–3210 wavenum-
bers, i.e., it is slightly shifted to the blue region in comparison with GB. The small value of
the shift in the frequencies of the C–H stretching vibrations has a simple explanation. In the
GB molecule, two intramolecular C–H···O bonds are realized (Figure 7). We conclude that
vibrational spectroscopy is hardly applicable for the experimental identification of C–H···O
bonds in the GB complex with water.
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Figure 7. Intramolecular C–H···O bonds in the GB molecule. Their enthalpies (B3LYP/6-31G**) are
given in kJ/mol. The values calculated at the B3LYP/aug-cc-pVTZ level are given in parentheses.

The chemical shift, δ, is calculated from the absolute shielding of the nucleus in the
molecule of interest, σ, and in a reference compound, σref [62]. With a high degree of
accuracy, δ ≈ σref -σ [63]. Tetramethylsilane is well known as a reference standard for the
1H NMR chemical shift [64]. Σref is 31.74 ppm for the isolated TMS molecule computed at
the B3LYP/aug-cc-pVTZ level [65]. The structure and absolute shielding of 1H atoms in
GB and its dimer have been computed at the B3LYP/aug-cc-pVTZ level. The theoretical
chemical shifts δ(1H) in these structures can be divided into three groups. The first includes
hydrogen atoms that do not participate in the formation of the H-bond, and their chemical
shifts do not exceed 3 ppm. The second group consists of H atoms forming intermolecular
C–H···O bonds, and their chemical shifts lie within 4–5 ppm. The last group includes
hydrogen atoms that are involved in the formation of intramolecular C–H···O bonds, δ(1H)
> 5 ppm. Due to the rapid rotation of the methyl groups around the CN bonds, the 1H NMR
spectrum will actually contain only one CH signal of hydrogen atoms forming inter- and
intramolecular C–H···O bonds. It is reasonable to expect that under favorable conditions
for GB diluted in aprotic solvents, the formation of intermolecular C–H···O bonds might
be detected by 1H NMR as a concentration dependence of CH chemical shifts. According
to the results of the calculations, the formation of weaker intermolecular C–H···O bonds
instead of stronger intramolecular bonds should lead to a high-field shift of the signal of
the CH proton located by about 5–6 ppm.

4. Materials and Methods

The spatial structure of the hydrates of organic molecules is determined primarily
by intermolecular H-bonds, which are of an electrostatic nature. These H-bonds play a
structure-directing role in the crystalline hydrates of organic molecules [54], multicompo-
nent crystals of energetic substances [66] and pharmaceutically active ingredients [24,67].
The metric parameters and energies of H-bonds, the IR and Raman spectra of the crys-
tals under consideration are satisfactorily reproduced in the B3LYP/6-31G** approxima-
tion [25,50,54]. Explicit allowance for London dispersion interactions has practically no
effect on the calculated values of these characteristics in the crystals under considera-
tion [25,68,69]. To validate the results obtained in the B3LYP/6-31G** approximation, we
also performed calculations with functionals and basis sets widely used in the periodic and
non-periodic calculations of organic molecules and their complexes, as seen below.
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4.1. Non-Periodic DFT Computations

Non-periodic computations were performed using the Gaussian16 software pack-
age [70]. The molecular structures were plotted using GaussView 6.0.16 [71]. We used the
B3LYP [72,73] functional with the all-electron Gaussian-type localized orbital basis sets
6-31G**. To check the results of the B3LYP/6-31G** calculations in non-periodic computa-
tions, the B3LYP/6-311++G** and wB97XD/aug-cc-pVDZ approximations were also used.
B3LYP/6-311++G** is commonly used in sequential hydration calculations of aliphatic
amino acid zwitterions, carboxylic acid anions, GB and choline [12,18,31]. Consideration
of a newer DFT functional, such as wB97XD [74], was justified by the need to verify the
analysis of noncovalent interactions. All calculated complexes correspond to a minimum
on the potential energy surface.

The energy of the intermolecular interaction in the GB dimer was calculated as the
sum of the energies of the components minus the energy (BSSE corrected) of the complex.
The BSSE corrections were performed using the counterpoise method [75].

The analysis of the electrostatic potential and electron density gradient fields [76] were
performed and visualized in Multiwfn 3.8 [77]

4.2. Periodic DFT Computations

Computations with all-electron Gaussian-type localized orbital basis 6-31G** were
conducted using the CRYSTAL17 package [78]. We employed B3LYP and PBE [79]. The
London dispersion interactions were taken into account by introducing the D3 correction
with Becke-Jones damping (PBE-D3) developed by Grimme et al. [80]. B3LYP and PBE-D3
are the most popular functionals in periodic (solid-state) DFT calculations of organic crys-
tals [26,81–84]. These functionals provide a well-founded trade-off between accuracy and
computational speed for experimentally observed properties of multicomponent organic
crystals [85–87]. The space group and unit cell parameter of the considered crystal obtained
from the X-ray diffraction experiment [56] were fixed, and the structural relaxations were
restricted to the positional parameters of the atoms (AtomOnly). Tolerance on energy
controlling the self-consistent field convergence for geometry optimizations and frequen-
cies computations is set to 10−10 and 10−11 hartree, respectively. The shrinking factor of
the reciprocal space net is set to 3. The structures optimized at the B3LYP/6-31G** and
PBE-D3/6-31G** levels are found to correspond to the minimum point on the potential
energy surface.

4.3. Evaluation of the Enthalpy/energy of Intermolecular H-Bonds and Noncovalent Interactions

There are several empirical approaches to estimating the enthalpy/energy of nonco-
valent interactions in gas and condensed phases; for example, see [49,50]. Rosenberg’s
approach [28] was developed for intermolecular H-bonds, see Equation (1). It uses the
H···O distance, which can be obtained by neutron diffraction or calculated. The accuracy
of the enthalpy is determined by the accuracy with which the H···O distance is calculated.
To obtain reliable enthalpy values, H···O distances were calculated in this work using
several approximations, that is, different functionals and basis sets. Note that Equation (1)
is not intended to estimate the enthalpy of H···H interactions; therefore, their energy was
calculated by Equation (2). According to [50], these approaches give close values of the
enthalpy/energy of moderate H-bonds (<30 kJ/mol).

The ∆HHB values of the O–H···O and C–H···O bonds were estimated using the Rozen-
berg approach [28]:

−∆HHB [kJ/mol] = 0.134·R(H···O)−3.05, (1)

where R(H···O) is the H···O distance (nm). It was obtained as a result of geometry optimization.
The energy of intermolecular H-bonds Eint was evaluated according to ref. [29] as:

Eint = 0.429·Gb, (2)
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where Gb is the positively defined local electronic kinetic energy density at the H···O or
H···H bond critical point [27].

The quantum-topological analysis of the non-periodic and periodic electron density
was performed using the programs AIMALL [88] and Topond14 [89], respectively.

5. Conclusions

The specific proton donor properties of glycine betaine are due to its ability to form
intermolecular C–H···O bonds with the oxygen atom of a water molecule or the carboxylate
group of a neighboring glycine betaine. Such bonds form the hydrogen atoms of both the
methylene and methyl groups of glycine betaine. The enthalpy of intermolecular C–H···O
bonds can be significantly greater than 10 kJ/mol. The water molecule can form three H-
bonds with glycine betaine: either two O–H···O bonds as a proton donor and one C–H···O
bond as a proton acceptor, or vice versa. The C–H···O bonds contribute up to 40% of the
total entropy of the glycine betaine–water interaction, which is about 45 kJ/mol.

It is reasonable to expect that under favorable conditions for glycine betaine diluted
in aprotic solvents, the formation of intermolecular C–H···O bonds might be detected by
proton nuclear magnetic resonance as a concentration dependence of CH chemical shifts.
According to the results of calculations, the formation of weaker intermolecular C–H···O
bonds instead of stronger intramolecular bonds should lead to a high-field shift of the
signal of the CH proton.
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