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Abstract: Partial reversible inhibition of enzymes, also called hyperbolic inhibition, is an uncommon
mechanism of reversible inhibition, resulting from a productive enzyme–inhibitor complex. This
type of inhibition can involve competitive, mixed, non-competitive and uncompetitive inhibitors.
While full reversible inhibitors show linear plots for reciprocal enzyme initial velocity versus inhibitor
concentration, partial inhibitors produce hyperbolic plots. Similarly, dose–response curves show
residual fractional activity of enzymes at high doses. This article reviews the theory and methods
of analysis and discusses the significance of this type of reversible enzyme inhibition in metabolic
processes, and its implications in pharmacology and toxicology.
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1. Introduction

Reversible inhibition of enzymes is a very fast process. Establishment of the enzyme–
inhibitor complex occurs within microseconds. With slow-binding inhibitors, establishment
of the enzyme–inhibitor steady-state is much longer and can need minutes. To simplify, our
topic is devoted to fast reversible inhibition of enzymes (rapid equilibrium assumption),
which constitute the majority of encountered reversible inhibition processes. Several mech-
anisms account for rapid reversible inhibition of enzymes (E). Rapid reversible inhibition
can be either competitive, non-competitive, mixed or uncompetitive. In most cases, the
enzyme–inhibitor complex (EI) is non-productive. However, in certain cases, reversible in-
hibition is partial, the ternary complex enzyme–substrate–inhibitor (ESI) can be productive
to some extent (Scheme 1). The phenomenon of partial reversible inhibition (PRI), rather
uncommon, was first theoretically investigated by Cleland [1]. It was called non-linear
hyperbolic inhibition because Dixon plots are downward curved in the simplest cases.
Shortly after its theoretical prediction, PRI was observed on different purified enzymes:
AMP-activated NADH oxidase inhibited by NAD [2], phosphorylase b inhibited by glucose-
6-phosphate [3]. In 1975, Irwin H. Segel in his monumental enzyme kinetics textbook [4]
thoroughly examined the different cases of reversible inhibition where ESI complexes
are productive, leading to partially inhibited enzymes. Segel also derived steady-state
rate equations for simple competitive, noncompetitive, mixed-type and uncompetitive
inhibition rapid equilibrium enzyme–substrate–inhibitor systems, and even for certain
multiple-binding site enzyme models, showing cooperativity or not. Later, Yoshino [5]
proposed a convenient graphical method for determination of partial inhibition parameters.
Several other graphical methods were also proposed, all of them allow discrimination
between the different types of PRI.

The importance of enzyme PRI in metabolic processes has been recognized in early
studies [2,3]. The present report deals with formal mechanism analysis of PRI, graphical
methods for determination of inhibition parameters, and significant examples of PRI.
We also stress the importance of this type of inhibition in toxicology, pharmacology and
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drug discovery [6]. As a trend, thorough investigations of the mechanisms of action
(MOA) of novel drug candidates are becoming a mandatory step in early development of
new pharmaceuticals.
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Scheme 1. Partial reversible inhibition of a simple Michaelian enzyme model.

2. Formal Mechanisms, Analysis and Diagnosis of PRI

Let us consider the rate (v) equation (Equation (1)) of the simplest Michaelis–Menten
enzyme kinetic system (upper part of Scheme 1) with the maximum velocity (Vmax) =
kcat[E], in which kcat is the catalytic constant, [E] the enzyme concentration, and [S] the
substrate concentration.

v =
kcat[E][S]
Ks + [S]

(1)

A reversible inhibitor (I) may bind to the free enzyme (E) and/or to the enzyme–
substrate complex (ES). Four mechanisms account for fast reversible inhibition of en-
zymes: competitive inhibition, where inhibitor competes with substrate for the same site;
non-competitive inhibition; mixed-type inhibition; and uncompetitive inhibition. Un-
competitive inhibitors bind exclusively to ES complexes. In general, the complex ESI is
non-productive. However, in the case of PRI, the ESI complex displays some activity
(Scheme 1 red segment).

Assuming a rapid equilibrium system, Scheme 1 shows the minimum mechanism for
PRI of a Michaelian enzyme (E). Ks is the dissociation constant of the enzyme–substrate
complex, Ks = [E][S]/[ES], and Ki the dissociation constant of the enzyme–inhibitor complex,
Ki = [E][I]/[EI]. In this system, the enzyme–substrate–inhibitor complex (ESI) is partially
productive with a catalytic constant βkcat < kcat.

In Scheme 1, the coefficient α ≥ 1 (except α ≤ 1 for uncompetitive PRI) indicates the
change in Ks and Ki resulting from binding of I to the active site. αKi is sometime written
K’i; the coefficient β, 0 < β < 1, indicates that ESI complex is productive. Then, in the case
of competitive inhibition, α = ∞ and Ki << αKi; for non-competitive inhibition, α = 1 and
Ki = αKi; for uncompetitive inhibition, Ki = ∞ and αKi << Ki. In the case of mixed-type
inhibitions, competitive mixed-type, α > 1 and Ki < αKi; uncompetitive mixed-type, α < 1
and αKi << Ki.

Assuming rapid equilibrium, the general scheme (Scheme 1) can be described by the
following rate equation (Equation (2)):

vi =
[(kcat[E][S])/Ks] + [(βkcat[E][S][I])/(αKsKi)]

1 + ([S]/Ks) + ([I]/Ki) + (([S][I])/(αKsKi))
(2)

At high inhibitor concentration, [I], the maximum velocity at saturating substrate
concentration tends to Vmax,i = βkcat[E]. At first, Lineweaver–Burk plots (1/v vs. 1/[S]) and
hyperbolic replots of slope and 1/v-axis intercept as a function of inhibitor concentration
[I] can conveniently be used for diagnosis of PRI. 3D representations of Lineweaver–Burk,
Hanes and Eadie-Hofstee plots at different inhibitor concentrations can be built [7]. Three-
dimensional graphical representations are theoretically appealing. However, experimental
errors, in particular at low substrate concentrations, can make it difficult to interpret 3D
diagrams and to provide an unambiguous diagnosis. Non-linear regression fitting of
Equation (2) can theoretically be performed to determine parameters of PRI. This applies to
simple Michaelis–Menten models. However, such a graphical method may need a large
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number of experimental points if the catalytic scheme involves several inhibitor binding
sites. In these cases, the saturation curve is not a simple monophase hyperbole. This issue
will be emphasized in the next paragraphs.

Several other graphical methods allow discrimination between full inhibition and
PRI and lead to the determination of parameters of PRI. In particular, let us mention the
specific velocity (v0/vi) plot of Baici [8], v0/vi vs. σ/(1 + σ) where σ = [S]/Km. More recently,
a decrease in secondary plots of appKm/appkcat vs. [I] was found to be a valuable qualitative
criterion for partial inhibition [9]. About this later plot, although the authors insist that
analysis of data must be performed using non-linear regression, we must point out that
propagation of errors on appKm and appkcat parameters may impair accurate determination of
β values. However, simpler, more convenient and accurate plots can be used. The following
describes these graphical methods.

According to Copeland [10] (pp. 336–338), direct concentration–response plot, i.e., the
fractional enzyme activity, y = vi/v0, as a function of [I] can be conveniently drawn, using
IC50 as the medium inhibitory concentration (Equation (3), Figure 1). At [I] = 0, y = 1 and at
high [I], the residual fractional activity is yi,min. In Equation (3), IC50 is related to inhibition
constant Ki.

vi
v0

=
1− yi,min[

1 +
(

[I]
IC50

)] + yi,min (3)

here v0 is the rate at given substrate concentration in the absence of an inhibitor.
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Figure 1. Theoretical vi/v0 plot as a function of [I]. At IC50, vi/v0 = 0.5. The residual activity (vi, min)
at high inhibitor concentration indicates partial inhibition.

For full reversible inhibitors, relationships between Ki and IC50 were first established
by Cheng and Prusoff [11]. A recent review presents relationships between Ki and indicators
of pharmacological/toxicological activity, see [12]. In the case of PRI, relationships between
Ki and IC50 are developed for each inhibition mechanism have been established by Gelpi
et al. [13]. The authors pointed out that several IC50 relationships are identical between
full and partial reversible inhibitors. Moreover, in the case of PRI, the meaning of IC50 has
to be reconsidered. Indeed, depending on the value of β, the real IC50 value for a PRI is
less than the value for a full inhibitor that inhibits 50% of the total enzyme activity. Also,
from toxicological and therapeutic points of view, in the case of PRI, if IC50 values were
experimentally determined from vi/v0 plots, it would be more relevant to define these
values as apparent IC50 and to provide the value of β. Therefore, the sole determination
of IC50 cannot be used for diagnosis of PRI. Only the residual value of vi/v0 at high [I]
provides evidence for PRI (Equation (3), Figure 1).



Int. J. Mol. Sci. 2023, 24, 12973 4 of 13

Then, Dixon plots can be built. In steady-state kinetics, deviations from linearity in
Dixon plot (1/vi versus [I] at different substrate concentrations) [14] or reversible enzyme
inhibition may provide a first indication in favor of partial inhibition (cf., [10]). Downward
curvature of Dixon plots as inhibitor concentration increases may indeed reflect productivity
of the ternary complexes ESI. However, quantitative determination of PRI parameters is
difficult from Dixon plots (cf. Equation (4)):

1
v
=

1
Vmax


(

1 + [I]
αKi

)
(

1 + β[I]
αKi

)
+

Ks

Vmax[S]


(

1 + [I]
Ki

)
(

1 + β[I]
αKi

)
 (4)

On the other hand, upward curved Dixon plots, indicate multisite inhibitor interactions.
More complex Dixon plots can be observed. Multiphasic Dixon plots with consecutive

downward and upward curvatures can be seen in the case of the binding of a second
inhibitor molecule on an allosterically distinct site affects the coefficient β, leading to
coefficient δ with δ < β. The inhibition of human BChE-catalyzed hydrolysis of phenylac-
etate (reporter substrate) by acetylthiocholine (competing substrate) is described by such a
mechanism (Figure 2, Scheme 2) [15].
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Figure 2. Non-linear multiphasic Dixon plots for inhibition of human butyrylcholinesterase-catalyzed
hydrolysis of phenylacetate (PhA) as the reporter substrate by acetylthiocholine, acting as a competing
substrate in 0.1 M phosphate buffer, pH 7.0 at 25 ◦C. Adapted from published figure [15].
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two different sites. The “cross talk” between both sites affects the factor β→δ.

Scheme 2 deals with the complex inhibition pattern of human ChEs as seen in Figure 2.
Inhibition path is first competitive inhibition at low inhibitor concentration followed by
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two consecutive partial inhibition steps as inhibitor concentration is increased. Ip refers
to binding of a second inhibitor molecule on a peripheral (p) site that induces an al-
losteric effect on the catalytic active center. The two sites are interconnected through a
highly mobile loop, called Ω loop. Both complexes ESI and IpESI are partially productive
(δ < β < 1). For theoretical analysis and derivation of formal equations, see supplementary
information in [15].

As mentioned above, Lineweaver–Burk plot analysis (1/v versus 1/[S] at different
[I]) can be used for PRI diagnosis. It has also been proposed for determination of PRI
parameters. This approach was extensively developed in Segel’s book [4] and in [13]. In
particular, in their thorough theoretical approach, these authors examined all possible
situations with respect to all cases of reversible inhibitions (competitive, non-competitive,
mixed and uncompetitive) for discrimination between full and partial reversible inhibitors.
Replots of 1/vi and slope versus [I] are hyperbolic for PRI, while they are linear for fully
reversible inhibition. On the other hand, replots of 1/∆ intercepts (on x and y axes) and
1/∆ slope as a function of 1/[I] are linear for PRI and provide Ki, α and β. (∆ values are
experimental values of intercepts or slopes at concentration [I] minus experimental values
of intercept or slope in the absence of an inhibitor).

Kinetic analysis based on the integration of the Michalis–Menten equation, i.e., analysis
of the time course of reporter substrate degradation until substrate consumption, in the
presence of an inhibitor, can also provide evidence for partial inhibition. The modern
theoretical analysis of competing substrate progress curves kinetics was developed by
Golicnik and Masson [16]. Such an analysis implies that initial rates in the presence and
absence of a competitor, vi and v0, respectively, have to be determined at the beginning of
progress curves, immediately after rapid mixing of a reaction mixture. The concentration
of the reporter substrate [S] is low, much less than Km, thus v0 = (kcat/Km)[E][S]. In the case
of fully competitive inhibition where Km,app = Km(1+[I]/Ki), vi/v0→0 at high[I]. Thus, the
rate equation (Equation (2)) simplifies and in the case of PRI, at low [S], the hyperbolic plot
of vi/v0 vs. competitor concentration does not reach 0 activity at high competing substrate
concentration (i.e., high [I]):

vi
vo

=
1 + β

[I]
αKi(

1 + [I]
Ki

) =

1
[I] +

β
αKi

1
[I] +

1
Ki

(5a)

Rather, when [I] become high (>>Ki), 1/[I]→0, and vi/v0 reaches an asymptotic value
depending on β and αKi [15,17]. In the simplest case where α = 1, the asymptotic limit is β
(Equation (5a)). It is interesting to note that Equation (5a) is analogous to Equation (3), in
particular in the case of competitive inhibition where IC50 = Ki.

Ki and β can be determined by non-linear fitting of Equation (5a). If α 6= 1, then
vi/v0→β/α at high [I]. In the case of multiple binding sites for inhibitors, causing PRI with
coefficients β and δ, Equation (5a) becomes Equation (5b):

vi
v0

=

(
1 +

β[I]
αKi

+
δ[I]2

αKiγKip

)
(

1 +
[I]
Ki

+
[I]2

KiKip

) (5b)

with vi/v0→δ⁄αγ at [I] >> Kip. This situation is described in Scheme 2. In that case, all
graphical representations are not monophasic (cf. Figure 2 and supplementary information
in [15]). Therefore, thorough analysis of PRI needs a large number of experimental points.

Figure 3 shows an example of partial inhibition of human BChE (β = 0.18) determined
from the time course of hydrolysis of benzoylthiocholine (reporter substrate) in the presence
of varying concentrations of a competing substrate, benzoylcholine (blind competing
substrate). If the blind substrate were a fully competing substrate of benzoylthiocholine,



Int. J. Mol. Sci. 2023, 24, 12973 6 of 13

BChE-catalyzed hydrolysis, vi/v0 should reach 0 at a high benzoylcholine concentration.
The asymptotic limit (β) indicates partial inhibition.
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Figure 3. vi/v0 vs. [I]. Inhibition of human BChE-catalyzed hydrolysis of the reporter substrate
benzoylthiocholine (0.025 mM) by benzoylcholine as the competing substrate in 0.1 M phosphate
buffer, pH 7.0 at 25 ◦C. For experimental details see [18] (reproduced with permission from Elsevier).

More conveniently, the coefficient β, (0 < β < 1), can be simply determined from linear
plots of fractional velocity (vi/(v0 − vi)) as a function of the reciprocal of [I] at different
[S] (Equations (6)–(9); Table 1). This graphical method was developed by Yoshino [5] and
popularized by Whiteley [19]. The general equation corresponding to the system described
in Scheme 1 applies to mixed-type inhibition and can be expressed by (Equation (6a)).
Because β > 0, at 1/[I] = 0, the ordinate intercepts values are always positive, depending on
[S], Ks, α and β (Equation (6b)):

vi
v0 − vi

=

(
1 + [S]

Ks

)(
αKi
[I] + β

)
(1− β)

(
[S]
Ks

)
+ (α− β)

(6a)

vi
v0 − vi

=

(
1 + [S]

Ks

)
β

(1− β)
(
[S]
Ks

)
+ (α− β)

(6b)

and the slope =

(
1 + [S]

Ks

)
αKi

(1− β)
(
[S]
Ks

)
+ (α− β)

(6c)

Table 1. Information extracted from linear fractional velocity plots for partial inhibition of enzymes.

Type of Inhibition Intercept on Ordinate Intercept on
Abscissa Slope Replot of Slope vs. [S]

general case (mixed type) Equation (6b) −β/αKi Equation (6c) hyperbolic

competitive Equation (7b) −1/αKi Equation (7c) linear

noncompetitive β/(1 − β) −β/Ki Ki/(1 − β) constant ∀ [S]

uncompetitive Equation (9b) −β/αKi Equation (9c) hyperbolic
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Then, equations for competitive, non-competitive and uncompetitive full and partial
inhibitions are as follows:

For partial competitive inhibition (β = 1, α > 1):

vi
v0 − vi

=

(
1 + [S]

Ks

)
(

α−1
αKi

) (
1
[I]

+
1

αKi

)
(7a)

with ordinate intercept =

(
1 + [S]

Ks

)
(α− 1)

(7b)

slope =

(
1 + [S]

Ks

)
(

α−1
αKi

) (7c)

and intercept on abscissa is given in Table 1.
For partial non-competitive inhibition:

vi
v0 − vi

=
1

1− β

(
Ki
[I]

+ β

)
(8)

Ordinate intercept and slope are reported in Table 1.
For partial uncompetitive inhibition:

vi
v0 − vi

=

(
1 + [S]

Ks

)
(1− β)

(
[S]
Ks

)
− β

(
αKi
[I]

+ β

)
(9a)

Ordinate intercept =

(
1 + [S]

Ks

)
β

(1− β)
(
[S]
Ks

)
− β

(9b)

Slope =

(
1 + [S]

Ks

)
αKi

(1− β)
(
[S]
Ks

)
− β

(9c)

and replot of slope vs. [S] is a hyperbolic function with asymptote αKi/(1 − β) at high [S].
For full inhibition, intercepts on abscissa and ordinate are equal to 0 for all type

of inhibitors.
In the particular case of partial substrate inhibition (i.e., partial inhibition by excess

substrate), the model in Scheme 1 can be used with S instead of I. Thus, Yoshino [20]
proposed a simple graphical method for determination of substrate inhibition constants
(Ksi and αKsi) and coefficient β. The method consists of plotting v/(Vmax − v) as a function
of the reciprocal of substrate concentrations. The intercept on the y-axis is β/(1 − β).

Finally, in a recent master article, Grant [21], discussed the graphical analysis of PRI,
showing all types of plots used for discrimination between PRI (Scheme 1) and other types
of conventional and unconventional fast reversible inhibition of simple enzyme systems.
Moreover, the author showed that these graphical approaches can be used for identification
and quantification of the different mechanisms of non-essential enzyme activation where
β > 1. This includes uncommon cases of inhibitors causing apparent activation at low
substrate concentration and inhibition at high substrate concentration. This very rare
situation with α < 1 and where the inhibitor acts as an activator (β > α) at low substrate
concentration was called partial inhibition system C5 by Segel [4]. In such a case, the
Lineweaver–Burk plots intersect in the upper right quarter [15,22]. With this particular
case, we need to draw attention to the problem of non-essential activation of enzymes
displaying a mechanism similar to the one described in Scheme 1, but with β > 1. Such
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systems involving an activator (A) can be analyzed like PRI, with Ka, the activation constant
instead of Ki and apparent catalytic parameters are (Equations (10) and (11)):

Vmax,a =
Vmax

(
1 + β[A]

αKa

)
(

1 + [A]
αKa

) (10)

Ks,a = Ks

(
1 + [A]

Ka

)
(

1 + [A]
αKa

) (11)

All these methods apply to monomeric and oligomeric enzymes showing no coopera-
tivity in substrate/inhibitor binding as well as to monomeric enzymes displaying allosteric
PRI. For more complex enzyme systems, including multi-subunit allosteric enzymes, the
Segel book [4] remains the essential reference.

To check the validity of the PRI mechanistic model and parameters determined by
non-linear or linear regression analysis of steady-state inhibition data, statistical analysis
of residuals can be used. This statistical method popularized by Cornish-Bowden [23] is
based on comparison of the distribution of residual sum of squares (Q2) between different
alternative mechanistic models. It allows discrimination between different steady-state
kinetic models.

For a complete mechanistic description of PRI, we must point out that the classical
kinetic approach should be completed by in silico methods, i.e., docking of inhibitors
and mechanistic consequence on catalysis by quantum mechanics/molecular mechanics
(QM/MM) simulations.

3. Possible Experimental Artefacts

Limited solubility of inhibitors beyond a certain concentration can be the cause of
pseudo-partial inhibition. Thus, analytical measurement of inhibitor concentration in
buffer solution, and the use of co-solvent to increase inhibitor solubility must be performed
to eliminate this possible artefact. Allosteric inhibition and product inhibition (i.e., non-
dissociation of reaction products from the enzyme active center) may also cause pseudo-
partial inhibition. Thus, primary plots (e.g., dose-response curves), Hill plots and secondary
plots (e.g., Dixon plots, replots of 1/vi and slope versus [I] from Lineweaver–Burk plots)
must be systematically built to avoid misdiagnosis of partial inhibition.

4. Relevance of PRI
4.1. Metabolic Processes

Metabolic processes can be modulated or corrected by the action of PRI on a key
enzyme reaction. The simplest and quite common case is partial inhibition of an enzyme by
excess substrate [20]. Inhibition by excess substrate is rather common and plays important
roles in regulation of metabolic processes and physiological systems [24]. This type of
inhibition was first analyzed by Haldane who considered formation of ternary complex
SES at high substrate concentrations. In the Haldane model, SES is partially productive.
However, numerous mechanistic models account for substrate inhibition [25]. Several
examples illustrate the physiological importance of partial substrate inhibition.

Cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), impor-
tant enzymes in the central and peripheral cholinergic system, deviate from the Michaelis–
Menten model with positively charged substrates. In particular, AChE is inhibited by excess
acetylcholine, the cholinergic system neurotransmitter, while the sister enzyme BChE is
activated by excess substrate [15,26]. In central cholinergic synapses and at neuromuscular
junctions where both enzymes coexist, this property may serve as a first line of defense
to protect the cholinergic system in response to a rapid increase in the acetylcholine level,
e.g., in case of acute inhibition of AChE by a toxicant. Thus, BChE has been regarded as a
surrogate or a backup of AChE.



Int. J. Mol. Sci. 2023, 24, 12973 9 of 13

To maintain constant glucose levels in the body, there is regulation of the activity of a
multi-enzyme complex, the pyruvate dehydrogenase complex, which is inhibited at high
concentrations of substrates: pyruvate, ADP, NAD and CoA [27]. Many physiological
phenomena are controlled by substrate inhibition. According to [28] about a quarter of
the known substrates have such an inhibiting property. Using the example of a mutation
in the haloalkane dehalogenase LinB from Sphingobium japonicum UT26, it was shown
that strong enzyme inhibition by substrate occurs. This inhibition was attributed to direct
blockage and/or limited conformational flexibility of the product exit from the active site of
the enzyme.

Reed et al. [24] listed more than 60 enzymes showing partial substrate inhibition. Now
the number of enzymes displaying PRI is likely much higher. In particular, several systems
are clearly of metabolic, physiological, and epigenetic significance. For example, inhibition
of phosphofructokinase by ATP acts in regulation of glycolysis; inhibition of tyrosine
hydroxylase by tyrosine and inhibition of tryptophan hydroxylase by tryptophane play a
role in homeostasis of dopamine synthesis; inhibition of the folate cycle enzymes by folate
plays a role in folate homeostasis, and because of seasonal variations in the content of folate
and B vitamins of diets, PRI of the folate cycle enzymes maybe regarded as an evolutionary
mechanism to dampen the large seasonal fluctuations in diet folate availability; inhibition
of DNA methyltransferase-1 by regions of unmethylated DNA protect these regions from
inappropriate pathogenic methylations. Lastly, it was shown that partial inhibition of
glycolysis led to inhibition of atherosclerotic plaque growth and caused a positive effect on
cardiac function [29].

4.2. Pharmacology and Toxicology

In addition to the previous example about inhibition of AChE by excess acetylcholine,
we must consider the inhibition of ChEs by various toxic compounds. First, it is important
to make a difference between the irreversible and reversible inhibitors of these enzymes.
Irreversible inhibition of ChEs happens in acute poisoning by anti-cholinesterase com-
pounds, e.g., carbamates and organophosphates, mostly pesticides and banned chemical
warfare agents [30]. These compounds react with the enzyme catalytic serine. Thus, they
are irreversible or quasi-irreversible inhibitors. These types of inhibitors highlight the
toxicological and pharmacological importance of irreversible inhibition of cholinesterases.
Carbamylation and phosphylation (phosphorylation and phosphonylation) of AChE by
carbamates and organophosphates is a major public health concern that causes the death
of more than 100,000 people annually around the world [30]. Cholinesterases can also be
reversibly inhibited by various ligands. Several works pointed out that different types
of ligands may cause partial inhibition of these enzymes. These molecules can be either
toxicants such as d-tubocurarine or drugs of interest in the palliative treatment of Alzheimer
disease or other pathological states [15,22,31]. For inhibition of cholinesterases, the mech-
anism of PRI involves the binding of inhibitors on peripheral binding sites, in particular
to the peripheral anionic site (PAS) at the entrance of the active site gorge. This binding
triggers the partial inhibition of acylation by positively charged substrates (e.g., the natural
substrate, acetylcholine) via an allosteric effect, cf. Scheme 2. This mechanism has been
established from in vitro studies. Thus, in vivo partial inhibition of the activities (natural or
promiscuous) of cholinesterases by various ligands of cholinergic receptors or competing
substrates (cf. Figure 3) cannot be ruled out and may be pharmacologically and toxico-
logically relevant. For example, a series of tetracyclic thienopyrimidines synthesized as
possible candidate drugs against Alzheimer’s disease (AD) were found to display uncom-
petitive PRI of AChE with β up to 0.24 [32]. Recently synthesized indanone derivatives as
multifunctional inhibitors of ChEs for AD are protective of neuronal cells against hydrogen
peroxide and against aggregation of Aβ1–40 aggregation. These compounds are also partial
non-competitive inhibitors of both ChEs [33]. The partial inhibition of ChEs by these com-
pounds may indeed result from an allosteric effect due to the binding of inhibitors on the
enzyme peripheral anionic site, but it is not yet known whether this property has potential
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consequences for the pharmacological effectiveness of these compounds on AD animal
models. In the case of PRI, because the residual enzyme activity (vi/v0) tends towards β
(cf. Equations (2) and (3) and Figures 1 and 3) at high concentrations of inhibitor (high
doses or “overdoses” of a drug), PRI can be regarded as a protective mechanism to limit
the deleterious physiological effects of a reversible toxicant on a key metabolic enzyme.
The following examples support this hypothesis.

Trimetazidine is an effective therapeutic drug for the treatment of various forms of
coronary heart diseases. The metabolic effects of trimetazidine, used in the clinic, increase
the efficiency of cardiac work with partial inhibition of β-oxidation of fatty acids, allowing
hydrolysis of ATP to be more efficiently converted into contractile heart work [34]. Ad-
ditionally, partial inhibition is observed for cytochromes P450. These enzymes play an
important role in the oxidation of numerous endogenous and exogenous compounds in
the body. The P450 family of enzymes can metabolize several substrates simultaneously
because they bind to different regions of the active center. For example, it was shown
that the simultaneous action of testosterone and erythromycin/midazolam/terfenadine,
causes incomplete inhibition of the metabolism of the other substrates even at saturating
concentrations [35]. Thus, PRI in drug metabolism mediated by cytochromes P450 can
have significant pharmacological or toxicological consequences. The following example
highlights this statement. Partial inhibition of the Gyps vulture cytochrome P450 (CYP2C9)
by the non-steroidal anti-inflammatory drug diclofenac was inferred indirectly from phar-
macokinetic profiles, i.e., longer mean residence time (MRT) and t1/2 for the most sensitive
birds [36]. These parameters were correlated with LD50 values. Thus, the increased sensi-
tivity to diclofenac of the Gyps vulture compared to other related birds and chickens may
be of pharmacogenomic origin. However, in other situations, increased toxicity due to
partial inhibition of a detoxifying enzyme can have non-genetic origins, e.g., dysfunction
of a metabolic chain, multiple antagonistic interactions on target enzymes.

Partial inhibition of enzymes may confer greater safety in the use of effective but
dangerous drugs in maintaining a low level of enzyme activity. A good example is given by
the partial allosteric inhibition of thrombin by sulfated coumarins [37]. These compounds
apparently inhibit 50% of thrombin at saturation with a lower apparent IC50 compared
to orthosteric inhibitors (Figure 4). Thus, they retain the anticoagulant property but re-
duce the risk of bleeding. This approach extended to partial inhibition and regulation of
other coagulation factors as well as to regulatory allosteric enzymes may have important
therapeutical implications.
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On the contrary, PRI of enzymes may limit the action of inhibitors and therefore their
pharmacological interest. For instance, melanin formation in skin and brain from naturally
occurring monophenols depends on tyrosinase. Inhibitors of this enzyme have been
developed to treat hyperpigmentation of the skin but could be of interest in treatment of
neurodegenerative diseases. It was found that certain benzonitrile derivatives of mushroom
benzonitriles are PRI of tyrosinase (β up to 0.42) [38]. The high value of β may limit the
therapeutic interest of such inhibitors.

PRI of enzymes involved in the metabolism of drugs, may affect clinical drug in-
teractions. An example is given by the partial (β = 0.12) mixed-type inhibition of UDP-
glucuronosyl transferase isoenzymes involved in paracetamol (acetaminophen) glucuronida-
tion caused by dasabuvir, an anti-hepatitis C drug [39]. Correlation between in vitro and
pharmacokinetic data makes it possible to predict the clinical interactions of both drugs.
Then, in the case of the co-administration of both drugs to patients, to avoid the potential
hepatotoxicity of paracetamol, it is recommended to reduce the dose of paracetamol.

The typical antipsychotic drug risperidone, used for the treatment of schizophrenia,
has been reported to cause hyperbolic inhibition of the uncompetitive type on D-amino acid
oxidase with an inhibition constant in the low micromolar range [40]. Because in vitro and
mathematical and computer modeling studies indicate that uncompetitive inhibitors are
more effective than other reversible inhibitors in open systems [41], this suggests that such
partial uncompetitive inhibitors may have a good prospect for obtaining more effective
therapeutic effects. This could be of great interest in the treatment of diseases associated
with hyper- and hypofunction of neurotransmission but also in numerous enzyme inhibitor-
based therapies.

Another potent practical therapeutic application could be to optimize the combination
of synergistic drugs acting as enzyme inhibitors within large metabolic networks, and
causing the minimal side effects. Current optimization approaches imply modulation of the
dosage of different drugs for reducing the activity of target enzymes. Complex algorithms
have been proposed for solving this problem [42]. Alternatively, a selection of drugs acting
as partial inhibitors of key enzymes would ensure a low level of activity of selected target
enzymes. For this purpose, research of partial inhibitors of such enzymes is a prerequisite.

5. Conclusions

Partial inhibition of enzymes by ligands and an excess of natural or competing sub-
strates is a quite common phenomenon. However, PRI has been insufficiently explored,
analyzed, and exploited so far. Several simple graphical methods make it possible to detect
PRI and to determine the inhibition parameters, in particular the coefficient β. The rele-
vance of enzyme PRI in physiological processes is well documented where it is involved in
multiple regulatory metabolic functions. Participation of PRI in epigenetic mechanisms is
still poorly documented. In toxicology, PRI of target enzymes may dampen the acute action
of toxicants and participate in defense mechanisms against poisonous natural and artificial
xenobiotics. In pharmacology, enzyme inhibitors acting as PRI show certain therapeutic
advantages over classical enzyme inhibitors in use in medicinal treatments. This is in
particular the case with partially reversible uncompetitive inhibitors. Therefore, in the
early stages of drug discovery [6], careful investigation of PRI must enter in the arsenal
of mechanistic tools for investigating enzyme inhibition. In particular, new quantitative
structure–activity relationship (QSAR) approaches [12] and drug design methods must
take into account this type of inhibition. As we pointed out, the classical enzyme inhibition
calculation methods we developed for determination of PRI parameters must be associated
to in silico approaches for a complete mechanistic description of PRI, and in particular to
determine how complexes ESI are productive. Conversely, modification of the inhibitory
properties of therapeutic enzymes by switching their behavior from full inhibition to PRI
can be considered by computer design of mutations or directed evolution. In the future,
this should help to optimize the activity of novel mutated enzymes of medical interest.
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