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Abstract: Bromodomain-containing protein 4 (BRD4) is an intracellular protein that regulates expres-
sion of various cellular functions. This study investigated whether BRD4 inhibition can alter the
immunomodulatory and antitumor effects of radiation therapy (RT). A murine breast cancer cell
line was implanted into BALB/c mice. The dual-tumor model was used to evaluate the abscopal
effects of RT. A total of 24 Gy was delivered and BRD4 inhibitor was injected intravenously. Tumor
size was measured, and in vivo imaging was performed to evaluate tumor growth. Flow cytometry
and immunohistochemistry were performed to examine immunologic changes upon treatment. The
combination of BRD4 inhibitor and RT significantly suppressed tumor growth compared to RT alone.
BRD4 inhibitor reduced the size of the unirradiated tumor, indicating that it may induce systemic im-
mune responses. The expression of HIF-1α and PD-L1 in the tumor was significantly downregulated
by the BRD4 inhibitor. The proportion of M1 tumor-associated macrophages (TAMs) increased, and
the proportion of M2 TAMs decreased upon BRD4 inhibition. BRD4 inhibitor expanded CD4+ and
CD8+ T cell populations in the tumor microenvironment. Additionally, splenic monocytic myeloid
derived suppressor cells, which were increased by RT, were reduced upon the addition of BRD4
inhibitor. Therefore, the addition of BRD4 inhibitor significantly enhanced the systemic antitumor
responses of local RT.

Keywords: BRD4; radiation therapy; triple-negative breast cancer; immunosuppressive cells;
tumor microenvironment

1. Introduction

Radiation therapy (RT) is one of the major pillars of cancer therapy and is used to treat
a substantial portion of cancers [1], including breast cancer [2]. However, tumors often do
not respond to RT or recur after RT [3]; thus, strategies to enhance the antitumor efficacy
of RT need to be developed. To date, various systemic therapies have been investigated
in clinical trials and preclinical models to improve the efficacy of local RT alone [4]. To
discover optimal targets that enhance the antitumor effect of RT, understanding how RT
modulates the tumor microenvironment (TME) and cancer cells is crucial [5].

Among numerous mechanisms underpinning the low efficacy of local RT is the in-
duction of immunosuppressive cells in the tumor [6]. Immunosuppressive cells, including
tumor-associated macrophages (TAMs), regulatory T cells (Tregs), and myeloid-derived sup-
pressor cells (MDSCs), play crucial roles in regulating antitumor response in the TME [7].
A growing body of evidence suggests that inhibition or depletion of the immunosup-
pressive cells successfully inhibits the tumor growth and improves antitumor immunity
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in preclinical models [8,9]. Although RT promotes antitumor immune responses, these
immunosuppressive cells increase in the TME after local RT [10–13], and induction of
immunosuppressive cells by RT has been observed in both preclinical models and cancer
patients. Several previous studies demonstrated that therapeutic regulation of immuno-
suppressive cells significantly improved the antitumor effects of local RT [14,15]. Hence,
therapeutic strategies that inhibit the induction or expansion of immunosuppressive cells
in the TME are expected to enhance the response of the irradiated tumor and improve
systemic antitumor immune responses.

Bromodomain-containing protein 4 (BRD4) is a member of the Bromo- and Extra-
Terminal domain (BET) family that is upregulated in tumor cells and regulates gene expres-
sion by recruiting various transcription factors by interacting with the acetylated lysine
residues of histone tails on chromatins [16]. The target genes of BRD4 include several
oncogenes such as KRAS, BRAF, and PIM2. BRD4 is also involved in DNA repair and
telomere regulation. Therefore, BRD4 is able to support the proliferation and survival of
cancer cells, and targeting BRD4 has shown to be effective in the eradication of tumor cells
in preclinical studies [17,18]. In addition to its direct effects on cancer cells, recent evidence
suggests that inhibition of BRD4 polarizes TAMs into the M1-like phenotype by inhibiting
transcription factors that modulate the phenotype of M2 macrophages including MAF, IRF4,
and AKT [19,20]. Inhibition of BRD4 also blocks proliferation of TAMs [21], upregulates
expression of MHC molecules [22], and induces immunogenic cell death of tumor cells [23].
These various roles of BRD4 are depicted in Figure 1. Due to these immunologic effects of
BRD4 inhibition, a BRD4 inhibitor may improve the antitumor effects of local RT; however,
the immunologic effects of combining local RT and BRD4 inhibition have not been explored.
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Here, we hypothesized that inhibition of BRD4 is able to enhance the antitumor
effects of local RT by inhibiting immunosuppressive cells. We investigated whether BRD4
inhibition improves the antitumor effects of RT in a syngeneic murine triple-negative
breast cancer (TNBC) model. We analyzed the immunophenotype of various immune
cells, including T cells, TAMs, and MDSCs, according to the administration of BRD4
inhibitor and local RT, and found that the addition of a BRD4 inhibitor to RT led to a less
immunosuppressive TME by modulating immunosuppressive cells. Our results suggest
that BRD4 may be a viable target to enhance the efficacy of local RT.
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2. Results
2.1. Effects of Local RT and BRD4 Inhibition on Tumor Growth

We first examined the antitumor effects of local RT combined with the BRD4 inhibitor.
Local RT or BRD4 inhibitor alone delayed tumor growth (Figure 2A). Importantly, combi-
nation treatment with local RT and the BRD4 inhibitor reduced tumor growth significantly
more than either monotherapy alone. Similarly, in vivo imaging showed that combination
treatment resulted in a smaller tumor burden than local RT alone (Figure 2B). Addition-
ally, the numbers of metastatic lung nodules decreased significantly with combination
therapy compared to either monotherapy (Figure 2C), suggesting that the BRD4 inhibitor
suppresses both local growth and systemic spread of the tumor. Both local RT alone and
combination therapy resulted in excellent survival rates for tumor-bearing mice; these rates
were significantly better than the survival rates of the control and BRD4 inhibitor-alone
mice (Figure 2D). These data indicate that the BRD4 inhibitor enhances the antitumor effects
of local RT.
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Figure 2. Antitumor effects of radiotherapy (RT) and the BRD4 inhibitor. (A) Growth curves
of tumors in mice treated with the control, the BRD4 inhibitor, local RT, or combination therapy.
(B) Representative bioluminescence images (left) and intensities (right) in mice treated with the
control, BRD4 inhibitor, local RT, or combination therapy. (C) Representative images (left) and
numbers of metastatic lung nodules (right) in mice treated with the control, BRD4 inhibitor, local
RT, or combination therapy. (D) Survival curves of mice treated with the control, the BRD4 inhibitor,
local RT, or combination therapy. (****) p < 0.0001; (***) p < 0.001; (**) p < 0.01; (*) p < 0.05.
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2.2. Effects of the BRD4 Inhibitor on the Abscopal Effects of Local RT

To examine whether the addition of the BRD4 inhibitor improves systemic immune
responses evoked by local RT, we used the dual-tumor model that was previously used to
observe the abscopal effects of RT [24]. RT alone and combination therapy led to similar
growth inhibition of the primary tumor (Figure 3A). Notably, combination therapy delayed
growth of the secondary tumor when compared to the control, RT-alone, and BRD4-alone
groups (Figure 3B). No significant effect on the secondary tumor was observed with RT
or BRD4 inhibitor alone. In vivo imaging also demonstrated that combination therapy
decreased the burdens of the primary and secondary tumors (Figure 3C–E), suggesting that
the BRD4 inhibitor improves the abscopal effects of local RT.
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Figure 3. Abscopal effects of RT and the BRD4 inhibitor. (A,B) Growth curves of primary tumors
(A) and secondary tumors (B) in a dual-tumor model treated with the control, BRD4 inhibitor, local
RT, or combination therapy. (C) Representative bioluminescence images in the dual-tumor model.
(D,E) Bioluminescence intensities of primary tumors (D) and secondary tumors (E) in the dual-tumor
model treated with the control, BRD4 inhibitor, local RT, or combination therapy. (****) p < 0.0001;
(***) p < 0.001; (**) p < 0.01; (*) p < 0.05.

2.3. Treatment Effects on the TME

Having observed the additional antitumor effects of BRD4 inhibition with local RT, we
examined changes in the TME upon local RT and BRD4 inhibition. BRD4 protein expression
decreased significantly in the BRD4 inhibitor treatment group, but not in the RT-alone
group (Figure 4A,B). Expression of HIF-1α also decreased in the BRD4 inhibitor group
(Figure 4C,D), which is consistent with previous reports. Notably, PD-L1 expression was
downregulated in the BRD4 inhibitor group (Figure 4E,F), suggesting that BRD4 inhibition
may resolve, in part, the immunosuppressive TME.

Next, we examined the immune cell composition in the TME after treatment. In-
filtration of CD68+ TAMs decreased upon addition of the BRD4 inhibitor (Figure 5A,B).
Treatment with the BRD4 inhibitor significantly increased the proportion of CD206− M1
TAMs and reduced the proportion of CD206+ M2 TAMs (Figure 5C,D). Additionally, the
BRD4 inhibitor significantly increased the proportion of CD8+ T cells (Figure 5E,F). This
increase in CD8+ T cells was confirmed by IHC (Figure 5G,H). The proportion of Tregs in-
creased upon local RT, and this increase diminished upon the addition of the BRD4 inhibitor;
however, the diminution was not statistically significant (Figure 5I,J). We also examined the
proportions of MDSCs and found that the frequency of Ly6Chigh monocytic MDSCs among
CD11b+ cells decreased upon RT or BRD4 treatment. However, the reductions were not
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statistically significant. The proportion of Ly6Ghigh polymorphonuclear MDSCs increased
upon treatment with the BRD4 inhibitor (Figure 5K,L). These data suggest that combination
therapy leads to a more immunogenic TME than local RT alone.
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Figure 4. Changes in BRD4, PD-L1, and HIF-1α expression upon RT and BRD4 inhibition.
(A,B) Representative immunohistochemistry (IHC) images (A) and relative expression (B) of BRD4
in the tissue microenvironment (TME). (C,D) Representative IHC images (C) and relative expression
(D) of PD-L1 in the TME. (E,F) Representative IHC images (E) and relative expression (F) of HIF-1α
in the TME. (****) p < 0.0001; (***) p < 0.001; (**) p < 0.01; (*) p < 0.05.

2.4. Treatment Effects on Systemic Immune Responses

Because we observed that the abscopal effects of local RT increased upon the addition
of the BRD4 inhibitor, we profiled the immune cells in spleens and the tumor-draining
lymph nodes to determine the effects of the treatments on systemic immunity. The pro-
portions of CD8+ and CD4+ T cells in the spleen were not altered remarkably by any of
the treatments (Figure 6A,B), whereas splenic Tregs increased upon combination therapy
(Figure 6C,D). Notably, the proportion of monocytic MDSCs increased upon local RT; how-
ever, this increase was ameliorated by the addition of the BRD4 inhibitor (Figure 6E,F).
The proportion of polymorphonuclear MDSCs was lowest upon combination therapy,
although the difference was not statistically significant. In tumor-draining lymph nodes,
the proportion of CD4+ T cells among total T cells increased upon combination therapy,
whereas the proportion of CD8+ T cells decreased (Figure 6G,H). Proportions of Tregs did
not change significantly upon any of the treatments (Figure 6I,J). Importantly, expression of
PD-1 on CD8+ and CD4+ T cells in tumor-draining lymph nodes increased upon combina-
tion therapy (Figure 6K), indicating an abundance of tumor-specific T cells after local RT
and BRD4 inhibition. Levels of plasma IFN-β and IFN-γ increased upon RT but were not
further elevated upon the addition of the BRD4 inhibitor (Figure 6L). Collectively, these
results suggest that BRD4 inhibition may contribute to a systemic decrease in immunosup-
pressive cells, particularly MDSCs, and an increase in tumor-specific T cells in draining
lymph nodes.
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Figure 5. Changes in tumor-infiltrating immune cells by RT and BRD4 inhibition. (A,B) Represen-
tative IHC images (A) and relative expression (B) of CD68 in tumors. (C,D) Representative flow
cytometry plots (C) and frequencies (D) of M1 and M2 tumor-associated macrophages (TAMs) in
tumors. (E,F) Representative flow cytometry plots (E) and frequencies (F) of CD8+ T cells and CD4+

T cells in tumors. (G,H) Representative IHC images (G) and relative expression (H) of CD8 in the
TME. (I,J) Representative flow cytometry plots (I) and frequencies (J) of regulatory T cells (Tregs)
in tumors. (K,L) Representative flow cytometry plots (K) and frequencies (L) of monocytic and
polymorphonuclear myeloid-derived suppressor cells (MDSCs) in tumors. (***) p < 0.001; (**) p < 0.01;
(*) p < 0.05.
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Figure 6. Changes in systemic immune responses by RT and BRD4 inhibition. (A,B) Represen-
tative flow cytometry plots (A) and frequencies (B) of CD8+ T cells and CD4+ T cells in spleens.
(C,D) Representative flow cytometry plots (C) and frequencies (D) of Tregs in spleens. (E,F) Represen-
tative flow cytometry plots (E) and frequencies (F) of monocytic and polymorphonuclear MDSCs in
spleens. (G,H) Representative flow cytometry plots (G) and frequencies (H) of CD8+ T cells and CD4+

T cells in tumor-draining lymph nodes. (I,J) Representative flow cytometry plots (I) and frequencies
(J) of Tregs in tumor-draining lymph nodes. (K) Frequencies of PD-1+ cells among CD8+ T cells (left)
and CD4+ T cells in tumor-draining lymph nodes. (L) Concentrations of plasma interferon-β (left)
and interferon-γ (right). (****) p < 0.0001; (**) p < 0.01; (*) p < 0.05.
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3. Discussion

The antitumor effect of local RT is often limited by various mechanisms, including
induction of an immunosuppressive TME. Discovery of novel strategies to overcome this
limitation is necessary to maximize the effects of local RT. In this study, we demonstrated
that inhibition of BRD4 enhances the antitumor effects of local RT. BRD4 inhibitor induces
an immunostimulatory TME, at least in part, by inhibiting immunosuppressive cells in a
breast cancer model. Our study suggests that BRD4 inhibitor may be an optimal combi-
nation partner of local RT. To the best of our knowledge, this is the first study to describe
immunologic changes by local RT and BRD4 inhibition.

In addition to the direct cytotoxic effect of RT on tumor cells, local RT activates various
immunostimulatory and immunosuppressive cells [6]. The immunomodulatory effects
of RT have been attributed to various factors including damage-associated molecular
patterns, cytokines, upregulation of immune receptors, and release of tumor antigens. Our
previous studies using a 4T1-Luc mouse model showed that M2 TAMs, MDSCs, and Tregs
increased upon local RT [24,25]. A growing body of evidence suggests that modulating
immunosuppressive cells improve the antitumor effect of RT [14,15,26]. Several novel
strategies to inhibit immunosuppressive cells to enhance the efficacy of both local RT and
immune checkpoint inhibitors have been suggested [24,25]. In this study, we observed that
BRD4 inhibition significantly decreased the infiltration of M2 TAMs into the TME. Moreover,
circulating M-MDSCs were diminished by the addition of BRD4 inhibitor to local RT. Our
findings indicate that BRD4 inhibition can be utilized to enhance the antitumor effect of RT,
probably by modulating immunosuppresive cells, including M2 TAMs and MDSCs.

BRD4 is expressed in various cells, including cancer cells and immune cells, and
previous investigations on the BRD4 inhibitor focused on its direct effects on cancer cells.
Recent studies indicated that BRD4 is also involved in innate immune responses [27,28].
Our finding that the BRD4 inhibitor significantly reduced M2 TAMs within the TME is in
accordance with previous studies that showed that BRD4 promoted M2 polarization [19,20].
BRD4 was also shown to be involved in the recruitment of TAMs in a preclinical model [29].
Meanwhile, the role of BRD4 and the effects of BRD4 inhibition on MDSCs have not been
elucidated. Since our results demonstrated that splenic M-MDSCs were decreased by
adding BRD4 inhibitor to local RT, further research on the role of BRD4 in MDSCs is needed
to fully understand the antitumor effects of the BRD4 inhibitor and its ability to improve
the efficacy of RT.

The results of this study indicate that the BRD4 inhibitor improves local RT via the
reduction of M2 TAMs and M-MDSCs. In addition, the BRD4 inhibitor also regulates
the characteristics of tumor cells, because BRD4 is also expressed in tumor cells. Indeed,
a previous study showed that BRD4 inhibition directly sensitizes tumor cells to RT by
regulating DNA repair [30]. Although we observed remarkable changes in immune cells
due to the addition of BRD4 inhibitor, which were well correlated with its antitumor
responses, the effects of BRD4 inhibitor in addition to local RT were possibly, at least in
part, attributed to its direct effects on cancer cells. Therefore, further studies are needed to
dissect the direct and indirect effects of BRD4 inhibition on tumor cells.

In addition to immunologic changes, we observed that the BRD4 inhibitor downregu-
lated HIF-1α expression. Although local RT did not significantly alter HIF-1α expression
in our experiment, RT is a known potent inducer of hypoxia, which activates HIF-1α in
cancer cells. Hypoxia and HIF-1α have been shown to play various roles in immunity, and
hypoxia-driven immunologic changes in the TME tend to inhibit antitumor responses. HIF-
1α induces FoxP3, resulting in an abundance of Tregs [31], upregulates PD-L1 that inhibits
T cell activation [32], and drives M2-like polarization of TAMs [33]. Hence, downregulation
of HIF-1α by BRD4 inhibition may attenuate RT-induced immunosuppression in the TME,
as demonstrated in this study.

Recent studies have suggested that tumor-draining lymph nodes play a crucial role in
RT-induced antitumor immune responses [34,35]. Priming and activation of tumor-specific
T cells take place in tumor-draining lymph nodes and the effects of immune checkpoint in-
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hibitors are regulated in lymph nodes [36]. Tumor-specific T cells that egressed from lymph
nodes into the circulation can be recruited into the TME; therefore, activation of systemic
immune cells is as important as activation of tumor-infiltrating immune cells. Although we
did not observe significant effects on immune cells in tumor-draining lymph nodes upon
RT or BRD4 inhibition, we noticed a remarkable increase in splenic T cells. Therefore, BRD4
inhibition may mitigate the immunosuppressive TME and stimulate systemic antitumor
immune responses, which should be investigated further in future studies.

This study employed a murine TNBC model, which showed clear abscopal effects
in our previous studies [24,25]. Breast cancer is considered a less immunogenic tumor;
thus, it is believed that immunotherapy provides limited clinical benefit [37]. However,
among the subtypes of breast cancer, TNBC is relatively immunogenic, with a high tumor
mutational burden; thus, immunotherapy provides significant benefits [38,39]. Recent
evidence from single-cell profiling suggests that the characteristics and constitution of
tumor-infiltrating myeloid cells differ substantially according to cancer type [40]. Because
our data demonstrated that the antitumor effects of the BRD4 inhibitor were accompanied
by alterations in TAMs and MDSCs within the TME, the immunomodulatory effects of
the BRD4 inhibitor may vary across tumor types. Future studies should be performed to
expand our findings to other cancer types.

Our analysis supports the effectiveness of BRD4 inhibitor in treating cancer, especially
breast cancer. Anti-PD-1 blocking antibody is currently used in patients with TNBC [38,39].
In addition, several immunotherapeutic antibodies are under active investigation in various
types of cancer [41]. Unlike most immune checkpoint receptors that are expressed on the
cell surface, BRD4 is an intracellular target. Therefore, small molecule inhibitors that
are orally available can be developed, which, in turn, facilitates administration to cancer
patients. Indeed, several clinical trials to examine the efficacy of BRD4 inhibitors are
ongoing [42]. Notably, a recent clinical study demonstrated that local RT significantly
improved the clinical outcomes of patients undergoing immune checkpoint blockade [43].
In our study, the combination treatment significantly delayed the growth of an unirradiated
secondary tumor, compared to BRD4 inhibitor alone. Therefore, the addition of local
RT can be considered in future studies of BRD4 inhibitors based on the findings from
our experiments.

In summary, the BRD4 inhibitor enhanced the antitumor effects of RT, including
its abscopal effects. The BRD4 inhibitor increased antitumor immune responses in the
TME, specifically by decreasing the proportion of M2 TAMs and expression of PD-L1. It
also reduced splenic M-MDSCs when combined with RT. Therefore, the BRD4 inhibitor
presumably synergizes with local RT by modulating immunosuppression. Clinical studies
using the BRD4 inhibitor are warranted to validate its benefit in combination with RT.

4. Materials and Methods
4.1. Cell Culture

The luciferase-tagged 4T1 (4T1-Luc) murine TNBC cell line was purchased from the
Japanese Collection of Research Bioresources Cell Bank (Osaka, Japan). The cell line was
maintained in complete RPMI1640 medium supplemented with 10% fetal bovine serum
and 1% penicillin/streptomycin. The cells were maintained at 37 ◦C in a 5% CO2 incubator.

4.2. Mouse Tumor Model

All animal experiments were conducted using immune-competent BALB/c female
mice (7 weeks of age) from Orient Bio Inc. (Seongnam, Korea). The 4T1-Luc cells
(6 × 105 cells) were subcutaneously injected into the right hindlimb. For the dual-tumor
model, the 4T1-Luc cells were subcutaneously injected into the right hindlimb (6 × 105 cells)
and left flank (105 cells). Seven days after tumor injection, mice were allocated into 4 treat-
ment groups: control, RT alone, BRD4 inhibitor alone, and combination treatment. All
experiments were performed in compliance with animal ethics rules and in accordance with
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the IACUC Animal Experiment Protocol (BA-2103-316-021-01) of Seoul National University
Bundang Hospital.

4.3. Treatments

BRD4 inhibitor (OPT-0139; 10 mg/kg) was injected intravenously on days 10, 12, 14,
17, 19, and 21 post-inoculation. RT was delivered on days 10, 12, and 14 post-inoculation
using X-Rad320 irradiator (Precision X-Ray Inc, North Branford, CT, USA); a 6 MeV electron
beam was used to administer 8 Gy per treatment, leading to irradiation with a total of
24 Gy with a calibrated source-to-specimen distance of 70 cm. For irradiation, mice were
anesthetized with intraperitoneal injection of 40% alfaxalone and 20% xylazine. The field
size was adjusted to the size of primary tumor to avoid irradiation to secondary tumor.
On the 31st day after tumor implantation, mice were sacrificed and lungs, draining lymph
nodes, spleens, and tumor tissues were harvested. Half of an extracted tumor was fixed in
4% paraformaldehyde and embedded in paraffin for immunohistochemistry (IHC). The
obtained lymph nodes, spleens, and tumors were separated into single cells and stored at
−70 ◦C for subsequent flow cytometry analysis.

4.4. Tumor Growth

Tumor size was measured using a caliper, and tumor volume was calculated as
Volume = (D × d2)/2, in which D and d represent the long and short diameters, respectively.
Luciferase solution was used to obtain bioluminescence images, and the images were
analyzed using the IVIS Lumina III In Vivo Imaging System (PerkinElmer, Waltham, MA,
USA) on day 31 post-inoculation.

4.5. Immunohistochemistry (IHC)

Tumor tissues embedded in paraffin blocks were cut into 4 µm-thick transverse slices
and attached to glass slides. Tissue slices were deparaffinized using xylene and ethanol
and then immersed in a solution of 3% H2O2 in methanol at room temperature for 10 min.
Then, tissue slices were boiled in 0.01 M sodium citrate buffer pH 6.0 and blocked with
5% normal goat serum. Tissue slices were incubated with primary antibodies targeting
BRD4, HIF-1α, PD-L1, CD8, and CD68 overnight at 4 ◦C. Images were collected using an
Axioskop 40 light microscope (Carl Zeiss, Jena, Germany) and AxioVision 4.7 software.
Image J software V1.52 was used for quantification, and the average density value was
calculated for at least 3 slides per sample.

4.6. Flow Cytometric Analysis

After thawing, cells were treated with Fc blocking agent (Biolegend: 156604, San Diego,
CA, USA) at 4 ◦C for 15 min and incubated with fluorochrome-conjugated antibodies
against the surface markers at 4 ◦C for 30 min. Then, cells were fixed and permeabilized
using the Foxp3 Buffer Set (BD Biosciences: 560098, San Diego, CA, USA) according to
the manufacturer’s instructions. After washing, cells were incubated with fluorochrome-
conjugated antibodies against Foxp3 at 4 ◦C for 30 min. Flow cytometry analysis was
performed using FACSCalibur (BD Biosciences) and FACSDiva software Version 6.1.3 (BD
Biosciences). All data were analyzed using FlowJo software Version 10 (BD Biosciences).
All primary antibodies used for flow cytometry are listed in Supplementary Table S1.

4.7. Statistical Analysis

Statistical analyses were performed using GraphPad PRISM V8.0.2 (GraphPad Soft-
ware Inc., San Diego, CA, USA). Two-way ANOVA was used to compare tumor growth in
the mouse tumor model. The unpaired Student’s t-test was used to compare continuous
variables between two groups. Significance was defined as a p value < 0.05.
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