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Abstract: Cancer immune escape is associated with the metabolic reprogramming of the various
infiltrating cells in the tumor microenvironment (TME), and combining metabolic targets with im-
munotherapy shows great promise for improving clinical outcomes. Among all metabolic processes,
lipid metabolism, especially fatty acid metabolism (FAM), plays a major role in cancer cell survival,
migration, and proliferation. However, the mechanisms and functions of FAM in the tumor immune
microenvironment remain poorly understood. We screened 309 fatty acid metabolism-related genes
(FMGs) for differential expression, identifying 121 differentially expressed genes. Univariate Cox
regression models in The Cancer Genome Atlas (TCGA) database were then utilized to identify the 15
FMGs associated with overall survival. We systematically evaluated the correlation between FMGs’
modification patterns and the TME, prognosis, and immunotherapy. The FMGsScore was constructed
to quantify the FMG modification patterns using principal component analysis. Three clusters based
on FMGs were demonstrated in breast cancer, with three patterns of distinct immune cell infiltration
and biological behavior. An FMGsScore signature was constructed to reveal that patients with a low
FMGsScore had higher immune checkpoint expression, higher immune checkpoint inhibitor (ICI)
scores, increased immune microenvironment infiltration, better survival advantage, and were more
sensitive to immunotherapy than those with a high FMGsScore. Finally, the expression and function
of the signature key gene NDUFAB1 were examined by in vitro experiments. This study significantly
demonstrates the substantial impact of FMGs on the immune microenvironment of breast cancer, and
that FMGsScores can be used to guide the prediction of immunotherapy efficacy in breast cancer
patients. In vitro experiments, knockdown of the NDUFAB1 gene resulted in reduced proliferation
and migration of MCF-7 and MDA-MB-231 cell lines.

Keywords: fatty acid metabolism; immunotherapy; breast cancer; tumor microenvironment; single-
cell sequencing

1. Introduction

In recent years, the incidence of breast cancer (BC) has surpassed that of lung cancer
as the most prevalent cancer worldwide [1], with an estimated 2.3 million new cases per
year (11.7% of new cancer cases) and its incidence is increasing [2]. The development of
diagnostic tools and imaging techniques has significantly improved the early detection
rate of breast cancer and reduced the mortality rate. However, breast cancer is a highly
heterogeneous cancer, making the treatment of patients challenging and leading to poor
prognosis. Therefore, there is an urgent need for new biomarkers to guide breast cancer
treatment. Breast cancer progression involves significant metabolic reprogramming to
support tumor cell growth. Fatty acid metabolic reprogramming is particularly critical for
cancer cells as they rely on fatty acid metabolism for energy production, signaling, and
cell membrane formation [3] (p. 36). The proportion of saturated, monounsaturated, and
polyunsaturated fatty acids in membranes is now recognized as crucial for promoting cell
survival and preventing lipotoxicity and ferroptosis [4]. Moreover, fatty acid metabolism
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has been shown to play a significant role in the differentiation and migration of tumor-
associated immune cells [5]. TME refers to the microenvironment surrounding tumor
cells, consisting of endothelial cells, immune cells, stromal fibroblasts, various signaling
molecules, cytokines, and the extracellular matrix [6]. Numerous studies have linked the
TME to the development of breast cancer [7], including the combination of suppressive
immune cells, soluble factors, and altered extracellular mesenchyme, leading to immune
escape and promoting the progression and metastasis of breast cancer [8]. The major modal-
ities of tumor immunotherapy currently include immune checkpoint inhibitor therapy
(ICB), adoptive cell transfer, and tumor vaccination strategies [9], and ICB, in particular, has
become the latest treatment for various cancers [10]. However, the efficacy of immunother-
apy in breast cancer is lower than in other cancers [11,12]. Studies have demonstrated
that metabolic reprogramming in the TME contributes to immune escape [13], especially
fatty acid metabolic reprogramming, which affects the differentiation of relevant immune
cells and tumor cell migration in the tumor microenvironment [14]. Identifying metabolic
targets with prognostic impact on breast cancer and combining them with immunother-
apy may enhance immune efficacy in breast cancer patients. We identified 15 fatty acid
metabolic genes associated with breast cancer prognosis in this study and comprehensively
evaluated the impact of fatty acid-related gene expression on mutation, prognosis, and
immune response pathways in breast cancer. Unsupervised clustering was used to identify
three different fatty acid patterns of breast cancer and assess the differences in prognosis
and immune infiltration pathways among them. The three FMG patterns were closely
associated with the three immune types. In addition, we classified patients into three
different genomic subgroups based on differentially expressed genes (DEGs) related to
the FMG patterns. Furthermore, we established a FMGsScore that effectively predicted
prognosis and immunotherapy response in breast cancer patients.

2. Results
2.1. Identification of Prognostic Fatty Acid Metabolism-Related Genes and Genetic Variation in
Breast Cancer

The flow chart of this study is shown in Figure 1. Differential analysis of 309 FMGs
in TCGA, using thresholds |log2FC| > 0.585 and FDR < 0.05, detected 121 differentially
expressed genes (DEGs) by comparing 1082 breast cancer samples with 113 normal breast
samples. In the DEGs, there were 50 significantly enhanced FMGs in BC patients, while
71 FMGs in BC samples were largely attenuated (Figure 2A,B). To assess the potential
prognostic value of each FMG, univariate Cox risk regression analysis was performed on
the DEGs to identify FMGs associated with overall survival (OS). A total of 15 significant
OS-related FMGs were selected for further analysis (Figure 2C). The reciprocal network
between these 15 FMGs is presented (Figure 2D). The FMG modulator network provides
an overview of mutual effects, modulator associations, and prognoses for patients with
breast cancer. Somatic mutations and copy number variants of the 15 FMGs in the TCGA
cohort were analyzed. Among the 986 samples, only 21 (2.13%) exhibited mutations in
FMGs, specifically CYFIP1, LARP1, EIF4G3, and AGO2. The overall mutation frequency
was low, ≤1% (Supplementary Figure S1A). Location of CNV alterations in 15 fatty acid-
related genes altered on 23 chromosomes (Supplementary Figure S1B). In comparison to
other FMGs, ACSL1, ACSL5, and ALOX15B exhibited a higher frequency of CNV deletion,
whereas UBE2L6, HSPH1, and PSME1 showed a higher frequency of CNV amplification
(Supplementary Figure S1C).
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Figure 2. Identification of prognostic FMGs in BC patients. (A) Heatmap illustrating the differential 
expression of 40 genes from the FMGs. (B) Volcano plot exhibiting 121 DEGs among FMGs. (C) The 
15 FMGs associated with prognosis. (D) The interaction between FMGs in breast cancer. The circle 
size represented the effect of each gene on the prognosis, and the range of values calculated from 
Log-rank test was p < 0.001, p < 0.01, p < 0.05, and p < 0.1, respectively. Purple in the right part of the 
circle, risk factors of prognosis; green in the right part of the circle, protective factors of prognosis. 
The lines linking regulators show their interactions, and thickness shows the correlation strength 
between regulators. The negative correlation is marked with blue and the positive correlation with 
red. 

2.2. Immune Infiltration and Biological Functions Associated with FMG Modification Patterns 
In our analysis, we used two breast cancer datasets (TCGA-BRCA, GSE42568), OS, 

and clinical data. To identify patients with distinct FMG modification patterns, we quan-
tified the expression levels of the 15 FMG modulators using the R software (4.3.0) of Con-
sensus Cluster Plus. Three different modification patterns were identified via unsuper-
vised clustering: 477 patients with pattern A, 418 patients with pattern B, and 261 patients 
with pattern C (Figure 3A,B, Supplementary Figure S2A–D). We further validated the clus-
tering effectiveness through the METABRIC dataset (Supplementary Figure S2E–I). The 
survival analysis revealed no significant difference in survival among the three patterns 
(Figure 3C). Therefore, we aimed to explore the biological behaviors of different FMG pat-
terns to understand the underlying reasons. To explore the biological behavior of different 

Figure 2. Identification of prognostic FMGs in BC patients. (A) Heatmap illustrating the differential
expression of 40 genes from the FMGs. (B) Volcano plot exhibiting 121 DEGs among FMGs. (C) The
15 FMGs associated with prognosis. (D) The interaction between FMGs in breast cancer. The circle
size represented the effect of each gene on the prognosis, and the range of values calculated from
Log-rank test was p < 0.001, p < 0.01, p < 0.05, and p < 0.1, respectively. Purple in the right part of the
circle, risk factors of prognosis; green in the right part of the circle, protective factors of prognosis. The
lines linking regulators show their interactions, and thickness shows the correlation strength between
regulators. The negative correlation is marked with blue and the positive correlation with red.

2.2. Immune Infiltration and Biological Functions Associated with FMG Modification Patterns

In our analysis, we used two breast cancer datasets (TCGA-BRCA, GSE42568), OS, and
clinical data. To identify patients with distinct FMG modification patterns, we quantified
the expression levels of the 15 FMG modulators using the R software (4.3.0) of Consen-
sus Cluster Plus. Three different modification patterns were identified via unsupervised
clustering: 477 patients with pattern A, 418 patients with pattern B, and 261 patients with
pattern C (Figure 3A,B, Supplementary Figure S2A–D). We further validated the clustering
effectiveness through the METABRIC dataset (Supplementary Figure S2E–I). The survival
analysis revealed no significant difference in survival among the three patterns (Figure 3C).
Therefore, we aimed to explore the biological behaviors of different FMG patterns to
understand the underlying reasons. To explore the biological behavior of different FMG
patterns, we performed an enrichment analysis using GSVAs (Figure 3D–F). FMGsCluster-A
showed significant enrichment in the matrix and oncogenic activation pathways, including
ECM receptor interactions, TGF β signaling pathway, cell adhesion, JAK-STAT signaling
pathway, activation of the chemokine signaling pathway, cytokine-cytokine receptor in-
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teractions, T-cell receptor signaling pathway, and Toll-like receptor signaling pathway.
Additionally, activation-related pathways were also enriched (Figure 3D). FMGsCluster-B
did not show any association with the enrichment of immune-related activation pathways
(Figure 3E). In contrast, FMGsCluster-C exhibited activation of the chemokine signaling
pathway, cytokine-cytokine receptor interaction, T-cell receptor signaling pathway, and
B-cell receptor signaling pathway (Figure 3F). Subsequent analysis of FMGsCluster cell
infiltration in the tumor microenvironment (TME) of breast cancer patients using ssGSEA
revealed that FMGsCluster-A exhibited higher natural immune cell infiltration compared
to FMGsCluster-B and FMGsCluster-C. Specifically, FMGsCluster-A showed the highest
level of immune cell infiltration (Supplementary Figure S3A). FMGsCluster-A showed
enrichment in natural immune cell infiltration, comprising B cells, CD4+ T-cells, CD8+ T-cells,
natural killer cells, macrophages, eosinophils, mast cells, MDSC, and plasmacytoid den-
dritic cells (Supplementary Figure S3A). However, patients with FMGsCluster-A did not
show a corresponding survival advantage (Figure 3C). The immune exclusion phenotype
is a type of immune phenotype characterized by the infiltration of intrinsic immune cells
in the tumor microenvironment (TME). However, these immune cells do not penetrate
the core of the tumor cell nests but instead remain in the stroma surrounding the tumor
cell nests. Consequently, due to the activation of stromal pathways, these immune cells
may not effectively exert anti-tumor effects on the tumor cells [15,16]. Therefore, the for-
mation of the immune exclusion phenotype is considered to be associated with stromal
activation-induced immune suppression in the TME. The activation of the associated stro-
mal pathway is believed to result in T-cell suppression. The GSAV results showed that
FMGsCluster-A was also significantly enriched in the stromal-activated pathway, leading
to speculation that stromal activation in FMGsCluster-A might suppress the tumor-killing
effect of its immune cells. The subsequent analysis also showed that FMGsCluster-A had
significantly higher activation in cell adhesion, transforming growth factor β (TGFb), and
angiogenic pathways than FMGsCluster-B and FMGsCluster-C (Supplementary Figure
S3B). We classified FMGsCluster-A as an immune rejection phenotype, which is charac-
terized by innate immune cell infiltration and stromal activation; FMGsCluster-B as an
immune desert phenotype, characterized by immunosuppression; and FMGsCluster-C as
an immune inflammatory phenotype, characterized by adaptive immune cell infiltration
and immune activation. The Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC) database, consisting of 1904 breast cancer samples, was utilized to
validate the applicability of 15 Functional Molecular Groups (FMGs) for classification pur-
poses (Supplementary Figure S2E–I). The results indicate that the 15 Functional Molecular
Groups (FMGs) can categorize the METABRIC data into four distinct classes.

2.3. Construction of Gene Signatures Based on Differential Genes of FMGsCluster

To explore the biological features of the potential regulation among the three FMGsClus-
ters, we identified 898 DEGs associated with the three FMGsClusters using the “limma”
package (Figure 4A). GO enrichment analysis showed that 898 DEGs were significantly
associated with immunity in terms of cellular components (CC), molecular functions (MF),
and biological processes (BP) (Figure 4B). Additionally, the KEGG enrichment analysis
indicated that these genes were significantly enriched in immune pathways, including
cytokine-cytokine receptor interaction, natural killer cell-mediated cytotoxicity, and T-cell
receptor signaling pathway, among others (Figure 4C). The above results suggest the critical
role of fatty acid metabolism genes in immune cell function within the tumor microenvi-
ronment. To comprehend and validate their regulatory pathways, the 898 genes related
to fatty acid metabolism were subjected to unsupervised clustering analysis, enabling the
classification of patients into distinct genomic subtypes. In line with the clustering grouping
of FMG modification patterns, the unsupervised clustering algorithm also revealed three
distinct genomic phenotypes, which we designated as FMG gene clusters A, B, and C,
respectively. Survival analysis indicated that gene cluster A exhibited a survival advantage
over gene cluster B and gene cluster C (Figure 4D). The heat map comparing clinical in-
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formation among the three gene clusters (gene cluster A, gene cluster B, and gene cluster
C) indicates that gene cluster A and gene cluster B exhibit distinct clinical characteristics
(Figure 4E). The expression of the 15 FMGs in the three gene clusters was significantly
different (Supplementary Figure S3C). These results collectively indicate the presence of
three distinct patterns of fatty acid metabolic modifications in breast cancer patients. To
further explore the role of FMGs in breast cancer, differentially expressed genes between
FMG expression patterns were identified using the “limma” R package. Significant genes
were filtered with p < 0.001, resulting in 898 common differentially expressed genes across
the three FMG clusters. Univariate Cox regression analysis identified 210 prognosis-related
genes. Principal component analysis (PCA) was utilized to construct the FMGsScore. The
survival differences between the high and low FMGsScore groups were analyzed using
K–M curves, and the results showed that the low-scoring group had a better prognosis
(Figure 5A). Furthermore, it is evident that both FMGsCluster-B and gene cluster B exhib-
ited higher FMGsScore scores (Figure 5B,C), and both FMGsCluster-B (Figure 3C) and gene
cluster B had a worse prognosis (Figure 4D). The Spearman correlation analysis between
FMGsScore and immune cell infiltration revealed a negative correlation, indicating that
FMGsScore was negatively associated with most of the immune cell infiltration. Further-
more, as the score decreased, the proportion of immune cell infiltration in patients increased
(Figure 5D). Additionally, the allogram (Figure 5E) showed that the majority of the genes
in FMGsCluster-A were grouped into geneClusters-A and C. Almost half of the genes in
FMGsCluster-B were assigned to geneCluster-B, and a small portion of the remaining half
were assigned to geneCluster-C. On the other hand, most of the genes in FMGsCluster-C
were grouped into geneCluster-C, and a small portion of the remaining half were assigned
to geneCluster-B. Both geneClusters-B and C were grouped into the high FMGsScore group.
The low FMGsScore group had a higher survival rate, whereas the high FMGsScore group
had a lower survival rate.

2.4. Clinical and Tumor Somatic Cell Mutation Characteristics between Patient High and Low
FMGsScore Groups

The low subgroup exhibited a higher proportion of surviving patients, while the
patients who died had a higher FMGsScore (Figure 6A). The age distribution of patients
was comparable between the low and high FMGsScore subgroups. However, the high age
group exhibited a higher FMGsScore as depicted in Figure 6B. The proportion of patients
with high FMGsScore was higher in stage 1–2 and N1-3 in patient stage grading and N
grading. In patient subgroups, a high FMGsScore was significantly associated with poor
prognosis in patients with stage 1–2, T1-2, and N0 (Figure 6C–E). Next, we assessed the
FMGsScore and tumor mutational burden and their association with patient prognosis.
The R package “maftools” was used to create a panorama of mutations in somatic cells
between the high and low FMGsScore groups. The mutation rates of somatic cells were
comparable between the high and low groups, with rates of 82.5% and 90.7%, respectively
(Figure 7A,B). Secondly, the difference in the tumor mutation burden (TMB) between high
and low groups was not statistically significant (Figure 7C), and the correlation analysis
between FMGsScore and TMB also showed no statistically significant negative correlation
(Figure 7D), but the results of survival analysis showed that the higher the TMB, the
worse the prognosis (Figure 7E). Among them, patients with both high TMB and a high
FMGsScore had the worst prognosis (Figure 7F).
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Figure 3. Mediation patterns of 15 fatty acid-related genes in breast cancer. (A) Principal compo-
nent analysis (PCA) analysis of the three FMGsCluster modification patterns. (B) Heat map of the 
clinical relevance of the three fatty acid subtypes. (C) Overall survival of the fatty acid modification 
patterns was determined using Kaplan–Meier curves. (D–F) GSVA enrichment analysis shows the 
activation status of biological pathways under different fatty acid modification patterns. Heat maps 
were used to visualize these biological processes, with red representing activated pathways and 
blue representing inhibited pathways. 

Figure 3. Mediation patterns of 15 fatty acid-related genes in breast cancer. (A) Principal component
analysis (PCA) analysis of the three FMGsCluster modification patterns. (B) Heat map of the clinical
relevance of the three fatty acid subtypes. (C) Overall survival of the fatty acid modification patterns
was determined using Kaplan–Meier curves. (D–F) GSVA enrichment analysis shows the activation
status of biological pathways under different fatty acid modification patterns. Heat maps were
used to visualize these biological processes, with red representing activated pathways and blue
representing inhibited pathways.
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diagram illustrates the shared genes among three FMGsCluster subtypes. (B,C) GO and KEGG en-
richment analysis of 898 genes. (D) Kaplan–Meier curves were used to demonstrate the overall sur-
vival of the three gene clusters. KM curves showed that the FMGs genome was significantly associ-
ated with the difference in the overall survival of BC patients. (E) Clinical relevance of FMGsCluster 
and gene cluster plotted on a heat map. Annotation of BC patients was based on the gene clusters, 
FMG clusters, stage of the tumor, survival status, and age. CC: cellular components (CC); MF: mo-
lecular functions (MF); BP: biological processes. Immune Pathways: Pathways related to organismal 
immune responses in the KEGG database. Non-Immune Pathways: Enriched pathways in the KEGG 
database that are unrelated to organismal immune responses. 

Figure 4. Construction of gene signatures based on differential genes of FMGsCluster. (A) The
Venn diagram illustrates the shared genes among three FMGsCluster subtypes. (B,C) GO and
KEGG enrichment analysis of 898 genes. (D) Kaplan–Meier curves were used to demonstrate
the overall survival of the three gene clusters. KM curves showed that the FMGs genome was
significantly associated with the difference in the overall survival of BC patients. (E) Clinical relevance
of FMGsCluster and gene cluster plotted on a heat map. Annotation of BC patients was based on the
gene clusters, FMG clusters, stage of the tumor, survival status, and age. CC: cellular components
(CC); MF: molecular functions (MF); BP: biological processes. Immune Pathways: Pathways related to
organismal immune responses in the KEGG database. Non-Immune Pathways: Enriched pathways
in the KEGG database that are unrelated to organismal immune responses.
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Figure 5. Construction of FMGsScore according to intersect gene. (A) K–M survival curves between
groups with high and low FMGsScore scores. (B,C) Differences in FMGsScore between different
FMGsClusters and geneClusters. (D) Correlation of FMGsScore with immune cell infiltration by
Spearman correlation analysis. (E) Alluvial illustration indicating FMGsCluster, geneCluster, FMGsS-
core and fustat changes. * p < 0.05 was considered statistically significant.
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Figure 6. FMGsScore and clinical relevance in the TCGA-BC cohort. The ratio of fustat (A), age (B),
stage (C), T (D), and N (E) between high and low FMGsScore patients. Patients are staged according
to the TNM system (tumor-node-metastasis), with T representing the size of the tumor itself or the
extent of invasion, and N representing invasion.
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Figure 7. Characterization of tumor somatic mutations across FMGsScore groups. (A) Waterfall plots
of somatic mutations in the high FMGsScore group tumors. (B) Waterfall plots of somatic mutations
in the low FMGsScore group tumors. (C) The box plots illustrate variations in tumor mutation burden
(TMB) between the high and low FMGsScore subgroups. (D) Positive correlation between FMGsScore
and TMB. (E) Patient survival analysis in low and high TMB groups using Kaplan–Meier curves.
(F) Overall patient survival stratified by FMGsScore and TMB using Kaplan–Meier curves. TMB: the
tumor mutation burden.
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2.5. Effect of FMGsScore on Immunotherapy

ICB therapy has become the main modality of immunotherapy for many cancers.
Therefore, we analyzed the differences in the expression levels of some immune check-
point genes (PD1, PD-L1, CTLA4, LAG3, HAVCR2, and IDO1) between the high and low
FMGsScore groups. We found that the expression of immune checkpoint genes was higher
in all of the low FMGsScore group than in the high FMGsScore group (Figure 8A). ICB
therapy with PD1 and CTLA4 blockade is an effective treatment for certain cancers. To
explore the relationship between FMGsScore and immunotherapy, we downloaded im-
munotherapy data from the TCIA database for BC patients in all of the ctla4_neg_pd1neg,
CTLA4_neg_PD1_pos, CTLA4_pos_PD1_neg, and ctla4_pos_pd1_pos groups. Patients
with lower FMGsScore had a higher IPS, indicating that these patients had a better response
to immunotherapy (Figure 8B). The comparison of immune cell infiltration abundance
between the high and low FMGsScore groups revealed that the low FMGsScore group
exhibited higher immune cell infiltration abundance than the high FMGsScore group (Sup-
plementary Figure S4A). GSVA enrichment analysis revealed pathway differences between
the high FMGsScore group and the low FMGsScore group. Compared with the high group,
the low FMGsScore group had higher enrichment in tumor- and immune-related pathways,
such as primary immunodeficiency, B-cell receptor signaling pathway, chemokine signaling
pathway, cytokine receptor interactions, natural killer cell-mediated cytotoxicity, JAK/STAT
signaling pathway, T-cell receptor signaling pathway, etc. (Supplementary Figure S4B).
Hence, tumor patients with a low FMGsScore exhibited elevated fatty acid metabolism,
extensive immune cell infiltration, increased expression of immune checkpoints, favorable
prognosis, and heightened response to immunotherapy. The validity of the FMGsScore was
confirmed using the GSE20685 dataset. The expression levels of six immune checkpoint
suppressor genes were significantly higher in the low FMGsScore group compared to the
high FMGsScore group, similar to the training group (Supplementary Figure S5A). More-
over, patients in the low FMGsScore group exhibited a survival advantage over those in the
high FMGsScore group, as evident from the survival curves with fewer deceased patients.
This further corroborated the accuracy of FMGsScore in the training group (Supplemen-
tary Figure S5B,C). In order to further validate the predictive capability of FMGsScore for
immunotherapy response in the immunotherapy cohort treated with ICI, we expanded
the study to include the metastatic melanoma immunotherapy cohort and the IMvigor210
cohort. This expansion allowed us to explore the prognostic significance of FMGsScore and
its predictive ability for immunotherapy response. Patients with a low FMGsScore in both
the metastatic melanoma cohort and the IMvigor210 cohort exhibited significantly higher
overall survival compared to those with a high FMGsScore. Additionally, a higher pro-
portion of patients with a low FMGsScore responded to immunotherapy (Supplementary
Figure S5D–G).

In addition to this, lipid metabolism is also altered in different subtypes of breast
cancer. Compared to other subtypes, Luminal A tumors typically exhibit lower lipogenesis
and higher fatty acid oxidation rates. On the other hand, HER2-enriched and triple-negative
breast cancers often show increased lipogenesis, which is associated with their aggressive
behavior [17]. Therefore, we evaluated whether FMGsScore is influenced by specific
subtypes (Supplementary Figure S6). We found that although fatty acid metabolism varies
among different subtypes, FMGsScore still retains the ability to predict the prognosis and
immunotherapy response of patients across all breast cancer subtypes.
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Figure 8. Effect of FMGsScore in immunotherapy. (A) Differences in immune checkpoint gene
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and low FMGsScore subgroups.

2.6. Single-Cell Profiling Data Reveal the Relationship between 15 Fatty Acid Metabolism Genes
and Tumor Immunity

The single-cell sequencing data annotation identified a total of eight cell types. t-SNE
plots (Figure 9A) depict cell subtypes in breast cancer samples, and a heat map of marker
genes represents part of the eight annotated cell types (Figure 9B). Based on the detection
of significant chromosomal copy number variations (CNV) in comparison to a reference
dataset of normal epithelial cells, we successfully identified a cumulative count of 11,041 ma-
lignant epithelial cells within breast cancer tumors (details provided in Methods; depicted
in Figure 9C,D). Stacked plots (Figure 9E) reveal a higher percentage of T-cell and myeloid
infiltration in patients with triple-negative breast cancer compared to other breast cancer
types, and a higher percentage of T cells in HR+ patients than in ER+ patients. The ex-
pression of 15 genes related to fatty acid metabolism was scored between cells using the
function “Addmodulescore”, available in the R package “Seurat”. The cells were divided
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into two groups based on the average score. Furthermore, t-SNE plots illustrate the fatty
acid metabolism of cell subtypes in breast cancer samples, and the t-SNE plot displays
the fatty acid metabolism gene scores of the cell subtypes in the breast cancer samples
(Figure 9F). Triple-negative breast cancer patients’ scores in the six samples were higher
than those of other patients and normal samples (Figure 9G). Additionally, the scores of
T-cells and myeloid cells were higher than those of other cells (Figure 9H). To explore
intercellular interactions in the high- and low-score groups, we utilized the R package
“CellChat” to infer intercellular interactions based on ligand-receptor signaling. The Cir-
cos plot illustrates the number of intercellular interactions between the high-score group
and the low-score group (Figure 10A,B). Notably, the high-score group exhibited more
interactions between cells compared to the low-score group, with stronger interaction
strengths (Figure 10C). Furthermore, interactions between epithelial and endothelial cells
were enhanced in the low-score group relative to the high-score group, whereas interac-
tions between immune cells (T-cells, mast cells, and myeloid cells) were less pronounced
than in the high-score group (Figure 10D). We compared cell-to-cell interaction pathways
between the low-score group and the high-score group, and observed enhanced MHC-I
and MHC-II pathway signaling in the high-score samples. This suggests the activation of
antigen-presenting functions of CD8+ T-cells and CD4+ T-cells in the high-score samples,
as well as the activation of CXCL-related pathways, such as CXCL9-CXCR3, CXCL10-CXCR,
and CXCL13-CXCR (Figure 10E). The CXCL9, -10, -11/CXCR3 axis primarily regulates
immune cell migration, differentiation, and activation. This axis is known to recruit im-
mune cells, including cytotoxic lymphocytes (CTL), natural killer (NK) cells, NKT cells,
and macrophages [14]. Additionally, interactions related to interferon-mediated signaling
pathways and antigen processing and presentation (IFNG-IFNG R1, IFNG-IFNGR2, HLA-
DRB1-CD4, HLA-DRA-CD4, HL A-DRPB1-CD4, and HLA-DRA1-CD4) were also elevated
in the high-score group (Figure 10F). This suggests that immune pathways are more active
in patients with high expression of 15 fatty acid-related genes.

2.7. Critical Role of NDUFAB1 Gene in Migration and Proliferation in Breast Cancer Cells

The TCGA data confirmed a significant upregulation of the NDUFAB1 gene in tumor
samples (Figure 11A). Furthermore, patients with high NDUFAB1 expression exhibited a
poorer prognosis (Figure 11B). Among the 15 FMGs employed to formulate the FMGsScore,
NDUFAB1 exerts the most substantial prognostic influence and remains relatively unex-
plored in its role within cancer. Given its positive correlation with FMGsScore (Figure 11C),
we opt to perform in vitro experiments to authenticate its involvement in breast cancer.
Through in vitro experiments, we demonstrated that NDUFAB1 promotes proliferation and
migration of breast cancer cells. Western blot analysis confirmed the upregulation of the
NDUFAB1-encoded protein in breast cancer, particularly in the MCF-7 cell line (Figure 11C).
Additionally, Figure 11D and 11E showed a significant decrease in NDUFAB1-associated
protein expression in transfected MCF-7 and MDA-MB-231 cells (Figure 11D,E).The qRT-
PCR validated the upregulation of NDUFAB1 in both breast cancer cell lines (Figure 11F,G).
Moreover, Figure 11H and 11I demonstrated a significant reduction in NDUFAB1 expression
after transfection in MCF-7 and MDA-MB-231 cells (Figure 11H,I). Moreover, subsequent
analysis revealed a significant positive correlation between NDUFAB1 and fatty acid elon-
gation (Figure 12A). Long-chain fatty acids have been strongly associated with cancer
development [18,19]. CCK8 analysis indicated that knockdown of NDUFAB1 significantly
reduced cell viability in both MCF-7 and MDA-MB-231 cell lines, suggesting that NDU-
FAB1 may promote proliferation (Figure 12B,C). Furthermore, the wound healing assays
in Figure 12D–G revealed that cells migrated more slowly after NDUFAB1 knockdown
compared to the NC and siNC groups, implying that NDUFAB1 may promote migration of
breast cancer cells.
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Figure 9. Atlas of single-cell sequencing in six breast cancer patients. (A) t-SNE plot showing cell
subtypes in breast cancer samples. (B) Gene heat map annotated with single-cell sequencing data.
(C) The heatmap illustrates extensive CNV in tumor epithelial cells, with red denoting amplifications
and blue indicating deletions. (D) Tumor and normal epithelial cells were distinguished based on
their CNV score ratings. (E) Stacked plots showing the cellular composition between each sample.
(F) The 15 fatty acid metabolism gene scores for the eight major cell types are represented by t-SNE
plots. (G) Differences in fatty acid metabolism gene scores between the six samples are shown in
violin plots (*** p < 0.001). (H) Differences in the scoring of fatty acid metabolism genes among eight
cell types.
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Figure 10. Differences in intercellular interactions between high- and low-scoring groups. (A) Cell
interactions network diagram for Highscore grouping of cell communication numbers. (B) Cell
interactions network diagram for Lowscore grouping of cell communication numbers. (C) Com-
parison of the number and strength of interactions between Highscore and Lowscore. (D) The
number and strength of cellular interactions between the Low-score and High-score groups were
compared. Deeper shades of red indicate more active cell communication within the Low-score
group, while deeper shades of blue indicate more active cell communication within the High-score
group. (E) Differences in cellular communication pathways between the Lowscore and Highscore
groups. (F) Comparison of important ligand-receptor pairs for T-cell signaling to epithelial and
myeloid cells. The color of the dots reflects the communication probability, and the size of the dots
indicates the calculated p-value. An empty space indicates a zero communication probability.
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Figure 11. Validation of the expression of NDUFAB1 in breast cancer. (A) Differential expression of
NDUFAB1 in TCGA data. (B) Analysis of the relationship between NDUFAB1 and OS in breast cancer
patients. (C) The gene expression level of NDUFAB1 is positively correlated with the FMGsScore.
(D) The Western blot was performed to assess the relative expression difference of the NDUFAB1
protein between breast cancer cell lines (MCF-7 and MDA-MB-231) and the normal breast epithelial
cell line (MCF-10). (E,F) The Western blot was performed to assess the relative expression d of the
NDUFAB1 protein after 2 days of transfection. (G) qRT-PCR was performed to assess the expression
difference of NDUFAB1 between breast cancer cell lines (MCF-7) and the normal breast epithelial cell
line (MCF-10). (H) The qRT-PCR assessment of NDUFAB1 mRNA levels after 2 days of transfection.
(I) qRT-PCR was performed to assess the expression difference of NDUFAB1 between breast cancer cell
lines (MDA-MB-231) and the normal breast epithelial cell line (MCF-10). (J) The qRT-PCR assessment
of NDUFAB1 mRNA levels after 2 days of transfection. All data are mean ± SD of three independent
experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not statistically significant.
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Figure 12. (A) Assessment of the correlation between NDUFAB1 and fatty acid elongation.
(B,C) CCK8 assay. Cell viability was significantly decreased after NDUFAB1 was knocked down in
MCF-7 and MDA-MB-231 cells. (D–G) Scratch-wound healing assay. Significantly slower wound
healing was observed in MCF-7 and MDA-MB-231 cells with knockdown of NDUFAB1. All data
are mean ± SD of three independent experiments. * p < 0.05, *** p < 0.001, **** p < 0.0001, ns: not
statistically significant.

3. Discussion

Breast cancer is the most prevalent cancer in women worldwide. While immunother-
apy has shown efficacy for many cancer patients, breast cancer patients rarely benefit from
it. Therefore, there is a need to identify new genes that can predict better responses to
immunotherapy. At this stage, constructing models to screen for molecular targets with
prognostic and therapeutic effects on breast cancer using various approaches has become
a major focus of research. The breast is a fat-rich tissue with a relatively active fatty acid
metabolism. However, there are limited studies on the comprehensive regulatory mech-
anisms of fatty acid metabolism genes in breast cancer. Tang et al. conducted a study
screening fatty acid metabolism genes associated with overall survival (OS) in breast cancer
patients and constructed a prognostic model using lasso regression [20]. Although this
is similar to our study, our research specifically focuses on the relationship between fatty
acid metabolism and the tumor microenvironment. Our model was constructed through
unsupervised cluster analysis of typing, screening for differential genes, and scoring the
model by PCA based on differential genes associated with prognosis. The advantage
of our approach is that it incorporates more differential genes associated with fatty acid
metabolism, rather than studying fatty acid metabolism genes in isolation. In this study,
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we screened for differential genes in breast cancer patients and normal samples based on
309 genes related to fatty acid metabolism. We extracted 15 genes (ALOX15B, CEL, UBE2L6,
ABCD1, HSPH1, PTGDS, NDUFAB1, ALDH3A1, ADH6, ACSL1, PSME1, NUDT19, ACSL5,
RDH16, and IL4I1) with prognostic impact on breast cancer patients, and these genes have
been studied in the relevant literature. As an illustration, arachidonate 15-lipoxygenase
type B (ALOX15B) falls within the lipoxygenase family of structurally akin nonheme iron
dioxygenases. It participates in generating fatty acid hydroperoxides, particularly within
tumor-associated macrophages (TAMs), potentially exerting a noteworthy influence on the
synthesis of bioactive lipid mediators within the tumor microenvironment (TME). Blocking
ALOX15 reduces the infiltration of MDSCs or monocytes, thereby decreasing the number of
tumor-associated macrophages (TAMs) [21]. Additionally, as a gene related to ferroptosis,
it may act as an independent prognostic factor for breast cancer [22]. ATP binding cassette
subfamily D member 1 (ABCD1) encodes a protein that belongs to the ATP-binding cassette
transporter protein superfamily (ABC transporters). This protein is part of the ALD subfam-
ily and is involved in the peroxisomal import of fatty acids and/or fatty acyl-coenzyme A
into the organelle [23]. The observed downregulation of ABCDs in certain tumor types may
lead to lipid accumulation, potentially promoting tumor growth and progression similar
to X-linked adrenoleukodystrophy (X-ALD), through oxidative stress and inflammatory
stimuli leading to peroxisome dysfunction [24].

In this study, we first investigated genetic variants in fatty acid metabolism-related
genes, which are dysregulated in breast cancer patients and associated with prognosis,
even though the frequency of mutations in 15 fatty acid metabolism-related genes is low.
Then, we performed unsupervised cluster analysis to categorize BC patients into three
groups, yielding three distinct fatty acid gene patterns (FMGsCluster-A, FMGsCluster-B,
and FMGsCluster-C). Due to the complexity of interactions among fatty acid metabolism-
related genes, we identified 898 differentially expressed genes (DEGs) based on these
patterns (Figure 4A). GO enrichment analysis and KEGG enrichment analysis showed that
these genes were significantly enriched in immune pathways, such as cytokine-cytokine
receptor, natural killer cell-mediated cytotoxicity, and T-cell receptor signaling pathways.
These results suggest that fatty acid metabolism genes play critical roles in modulating
the immune response within the tumor microenvironment. We identified three genomic
subtypes based on 898 related genes and developed an FMGsScore to comprehensively
assess individual breast cancer cases, considering clinical characteristics, tumor muta-
tional load, immune checkpoint expression, and response to immunotherapy. The low
FMGsScore group exhibited more abundant immune cell infiltration, better prognosis,
higher expression of immune checkpoints, better response to immunotherapy, and higher
suitability for immunotherapy. Breast cancer existing literature indicates the significant
role of the tumor microenvironment (TME) in the development and progression of breast
cancer [25]. Numerous studies have highlighted the crucial involvement of fatty acid
metabolism in the TME, which should not be overlooked, and its profound impact on
diverse immune cell differentiation and function [26]. Fatty acid synthesis provides the
building blocks for effector T-cell function, while fatty acid oxidation inhibits effector T-cell
activation and interferon synthesis [27]. Abnormal accumulation of fatty acids in the TME
also leads to T-cell senescence and promotes tumor development [28]. In contrast, the low
FMGsScore group exhibited higher infiltration abundance of CD8+ and CD4+ T-cells, in
line with the expected outcomes of this study. Inhibiting immune checkpoints, such as PD-1
and PD-L1, restores the cytotoxicity of immune cells, achieving an anti-tumor effect [29].
However, the low success rate of immunotherapy for breast cancer is attributed to its low
immunogenicity [30]. Certain breast cancer patients, especially those with triple-negative
breast cancer (TNBC), exhibit immunogenicity and are associated with poor prognosis and
limited response to chemotherapy [31]. These patients represent suitable targets for the
immunotherapy we are exploring.

Therefore, this study evaluated the FMGsScore, which was constructed from fatty
acid metabolism-related genes, regarding its relevance to immune checkpoints and im-
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munotherapy. We demonstrated a significant association between FMGsScore and immune
checkpoint inhibitor (ICI) treatment response in breast cancer. The low FMGsScore group,
characterized by higher expression levels of immune checkpoint genes (PD1, PD-L1, CTLA4,
LAG3, HAVCR2, and IDO1), exhibited higher ICI scores in CTLA-4/PD-1 immunotherapy
and demonstrated greater sensitivity to ICI treatment compared to the high FMGsScore
group. These findings suggest that the use of FMGsScore can assist in identifying breast can-
cer patients suitable for immunotherapy. Previous research indicates that the amalgamation
of fatty acid targets with immunotherapy enhances the efficacy of tumor cell eradication.
In a B16 tumor model, concurrent administration of the SREBP1 inhibitor Fatostatin and
anti-PD-1 therapy exhibited prolonged survival in mice. This combined approach thwarted
tumor growth and extended survival in the B16 mouse model. Furthermore, a reduction in
M2-like tumor-associated macrophages (TAMs) and an augmentation in CD8+ T cells were
documented [32].

However, most of the current studies involve in vitro cell line experiments or in vivo
experiments in mice, which differ significantly from the tumor microenvironment in hu-
mans and cannot fully address the immunotherapy challenges in clinical patients. Ad-
ditionally, single-cell sequencing offers high resolution not achievable with conventional
sequencing, enabling measurement of tumor heterogeneity at the level of individual cells.
This has great significance for the study of the tumor microenvironment [33]. Addressing
the regulatory program of emerging single-cell sequencing multi-omics data remains a
challenge in genomics, and the study by Song et al. presents a novel approach, the Single-
cell Multi-omics Gene co-regulatory algorithm (SMGR), offering a promising solution.
Utilizing single-cell sequencing technology to investigate the metabolic characteristics in
the tumor microenvironment allows for better discrimination of metabolic patterns among
different cells within the tumor microenvironment [34]. For instance, the study by Yu
et al. utilized bulk and single-cell transcriptome profiling to reveal metabolic heterogeneity
in human breast cancers, identifying energy-related metabolic signatures to construct a
prognostic and therapeutic classifier that distinguished breast cancer patients into two
distinct metabolic signature clusters: cluster 1 exhibited high glycolytic activity and lower
survival, while cluster 2 was characterized by an enrichment in fatty acid oxidation and
glutamine catabolism. This study employed single-cell sequencing technology to provide
new metabolic insights, ultimately enabling tailored therapeutic strategies based on pa-
tient or cell-type-specific cancer metabolism [35]. Hence, this study employs single-cell
sequencing technology to investigate the role of 15 critical fatty acid metabolism genes in
cellular communication within the breast cancer tumor microenvironment, aiming to reveal
the significance of fatty acid metabolism among immune pathways. The samples were
divided into two groups, with high and low scores, using the Addmodulescore function.
We observed that antigen-presentation pathways were more active in the high-scoring
samples compared to the low-scoring samples. Previous reports have shown that increased
lipid accumulation within lipid droplets in tumor-associated dendritic cells (DCs) leads to
DC dysfunction due to reduced antigen presentation, resulting in poor stimulation of T-cell
responses [36]. Among the 15 selected fatty acid metabolism genes in this study, most were
associated with fatty acid oxidation. In the low-scoring samples, lipid accumulation in DC
cells led to the inactivation of the antigen-presentation pathway. In high-scoring samples
analyzed by CellChat, LGALS9-HAVCR2, LGALS9-CD45, and LGALS9-CD44 were observed.
LGALS9 encodes galectin-9, a tandem protein found to interact with PD-1 and TIM-3, regu-
lating T-cell death and serving as a target for cancer immunotherapy [37]. Previous studies
have also shown that when LGALS9 binds to CD44, it enhances the inducible regulatory
stability and suppressive function of T (iTreg) cells [38]. Therefore, the combination of
immune checkpoint inhibitor therapy and inhibition of LGALS9, along with fatty acid
metabolic pathways, could significantly enhance the success of tumor immunotherapy.

Among the 15 fatty acid-related genes, NDUFAB1 has the highest prognostic risk factor.
Hence, we chose to validate its role through in vitro experiments. MCF-7 and MDA-MB-231
represent different types of breast cancer. MCF-7 belongs to the hormone receptor-positive
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(ER+) subtype of breast cancer cells, indicating sensitivity to estrogen. On the other hand,
MDA-MB-231 represents triple-negative breast cancer (ER-, PR-, HER2-), implying the
absence of estrogen and progesterone receptors as well as HER2 expression. Selecting
these two cell lines enables a more comprehensive study of various breast cancer types,
making them representative choices. Through TCGA database analysis, we observed high
expression of NDUFAB1 in cancer patients. Furthermore, patients with high NDUFAB1
expression exhibited a lower survival rate. Previous studies have suggested NDUFAB1
as a potential target for breast cancer. However, its role has not been confirmed through
in vivo or in vitro experiments. Through in vitro experiments, we provide the first demon-
stration of NDUFAB1 promoting the migration and proliferation of breast cancer cells. This
provides additional evidence supporting the involvement of NDUFAB1 in breast cancer.
Previous studies have indicated the role of NDUFAB1 in cardioprotection [39], but its spe-
cific mechanisms in cancer have not been investigated. Our findings reveal an association
between NDUFAB1 and fatty acid elongation, which has been closely linked to various
cancers. For instance, it has been demonstrated that extra-long-chain fatty acid protein 5
(ELOVL5)-mediated fatty acid elongation promotes the development of gastric cancer [40].
Furthermore, elongation expression of extra-long-chain fatty acid protein 5 (ELOVL5) and
fatty acid desaturase 1 (FADS1) is upregulated in mesenchymal gastric cancer cells (GCs),
contributing to the development of ferroptosis [41]. In our study, NDUFAB1 also emerges
as a potential therapeutic target.

4. Materials and Methods
4.1. Breast Cancer Dataset Source

Gene expression data for BC samples and clinical annotations were gathered using the
public TCGA dataset [42] (https://cancergenome.nih.gov/, (accessed on 22 April 2023)).
The RNA sequencing data (in FPKM format) were translated to transcripts per million
(TPM). The gathered clinical annotations for this project included survival time, survival
status, age, sex, stage, grading, and TNM stage. The data were normalized using the
“normalize.quantiles” function in the R software (4.3.0) package “preprocessCore” and
log2 transformation was applied to unnormalized data. ComBat” algorithm of the “sva”
package was used to correct for batch effects caused by non-biotechnical bias. Additional
RNA-seq data and clinical survival information for 110 breast cancer samples were ob-
tained from GSE162228 [43] (https://www.ncbi.nlm.nih.gov/geo/, (accessed on 25 April
2023)). The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
database [44], consisting of 1904 breast cancer samples, was utilized to validate the applica-
bility of 15 Functional Molecular Groups (FMGs) for classification purposes. The accuracy
of the model was validated using RNA-seq data and clinical survival information from 327
breast cancer patients in GSE20685 [45]. Single-cell sequence RNA analyses were down-
loaded from the GEO database (GSE161529) [46]. The expression data were normalized
using the R package “Seurat”. The R package “FindVariableGenes” was used to identify
the first 2000 highly variable genes. Cellular subpopulation annotation was conducted with
the “singleR” package. The R package “t-SNE” was used to map the distribution of cellular
components. We obtained information on BRC mutations in the genome, including somatic
mutations, copy number variations (CNVs), and analyzed the data using R programs.
We obtained breast cancer mutation data, which included somatic mutations and copy
number variants (CNVs). Somatic mutation detection and copy number visualization were
conducted using the R packages “maftools” and “RCircos”. In order to investigate the
predictive validity of FMGsScore for immunotherapy response, we included a cohort of
metastatic uroepithelial carcinoma (mUC) (EGAS00001002556) obtained through the R pack-
age IMvigor210CoreBiologies (http://research-pub.gene.com/IMvigor210CoreBiologies,
(accessed on 29 July 2023)). Additionally, we obtained a cohort of patients treated with
anti-PD1 immune checkpoint blockade from the Large Melanoma Genome Sequencing
Project (MGSP) [47]. Cellular subpopulation annotation was conducted with the “singleR”
package. The R package “t-SNE” was used to map the distribution of cellular components.

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://research-pub.gene.com/IMvigor210CoreBiologies
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Single-cell gene expression data from normal patients’ epithelial cells were used as a refer-
ence. The R package “inferCNV” (https://github.com/broadinstitute/inferCNV(1.16.0))
was employed to analyze single-cell gene expression data, inferring chromosomal copy
number variations in malignant cells. InferCNV was run with default parameters to detect
amplifications and deletion events.

4.2. Produces Fatty Acid Metabolism-Related Genes Associated with Prognosis

Three gene sets related to fatty acid metabolism, including KEGG fatty acid metabolism
pathways, Hallmark fatty acid metabolism genes, and Reactome fatty acid metabolism
genes, were obtained from the Molecular Signature Database v7.4 (MSigDB). After remov-
ing overlapping genes among the three sets, 309 FMGs were collected. The “limma”
package in R was utilized to select 121 differentially expressed genes in TCGA data
(logFC = 0.585, FDR = 0.05). Differentially expressed genes (DEGs) were analyzed us-
ing univariate Cox regression to identify FMGs associated with overall survival (OS).
A total of 15 significant OS-related FMGs were identified individually: ALOX15B, CEL,
UBE2L6, ABCD1, HSPH1, PTGDS, NDUFAB1, ALDH3A1, ADH6, ACSL1, PSME1, NUDT19,
ACSL5, RDH16, and IL4I1.

4.3. Consensus Clustering of FMG Regulators

Unsupervised clustering analysis was employed to identify distinctive patterns of
FMG alterations based on the expression of these regulators and breast cancer samples,
resulting in significant clusters. Consistent clustering was performed using the R package
“Consensus Cluster Plus”, and one thousand repetitions of instances were conducted to
ensure the stability of clusters [48].

4.4. Gene Set Variation Analysis

The “GSVA” R package was used to investigate differences in biological processes
among FMG signature designs [49]. The “ClusterProfiler” package was used for functional
annotation, and the gene set file (c2.cp.kegg.v7.2.symbs.GMT) was obtained from the
MSigDB database (https://www.gsea-msigdb.org, (accessed on 22 April 2023)) [50,51].

4.5. Estimation of TME Cell Infiltration

The relative abundance of each cell infiltrate in the TME was measured using the
Single Sample Gene Set Enrichment Analysis (ssGSEA) procedure. Genetic markers for
each immune cell type infiltrating the TME were obtained from the Charoentong study,
which identified multiple human immune cell subsets, including stimulatory CD8 T-cells,
stimulatory dendritic cells, macrophages, NKT cells, and regulatory T-cells [19]. The
ssGSEA analysis calculated enrichment values, which were then used to determine the
relative abundance of each TME-infiltrating cell in each sample. Additionally, we col-
lected fatty acid-related genes from the Molecular Signature Database v7.4 (MSigDB). The
analysis was performed using the R software “GSVA” package (1.48.3) with the parame-
ter method = ‘ssgsea’. Finally, we assessed the correlation between gene expression and
pathway scores using Spearman correlation analysis.

4.6. Construction of the FMGs’ Gene Signature

We utilized the empirical Bayesian approach of the “limma” R package to construct
FMG scoring patterns and identified differentially expressed genes between FMGs’ mod-
ification patterns. The significant p-values were adjusted using a threshold of p < 0.001.
Differential analysis and Venn diagrams revealed 898 genes in common across the three
FMG clusters. Each gene was subjected to one-way Cox regression analysis to screen
for genes associated with prognosis, resulting in a total of 210 genes. Principal compo-
nent analysis (PCA) was employed to construct the FMG gene signature. FMGsScore was
defined as:

FMGsScore = ∑(PC1i + PC2i)

https://github.com/broadinstitute/inferCNV(1.16.0
https://www.gsea-msigdb.org
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where i represents each FMGs. PC1 and PC2 represent the first two principal components
obtained from the PCA. In the scRNA-seq dataset, FMGsScore is calculated as the mean
expression level of FMGs for each individual cell. The single-cell dataset was scored using
the “AddModuleScore” function from the R package “Seurat” (4.3.0.1) [52].

4.7. Comprehensive Analysis of the FMGsScore Signature with Genomic Mutations, Clinical
Information, and Immunity Correlation

We conducted an analysis of genomic mutations, tumor mutation load, and clinical
annotations to compare the FMGsScore groups. Subsequently, we employed the Wilcoxon
test to evaluate the differences in potential immune checkpoints (e.g., PD-L1, PD-1, CTLA4,
LAG3, and TIGHT) between the high- and low-scoring groups. The immune checkpoint
inhibitor (ICI) immune epistasis score files were acquired from the Cancer Immunome
Database (TCIA, https://tcia.at/home (accessed on 2 May 2023)). The immunophenoscore
(IPS) serves as a reliable predictor of CTLA-4 and PD-1 responsiveness and responses
to immunotherapy. Moreover, it predicts intergroup differences in the response to im-
munotherapy with CTLA-4 and PD-1 blockers [53,54].

4.8. Analysis of Single-Cell Sequencing Data

Single-cell sequencing data of breast cancer patients and normal breast tissues were
downloaded from the GEO database GSE161529. From this dataset, we obtained single-
cell sequencing data from 2 TNBC patients, 1 ER+ patient, 1 HR+ patient, and 2 normal
individuals. We annotated the single-cell sequencing data using the “SingleR” automated
annotation tool with gene markers obtained from CellMarker (http://bio-bigdata.hrbmu.
edu.cn/CellMarker/ (accessed on 3 May 2023)) and panglaoDB (https://panglaodb.se/ (ac-
cessed on 3 May 2023)). We utilized CellChat (1.6.1) to analyze intercellular communication
networks from scRNA-seq data.

4.9. Cell Lines Culture and Transfection

The human breast cancer cell line MCF-7 was obtained from Wuhan Pronosai Life Sci-
ences Co., Ltd. (Priscilla, Wuhan, China) and cultured in DMEM (Gibco BRL, Gaithersburg,
MD, USA) supplemented with 10% fetal bovine serum (Biological Industries, Cromwell, CT,
USA) and 1% penicillin/streptomycin mixture (Liji, Shanghai, China) under conditions of
95% humidity and 5% CO2 at 37 ◦C. The cells were transfected with previously synthesized
small interfering RNAs (GenePharma Inc., Shanghai, China) targeting the NDUFAB1 gene
using Lipofectamine3000 (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s protocol. The siRNA sequences targeting the NDUFAB1 gene are provided
in Supplemental Table S1.

4.10. Western Blotting

Protein extraction was performed on MCF-7 and MDA-MB-231 cells using whole
protein extraction reagents (KGI Biotechnology Ltd., Claremont, CA, USA). Protein quantifi-
cation was conducted using the BCA method (KGI Biotech Ltd.). The isolated proteins were
loaded onto 12% sodium dodecyl sulfate polyacrylamide gels (Solabank Technology Ltd.,
Shenzhen, China) and subsequently transferred to PVDF membranes (Millipore, Burling-
ton, MA, USA). Subsequently, the PVDF membranes were blocked with 5% non-fat milk
for 2 h and then incubated overnight at 4 ◦C with primary antibodies at a dilution of 1:1000.
The primary antibodies used were GAPDH (Affinity Biosciences Ltd., Changzhou, China)
and NDUFAB1 (YN2973, Immunoway, Plano, TX, USA). After washing, the membranes
were incubated with secondary antibodies (Proteintech, Rosemont, IL, USA) at a dilution
of 1:5000 for 2 h at room temperature. Following the incubation with secondary antibodies,
the membranes were exposed to ECL developer (Epizyme Biomedical Technology Co., Ltd.,
Suzhou, Jiangshu, China) for 30 s, and the protein bands were visualized using the Molecu-
lar Imager ChemiDoc XRS system (BIO-RAD, Hercules, CA, USA). The protein bands on
the Western blot were then analyzed using ImageJ software (Java 1.8.0_345(64-bit)).

https://tcia.at/home
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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4.11. qRT-PCR

Total RNA was extracted from the cell lines using AG RNAex Pro RNA Kit (AG21101,
Accurate Biotechnology, Changsha, Hunan, China). Subsequently, cDNA was synthesized
and reverse transcribed using the Evo M-MLV RT Kit with gDNA Clean for RT-qPCR
(AG11705, Accurate Biotechnology, Changsha, Hunan, China). Real-time polymerase chain
reaction (RT-PCR) was performed with the SYBR Green Pro Taq HS premixed qPCR kit
(AG11701, Accurate Biotechnology, Changsha, Hunan, China), and expression levels were
calculated using the 2ˆ(−∆∆Ct) method. mRNA expression was normalized to the expression
level of β-actin mRNA. All primers were provided by Accurate Biotechnology Co., Ltd.
(Changsha, Hunan, China), and the detailed primer sequences are shown in Supplementary
Table S1. All data are presented as the mean ± SD of three independent experiments.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

4.12. CCK8 Assay to Detect Cell Proliferation

Cell Counting Kit-8 (CCK-8) kit (bs-4975R, Bioss, Beijing, China) was used to assess
MCF-7 cell viability. After transfection, the cells were incubated for 7–8 h, digested, and
resuspended with fresh medium. The cell density was then adjusted to 2 × 104 cells/mL
and 0.1 mL of the cell suspension was added to each well in a 96-well plate, with 5 wells per
group (NC, siNC, and siNDUFAB1). The cells were incubated at 37 ◦C with 5% CO2 for 12,
24, 48, and 72 h. Afterward, 10 µL of CCK-8 solution was added to each well and incubated
for 90 min at 37 ◦C in a cell incubator. The absorbance values were measured at 450 nm
using a Spectra MR ELISA (Dynex, Charlottesville, VA, USA). All data are presented as
the mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

4.13. Healing Assay

MCF-7 cells were transfected in each group for 7 h, digested, and spread across a
monolayer in a six-well plate. The cells were seeded at a density of 4.0 × 105 cells/mL, with
2 mL of cells added to each well, and incubated for 24 h to ensure even distribution. Vertical
lines were drawn in advance on the plate, and each well was scored 3 times using a 200 µL
pipette tip, spaced equally and parallel to each other. After the scratching, cells were gently
washed 3 times with 1 mL of PBS, and then 2 mL of complete medium was added to each
well. The cells were observed under an inverted microscope and recorded at 0 h. After 24 h,
the record was re-observed under the microscope, and the widths of the scratches at 0 and
24 h were calculated using software and analyzed with Image J software(Java 1.8.0_345(64-
bit)). All data are presented as the mean ± SD of three independent experiments. * p < 0.05,
** p < 0.01, *** p < 0.001.

4.14. Statistical Analysis

Pearson correlation analysis detected correlations between variables. Two continuous
variables that fit a normal distribution were compared using a t-test. The Kruskal–Wallis
test was used to compare differences between two groups or more. The optimal cutoff
value was obtained by the “surv_cutpoint” function in the “survminer” R package, based
on the correlation between the survival outcome and the FMGsScore for each individual
dataset. The samples were divided into two groups, a high FMGsScore group and a low
FMGsScore group. The cutoff value for the training set is -12.63661. Survival curves were
generated for each subgroup in the dataset using the Kaplan–Meier method, and statistical
differences were determined using the log-rank test. All statistical analyses were performed
using R4.3.0 (https://www.r-project.org/). p values are two-sided. A p value of less than
0.05 was considered statistically significant.

5. Conclusions

This study utilized FMGs to classify breast cancer subtypes, identifying the significant
therapeutic potential of fatty acid metabolism-related genes in the tumor microenvironment

https://www.r-project.org/
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(TME) and breast cancer (BC). This research contributes to the advancement of novel
immunotherapeutic strategies.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241713209/s1.
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