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Abstract: Despite enormous global efforts within clinical research and medical practice to reduce
cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While
genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data
indicate that a major common denominator among diverse ethnic populations from around the
world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western
diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent
glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western
lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its atten-
dant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate
changes in the external (and internal) environment to adapt survival mechanisms to perceived
stresses (challenges to normal biological function), including the aforementioned Western lifestyle
cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the
environment and has evolved mechanisms for the induction of the obese, insulin-resistant state
as a survival mechanism against an anticipated ensuing season of low/no food availability. The
peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased
hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function
also orchestrates the reversal of the obese, insulin-resistant condition when the low food availabil-
ity season ends. The circadian neural network that produces these seasonal shifts in metabolism is
also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major
component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift
potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic
input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically prevent-
ing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic
syndrome in a wide variety of animal models of the disorder, including high fat-fed animals.
Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick
release) (a unique formulation of micronized bromocriptine—a dopamine D2 receptor agonist)
therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, im-
mune sterile inflammation, and/or adverse cardiovascular event rate. The present review details
the seminal circadian science investigations delineating important roles for CNS circadian peak
dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology
and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic
outcomes in type 2 diabetes subjects.
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1. Introduction

During the last century, including within the last three decades, the prevalence of
cardiovascular disease (CVD) has been on the rise across the globe, currently afflicting
an estimated 550 million people [1]. While genetic aberrations can account for vari-
ous cardiovascular disorders, the breadth of this “recent” rise in global CVD burden
cannot be attributed to any genetic shift within the worldwide population within this
100-year span. Rather, the rise in CVD prevalence across distinct populations of the
world coincides most closely with the onset within these populations of the “western-
ized lifestyle” characterized predominantly by a chronic shift to a combination of high
simple sugar [particularly including high fructose, sucrose]/high saturated fat [absence
of mono- and polyunsaturated fats] diets, an increase in disruption to normal noctur-
nal daily sleep/wake architecture, artificial photoperiod exposure (including light at
night), depression, and/or an increase in psychosocial stress [2,3]. More importantly,
each of these environmental alterations has been well documented in preclinical and
clinical studies to induce biochemical pathophysiological changes, including obesity,
hypertension, insulin resistance, dyslipidemia, and/or systemic low-grade inflamma-
tion (collectively defined as/termed metabolic syndrome or cardiometabolic syndrome)
that precipitate CVD [4–25]. Each of these environmental perturbations is processed,
interpreted, and acted upon largely by the central nervous system (CNS) to orchestrate
whole-body physiological responses. An ancient endogenous environmental response
system in vertebrates is the CNS biochemical machinery that evolved to record and
anticipate natural recurring seasonal changes in the environment (such as daily and
seasonal changes in photoperiod, temperature, rainfall, food availability and quality)
to maximize survival potential against ensuing environmental challenges [26–33]. The
components of this CNS anticipatory response system define the framework of the CNS
biological clock circuitry. Vertebrate species, from teleosts to mammals in the wild from
around the globe, exhibit distinct seasonal changes in metabolic, reproductive, immuno-
logical, and behavioral physiology [26–33]. Respecting metabolism, animals in the wild
become obese and insulin resistant in preparation for an ensuing season of low/no
food/glucose availability and at the end of this low food availability season, they spon-
taneously become lean and insulin sensitive once again; seasonal shifts that transpire
under laboratory conditions of unchanging food supply and photoperiod (i.e., it is an
endogenous mechanism) (reviewed in [26,27]). The seasonal insulin-resistant state facili-
tates increased hepatic glucose output that under peripheral insulin-resistant conditions
is more readily shunted to the brain, which has a near-absolute requirement for glucose
as an energy source while the peripheral tissues (e.g., muscle) utilize lipid stores for
energy supply further driving/maintaining muscle insulin resistance. An appreciation
of the nature of this evolutionarily well-preserved endogenous biological clock system
and its response to aforementioned environmental stresses of altered diet, sleep/wake
architecture, and psychosocial stress are critical in understanding (a) how such stresses
alter cardiometabolic function (induce pathology) and (b) the physiological mechanisms
contributing to/driving the effectiveness of circadian-timed bromocriptine-QR therapy
for cardiovascular disease. Therefore, this review must begin with an examination of
the critical CNS circadian clock elements and functions observed to regulate daily and
seasonal metabolism in vertebrates, including man.

2. Temporal Synergisms of CNS Circadian Neural Oscillations Dictate
Physiological Status

Human observations and documentation of annual cycles of physiological activities
(e.g., metabolic, behavioral [migratory], reproductive status) among vertebrate species
in the wild appear to date back far beyond antiquity [34], yet we are only recently
beginning to understand the mechanisms operative in the genesis of these precisely
timed, marked changes in vertebrate physiology. A multitude of seminal studies by the
laboratory of Albert H. Meier, initiated over 50+ years ago, were the first to identify
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both a vertebrate circadian physiological response to any molecule (in this case, the
hormone prolactin) administration [35] and specific roles for temporal interactions of
CNS neuronal circadian activities in the regulation of seasonal vertebrate physiology
(reviewed in great detail in [26,27,36–38]). These initial studies found that the phase
(time of day) relationship between the circadian peak (acrophase) in plasma prolactin
and corticosteroid hormone differed in seasonal obese and lean animals and that merely
mimicking the circadian phase relationship of these hormones of a particular season
(by their exogenous injection at the appropriate times of day under constant light con-
ditions for approximately 7–14 days) was capable of inducing that seasonal metabolic
condition irrespective of the actual time of year [39–41]. For example, it was demon-
strated to be possible to induce the seasonal lean, insulin-sensitive condition in obese,
insulin-resistant animals during the seasonal obese, insulin-resistant time of year by
mimicking the plasma circadian acrophase relationship of these hormones (via hor-
monal injection at the appropriate times of day) of the lean, insulin-sensitive season
[and also vice versa] regarding shifting from lean to obese seasonality [42]. This tempo-
ral synergism of circadian neuroendocrine rhythms responsible for the manifestation
of seasonal metabolic status was demonstrable across representative species of all the
major vertebrate classes [41], highlighting the positive selection force for its preserva-
tion across more than 400 million years of evolution [26]. As an example of the power
of this circadian system in regulating seasonal physiology, sterile southward-bound
migratory birds of Fall could be physiologically “reset” to fertile, reproductively active,
northward-bound migratory birds (of Spring) by a short 7-day duration of circadian-
timed prolactin and corticosteroid hormone treatment at times of day that mimic the
circadian peaks in the plasma levels of Spring birds [37]. In migratory fish, this same
methodology is capable of resetting not only metabolism but also salinity preference,
able to convert fish from seasonally saltwater living to seasonally freshwater living (and
vice versa) within days [36] (try tossing a saltwater fish into fresh water and observe
its health to appreciate this dramatic response to circadian resetting). Moreover, the
effects of this short-term neuroendocrine “resetting” intervention (usually 7–14 days)
persisted for many months following the termination of the treatment [37,42]. In other
words, the animals were shifted from one particular seasonal physiology to another and
then remained there out of sync with the real world for several months thereafter. Since
animals will exhibit an annual cycle of physiology under constant light conditions and
this temporal synergism “resetting” of the annual cycle method also is effective under
constant light (and food supply) conditions, something endogenous must be “driving”
this control of seasonally shifting metabolic state independent of photoperiod. For
instance, note that the photoperiod of 12 h of light is the same in Fall and Spring times
in temperate zones of the earth, yet studied vertebrates (e.g., mammals) at these two sea-
sons are markedly different physiologically, exhibiting essentially opposite reproductive
behavior, reproductive capacity, and migratory orientation. Furthermore, the annual
cycle of whole-body physiology (including metabolism, reproduction and behavior)
can manifest without any change in the photoperiod during certain times of the year
(e.g., obese, insulin-resistant animals of winter will pass into the spring lean, insulin-
sensitive condition even if maintained on the same short [10 h]) daily photoperiods of
winter) [43]. However, at certain checkpoint times of the year, the change in photoperiod
is required to advance/change the physiological status to that of the next season (see
discussion below on circadian regulation of seasonality). A critical question is: Within
this chronobiological framework, how and where are the circadian-timed injections of
prolactin and corticosteroid hormone working to reset the annual cycle of (metabolic)
physiology and how does disruption to this clock system precipitate CVD?

3. CNS Circadian Clock Mechanisms Generating Seasonal Physiology

The CNS of animals is equipped with the ability to determine and respond to photope-
riod length (the onset of light sets a daily rhythm of photosensitivity and if light is present
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during the photosensitive phase of the day (e.g., at 14 h after light onset, [long daily pho-
toperiod]) it produces a different physiological response than if light is not present during
this photosensitive period (e.g., as would occur on 10 h [short] daily photoperiods), a phys-
iological phenomenon termed photoperiodism [26,27]. Additionally, the CNS is equipped
with the ability to change its interpretation of the same photoperiod at different times of the
year, based largely upon the number of days the CNS is exposed to that photoperiod—i.e.,
after a certain number of days has passed on a given photoperiod, the CNS response to that
photoperiod changes (a delayed response to photoperiod)—a physiological phenomenon
termed seasonality [26,27]. The interaction of photoperiodism and seasonality functions
of the CNS produce the annual cycle of physiology in vertebrates. This is an exceedingly
important point to understand to appreciate CNS circadian clock control of physiology,
so we will provide an example of its operation in the seasonal Syrian hamster. Female
Syrian hamsters are naturally born in spring on long (~12.5–14 h) daily photoperiods and
mature to adulthood during the spring and summer. At least ten weeks of exposure to such
long daily photoperiods is required for the animals to become sensitive to the effects of
subsequent short daily photoperiods of fall and winter (<12 h/day of light) to induce repro-
ductive regression (they become essentially sterile during this time of year when held on
short daily photoperiods) and severe insulin resistance and obesity. If maintained on long
daily photoperiods through Fall and Winter, this annual physiological shift is significantly
attenuated but not eliminated (photoperiodic effect). Following such exposure to short
daily photoperiods for approximately 14 weeks, the animals become refractory to the short
daily photoperiod effects on reproduction and metabolism (even while held on the same
short daily photoperiod), and the animals spontaneously become reproductively fertile
and active and the obese, insulin-resistant state is reversed (seasonality effect). Exposure
to long daily photoperiods is then required for about 10 weeks to initiate another annual
cycle [42–45].

These neural environmental processing events occur within the brain clock system of
which the suprachiasmatic nucleus (SCN) is the primary pacemaker receiving both photic
and non-photic information (from the retinohypothalamic tract and other CNS/peripheral
inputs, respectively), but this clock system also includes several other brain areas including
the supramammillary nucleus, the lateral habenula, the amygdala, and striatum with which
the SCN communicates [46–51]. The actual biochemical machinery that runs the clock
within the neuronal cells of this clock network (and all cells of the body) has been well
delineated in the past several years and is the topic of well-researched reviews [52,53].
Importantly, this evolutionary preserved cellular clock machinery is operative in nearly
every cell of the mammalian body. It is a primary role of the CNS clock network, particularly
the SCN, to modulate the expression of clock and clock-controlled genes in the peripheral
tissues for the temporal synchronization of cellular biochemical activities in turn for the
production of tissue-level functions and temporal integration of organ systems biology to
generate a viable biological organism (see discussion below). Provided here is a very brief
and basic summation of the salient components of this cellular clock machinery.

Twenty-four-hour oscillations in cellular gene expressions are manifested by trans
-criptional-translational feedback loops within core clock genes wherein the clock gene
products BMAL1 and CLOCK heterodimerize in the cytosol over time to a certain accu-
mulated level (similar in concept to a filling hourglass mechanism) before translocating
back to the nucleus to bind to DNA E-box elements of promoter regions for PERIOD
(PER1/2/3) and CRYPTOCHROME (CRY1/2) gene transcription, heterodimer protein
products of which upon appropriate accumulated cytosolic level over time also translo-
cate back to the nucleus to bind to the BMAL1/CLOCK complex to block its transcrip-
tional activity—a circular process that takes approximately 24 h to complete. In a second
feedback loop, the nuclear BMAL1/CLOCK heterodimer also activates the transcription
of REV-ERBα/β proteins, which also feedback from the cytosol upon appropriate level
accumulation over time to repress nuclear activation of BMAL1/CLOCK gene expres-
sion in a 24-h oscillatory fashion by blocking circadian RORα/β/γ protein activation
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of BMAL1 and CLOCK transcription. Nuclear PER, CRY, and REV-ERB protein levels
are reduced by a variety of posttranslational modifications, including phosphorylation
and enzymatic degradation (themselves circadian in nature, ultimately regulated by
the BMAL1/CLOCK-PER/CRY -ROR/REV-ERB interaction complexes), thus allowing
for the initiation of another 24-h BMAL1/CLOCK transcriptional cycle under circadian
ROR activation. Circadian ROR expression is itself regulated by BMAL1/CLOCK via
its circadian transcriptional control of DBP, an activation transcription factor for ROR
(and several other genes), while REV-ERB provides circadian transcriptional control
of NFIL3, another transcription factor that represses DBP activity. These interlocking
feedback loops provide multiple layers of circadian core clock gene regulation. More-
over and most importantly, since the BMAL1/CLOCK, PER/CRY, ROR/REV-ERB, and
DBP/NFIL3 monomer and heterodimers act as transcription factors for the transcription
of many thousands of genes, the circadian expression (daily acrophase [time of daily
peak function] and amplitude) of BMAL1 and CLOCK and these other core clock genes
regulates the daily temporal organization of nearly all cellular biochemical reactions
essential for life [52,53]. The core clock genes are responsive to changes in the cellular
environment, such as pH, metabolites, xenobiotics, hormones, growth factors, nutrients,
microRNAs, and more [54,55]. An important question is: What can set the acrophase and
amplitude of the circadian peak expression of BMAL1/CLOCK-PER/CRY-ROR/REV-ERB-
DBP/NFIL3 gene transcription activities in particular cells, especially within the SCN
neuronal pacemaker system, to modify their regulation of particular circadian biological
functions, such as neuronal output activity? In other words, what is regulating the
circadian expression of the core clock genes in the CNS clock pacemaker system of the
body to regulate its circadian output control of whole-body (circadian) physiology?

The fact that the annual cycle of physiology is reprogrammable by circadian-timed
prolactin and corticosteroid hormonal administrations, as described above, suggests that
both photoperiodism and seasonality are each the result of changing acrophase (time of
daily peak function) relations of at least two CNS circadian neural oscillations, a postulate
termed internal coincidence model of clock function or temporal synergism of CNS circadian oscil-
lators. Regarding photoperiodism, the onset of light sets a rhythm of photosensitivity to the
light, and if light is present later during a photosensitive time of day, it acts on the CNS to
adjust a second circadian rhythm of neural activity into a particular acrophase relationship
with itself, while if light is not present during this photosensitive time of day, it acts on
the CNS to adjust the second circadian rhythm of neural activity into a different acrophase
relationship with itself (i.e., an adjustable rhythm dependent upon photoperiod). Regard-
ing seasonality, after a certain duration of days on a particular photoperiod has passed,
then without any change of photoperiod, the second adjustable circadian neural oscillation
changes its acrophase relationship with the neural oscillation set by the photoperiod (e.g.,
a shift from short photoperiod sensitivity that produces a particular physiology to short
photoperiod refractoriness that no longer produces that physiology) (see refs. [26,27] for
fuller description including regulation of photoperiodism and seasonality). This automatic
shift requires a mechanism for counting the days on a particular photoperiod, and available
evidence indicates that the duration and acrophase of the daily CNS melatonin rhythm
are involved in providing this function [56]. In this construct, at least two environment-
responsive CNS circadian oscillators change their acrophase relationship during the year
to drive seasonal physiology (see Figure 1 for schematics of circadian neural temporal
synergism manifestation of photoperiodism and seasonality that generate the annual cycle
of vertebrate physiology).
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on physiology are manifested by the changing phase relationships of at least two CNS circadian 
neuroendocrine oscillations (termed internal coincidence). One oscillation (A) is directly entrained 
by the daily photoperiod (e.g., light onset). The second oscillation (B) is loosely coupled with oscil-
lation A in different phase relationships as a function of daily photoperiod length (i.e., whether or 
not light coincides with a reactive [i.e., sensitive] phase of oscillation A) (transition from Sum-
mer/Fall lean, insulin-sensitive metabolic condition 1 to Winter obese, insulin-resistant condition 2 
in the figure). The differing phase relations of these interacting circadian neural oscillations produce 
differing neuroendocrine output effects downstream on the body as a function of their phase rela-
tionships. Temporal interactions of CNS circadian neural oscillations also manifest a seasonal clock 
that regulates physiology. After a certain number of days on a particular seasonal photoperiod (e.g., 
short [≤ 10 h] photoperiods of Winter), an internal day-counting mechanism involving melatonin 
interactions with the CNS clock circuitry elicits a temporal shift in CNS circadian oscillations while 
animals are held on the existing photoperiod to manifest a resultant new seasonal condition on the same 
photoperiod (transition from Winter metabolic condition 2 to Spring metabolic condition 3 in the 
figure). Additionally, at certain seasonal checkpoints (e.g., after >/= 14 weeks on Winter short [</= 10 
h] daily photoperiods), a change from short daily photoperiod to long daily photoperiod (>/= 14 h) 
of Spring/Summer (transition from Winter 2 to Spring/Summer 4 condition on the figure) is required 
for an approximate 10–14 week period to re-establish sensitivity (physiological responsiveness) to 
the next year’s Winter daily photoperiod (seasonal effect) (transition from Spring/Summer condition 
4 to Summer/Fall condition 1 on the figure). Importantly, these circadian neural oscillations that 
govern whole body physiology (e.g., metabolism) may be phase and/or amplitude shifted without 
any change to the photoperiod by environmental stressors or by pharmaceutical agents to thus 

Figure 1. The blueprint for interactions of photoperiodic and seasonal clocks generates the annual
cycle of physiology (e.g., metabolism) in vertebrates under natural conditions. Photoperiodic effects on
physiology are manifested by the changing phase relationships of at least two CNS circadian neuroen-
docrine oscillations (termed internal coincidence). One oscillation (A) is directly entrained by the daily
photoperiod (e.g., light onset). The second oscillation (B) is loosely coupled with oscillation A in different
phase relationships as a function of daily photoperiod length (i.e., whether or not light coincides with
a reactive [i.e., sensitive] phase of oscillation A) (transition from Summer/Fall lean, insulin-sensitive
metabolic condition 1 to Winter obese, insulin-resistant condition 2 in the figure). The differing phase
relations of these interacting circadian neural oscillations produce differing neuroendocrine output
effects downstream on the body as a function of their phase relationships. Temporal interactions of CNS
circadian neural oscillations also manifest a seasonal clock that regulates physiology. After a certain
number of days on a particular seasonal photoperiod (e.g., short [≤ 10 h] photoperiods of Winter), an
internal day-counting mechanism involving melatonin interactions with the CNS clock circuitry elicits a
temporal shift in CNS circadian oscillations while animals are held on the existing photoperiod to manifest a
resultant new seasonal condition on the same photoperiod (transition from Winter metabolic condition 2
to Spring metabolic condition 3 in the figure). Additionally, at certain seasonal checkpoints (e.g., after
>/= 14 weeks on Winter short [</= 10 h] daily photoperiods), a change from short daily photoperiod
to long daily photoperiod (>/= 14 h) of Spring/Summer (transition from Winter 2 to Spring/Summer
4 condition on the figure) is required for an approximate 10–14 week period to re-establish sensitivity
(physiological responsiveness) to the next year’s Winter daily photoperiod (seasonal effect) (transition
from Spring/Summer condition 4 to Summer/Fall condition 1 on the figure). Importantly, these cir-
cadian neural oscillations that govern whole body physiology (e.g., metabolism) may be phase and/or
amplitude shifted without any change to the photoperiod by environmental stressors or by pharma-
ceutical agents to thus impact physiology/pathology. Updated from [26]; Copyright 1996 American
Diabetes Association. From Diabetes Reviews®, Vol. 4, 1996; 464–487 [26]., updated with permission.
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The photoperiod is a dominant time setter (zeitgeber) input signal to the CNS clock
system from the retina to the SCN (the retinohypothalamic tract), as mentioned above.
However, this circadian circuitry also receives input from a multitude of internal non-photic
cues (e.g., other CNS and peripheral nervous system (PNS) centers, paracrine factors, hu-
moral factors, and nutrients) [46–51,57–60]. Each of the photic and non-photic neuronal
input circuits to the clock can be markedly modified by several external environmental
factors, provided these factors persist chronically, and they include alteration to diet (high
saturated fat/simple sugar diet), psychosocial stress (including depression and anxiety),
and altered sleep/wake architecture (e.g., interrupted sleep, too long or short sleep dura-
tion, shift work, light at night) [58–75]. It now appears that it is the temporal interaction
of these non-photic cues with the photoperiod-sensitive cues that ultimately determine
the neuronal nature of the clock output oscillations (i.e., clock “interpretation” of and
response to the photoperiod) that govern clock organization/regulation of whole-body
physiology. Each CNS clock oscillator output entrains separate multiple neural and hor-
monal downstream circadian expressions (e.g., CNS, hypothalamic, autonomic activities
and endocrine functions in various tissues, such as the pituitary, pancreas, and gut). The
temporal circadian interactions of such CNS clock oscillator systems at the cellular level
(e.g., stimulus rhythms [neurotransmitters, hormones, and/or humoral factors] interacting
with response rhythms [cellular receptor/signal transduction activity rhythms]) govern
cellular gene expression and biochemistry to generate a particular circadian cellular phys-
iology (see below for exemplary description). This circadian cellular entrainment then
generates synchronized tissue-level physiology and manifests a whole-body physiology
that is temporally organized within organ systems internally and with the organism’s cyclic
environment (Figure 2).

Available evidence suggests that environmental stress factors (e.g., Western diet,
psychosocial stress, altered sleep/wake architecture) can shift clock control of the circadian
metabolistat to induce insulin resistance syndrome while adjustment of the altered circadian
metabolistat, as with bromocriptine and other neurotransmitter-affecting drugs, can be an
effective treatment aimed at the cause rather than the symptoms of many physiological
disorders. The SCN is the primary mammalian circadian pacemaker for the body, but the
CNS clock includes its direct and polysynaptic connections with other clock centers (e.g.,
lateral habenula and others).

By way of example of how this system is posited/understood to operate (derived from
available experimental evidence) respecting circadian regulation of peripheral metabolism,
one clock oscillation drives a circadian rhythm of liver lipogenic responsiveness to in-
sulin [76–78] while another oscillation drives a rhythm of plasma insulin level [79] and
the acrophase relationship between the two determines the magnitude of lipogenesis. The
maximum effect occurs when the stimulus and response rhythms are in phase, while a gra-
dation of lesser effects manifests as the acrophases of the two rhythms move apart [76,77].
Expanding this singular example of hepatic lipogenesis to multitudes of cellular stimuli
and response rhythms generates the living cell biology. For example, regarding hepatic
lipogenesis, it was found in the Syrian hamster that the amplitude in the acrophase of
the circadian rhythm of hepatic lipogenic responsiveness to insulin is set by the ampli-
tude of the circadian peak in plasma prolactin during the daily peak in liver lipogenic
responsiveness to prolactin [77,80]. Thus, temporal synergisms among multiple circadian
biological activities generate the level of daily lipid production in liver tissue. Indeed,
the first demonstration of cellular clock mechanisms operating autonomously outside
the CNS but responsive to circadian input signals was of hepatocyte circadian lipogenic
activity in the cell culture [81]. These same studies highlighted the important role of the
CNS clock system in organizing cellular circadian rhythms of biochemistry within the
tissue for the generation of tissue-level circadian biological activities. At the whole animal
level, this complex circadian system organizes multiple CNS circadian neuronal activity
interactions to manifest increased hepatic lipogenic responsiveness to insulin coincident
with the feeding time of day and increased adipose lipolytic activity coincident with the
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fasting (sleeping) period of the day [43,76,78]. The interaction of these CNS oscillators can,
thus, regulate the amplitude of daily lipogenic and lipolytic activities along with a host of
other metabolic (glucoregulatory) and behavioral (feeding) events in multiple tissues to
establish body composition and glucose metabolism homeostasis set points so the animal
(human) physiology is synchronized temporally within its tissues and with its cyclic envi-
ronment [26,27]. Animals defend very specific body composition set points during different
times of the year irrespective of excess food availability during the lean season or limited
food availability (or even surgical adipose removal) during the obese season, and available
evidence suggests that this is a result of such CNS temporal circadian neuronal interactions
(reviewed in [26,27]). This circadian regulatory framework for control of body fat store
level is operative across multiple biochemical physiology systems, including control of
fuel metabolism, reproduction, and behavior that have been investigated in a variety of
vertebrate species [26,36–42].
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Figure 2. Circadian Metabolistat Framework for Regulation of Metabolism. The metabolistat is
thought to have circadian components that include the primary circadian pacemaker (i.e., mammalian
SCN) and a hierarchy of secondary (e.g., VMH) centers. Circadian temporal interactions of multiple
neural oscillators within the SCN produce temporal interactions of circadian output signals to the
autonomic and endocrine centers that, in turn, produce a myriad of circadian stimulus signals to
the (metabolic) tissues of the body. These temporal interactions of circadian output signals to the
autonomic and endocrine centers also entrain tissue response rhythms (circadian receptor and post-
receptor expressions for hormones and neurotransmitters). The circadian interactions of multiple
circadian stimuli and response rhythms at the metabolic tissues (cellular level) determine the tissue
metabolic output, e.g., increased or decreased hepatic lipid synthesis. SCN = Suprachiasmatic
Nucleus; VMH = Ventromedial Hypothalamus; PVN = Paraventricular Nucleus. Updated from [26];
Copyright 1996 American Diabetes Association. From Diabetes Reviews®, Vol. 4, 1996; 464–487 [26].,
updated with permission.
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4. CNS Circadian Dopaminergic Neuronal Input Modulation of CNS Clock Output
Control of Cardiometabolic Status

Based upon such observations of the circadian organization of cellular and organismal-
level biology, it was therefore surmised that the timed daily injections of prolactin and
corticosteroid hormone that were capable of resetting the annual cycle of metabolism in
vertebrates as described above were acting on clock neurons within the CNS to “reset”
the acrophases of at least two pacemaker oscillators of an endogenous clock mechanism
constructed of multiple circadian neural oscillators governing whole-body physiological
status as a function of the temporal (acrophase) relationship of their circadian interactions.
Each neural oscillation responsive to prolactin or corticosteroid drives several downstream
parallel target oscillation(s) (e.g., within other CNS nuclei [e.g., hypothalamic, limbic] or
endocrine organs) that, in turn, send circadian neuroendocrine information to the periphery
(e.g., liver) that interact temporally with circadian rhythms of responsiveness to these
circadian neuroendocrine oscillations to manifest cellular biochemistry as exampled above
for hepatic lipid metabolism. Although plasma prolactin and corticosteroid act directly
on multiple peripheral target tissues, it was proffered that it is their effect on the CNS
that sets these circadian events in motion, including responsiveness to themselves in the
periphery [26,27,41].

Prolactin is a strong stimulus for dopamine synthesis via stimulation of tyrosine hy-
droxylase (TH) synthesis and activity [82], and corticosteroid hormone is a strong stimulus
for serotonin synthesis via stimulation of tryptophan hydroxylase activity [83], so sub-
sequent seasonal resetting studies were conducted simply replacing the circadian-timed
injection of prolactin with L-DOPA (the substrate for TH and dopamine synthesis) and
circadian-timed injection of corticosteroid hormone with 5-hydroxy-tryptophan (5-HTP, the
precursor for serotonin) to test for a neuronal basis of these hormonal effects. In fact, across
representative species of major vertebrate classes from fish to mammals, such circadian
timed L-DOPA and 5-HTP injections did reset the annual cycle of physiology, analogous
to the response to circadian timed injections of prolactin and corticosteroid hormone,
respectively, as expected [84–87]. Subsequent neurophysiological studies identified the
hypothalamic SCN as a primary center within the CNS as a site where the endogenous
dopamine and serotonin activity rhythms operate to control SCN circadian output signals
to the tissues and organs of the body to establish physiological status, such as metabolic
condition [88–95] (Figure 2).

The circadian rhythms (phase and amplitude) of dopamine and serotonin release
at the SCN area differ markedly in seasonally lean, insulin sensitive and obese, insulin-
resistant animals held on the same daily photoperiod at the same time of year (i.e., animals
refractory to or sensitive to the effects of short daily photoperiods on induction of the obese,
insulin-resistant condition) [93] (Figure 3).

Respecting the clock regulation of metabolism, the circadian peak of dopaminergic
input activity to the SCN in seasonally lean, insulin-sensitive animals is severely atten-
uated in obese, insulin-resistant animals, and the serotonin rhythm is phase advanced
and diminished [93]. Moreover, it appears that the dopaminergic input to the SCN can
influence the serotonin rhythm therein. These observations led us to studies investigat-
ing a possible cause-effect relationship between attenuation of the circadian peak in SCN
dopaminergic input activity and induction of the insulin-resistant, glucose-intolerant
state. Destroying the dopaminergic neurons that input to the SCN area in lean animals
by site-targeted, selective neurotoxin administration is sufficient to manifest the obese,
insulin-resistant/glucose intolerant condition within weeks without alteration of food
consumption in seasonal hamsters, demonstrating the high placement of the CNS clock
circuit on the hierarchy of peripheral metabolism control [92]. Importantly, in laboratory
rats that were sensitive to the obesogenic effects of a high-fat diet (60% of calories from
fat), a similar attenuation of the circadian peak of dopaminergic input activity to the
SCN was observed upon such high-fat feeding [94], and selective neurotoxin destruction
of these dopaminergic neuronal fibers in rats resistant to the obesogenic effects of high
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fat diet-induced the obese, insulin resistant, glucose intolerant condition [95]. Moreover,
such SCN dopaminergic neurotoxin intervention also induced a chronic activation of the
sympathetic nervous system (SNS), hypertension, and elevated resting heart rate—i.e., in
total—cardiometabolic syndrome [95]. A major site of circadian dopaminergic neuronal
input to the SCN is the hypothalamic supramammillary nucleus (SuMN), a center with
modulatory roles in reward perception, feeding, and peripheral fuel metabolism, and
high-fat diet feeding markedly attenuates the circadian peak of dopamine synthesis at
this center [95]. However, circadian-timed pharmacological stimulation of the SuMN
at the daily peak of its dopaminergic activity reverses high-fat diet-induced insulin
resistance and obesity. Furthermore, pharmacological attenuation of the SuMN output
activity (particularly to the SCN) induces marked insulin resistance and obesity among
animals held on a regular chow diet [96]. Additionally, administration of dopamine
directly to the SCN of high fat fed—obese, insulin-resistant animals for just a few days
at the time of its circadian peak in lean, insulin-sensitive animals was capable of revers-
ing the effect of the high-fat diet on cardiometabolic syndrome [94]. Importantly, such
dopamine administration to the SCN at times outside the circadian peak window of
dopamine input in lean insulin-sensitive animals was without effect on cardiometabolic
disease. These studies, in total, define a prodigious role for the circadian dopaminergic
input modulation of CNS clock circuitry in the regulation of cardiometabolic health
(and disease). Since our early studies of SCN control of peripheral fuel metabolism,
a multitude of studies has demonstrated its critical role in this regard [97–102]. As
mentioned above, SCN neuronal activities, directly and indirectly, modulate several
metabolic control centers in the CNS, particularly the hypothalamus, mesolimbic system,
and brain stem, to regulate autonomic and endocrine functions that control peripheral
fuel metabolism. The SCN neuronal output modulates autonomic balance and endocrine
input—to the liver to regulate fasting and postprandial glucose levels [103–107] and
lipid balance [108]—to the adipose to regulate lipid balance [109]—to the pancreas to
regulate insulin secretion [110]—to peripheral tissues to regulate insulin-stimulated
glucose disposal [106,111]—to the vasculature and heart to regulate cardiovascular
biology [112–117], and—to the immune system to regulate immune sterile inflammatory
status that in turn modulates metabolism and cardiovascular biology [118–122].

To review at this point, the composite of the above-described findings then led to
the following postulate regarding the circadian organization of whole-body physiology:
At least two CNS endogenous pacemaker circadian oscillations responsive to environ-
mental and internal feedback cues from the body, one being dopaminergic and one being
serotonergic, interact temporally to modulate the circadian phase and amplitude of clock
gene expressions within the CNS clock circuit that regulates circadian neuronal output
control of the neuroendocrine axis to organize circadian activities within the peripheral
tissues to generate specific physiology. This postulate requires (a) the existence of multiple
independent neuronal circadian oscillations within the SCN (and also including within
non-SCN circadian centers) [123–129] and (b) clock modulation of peripheral circadian
stimulus and response rhythms within tissues of the body; both biological functions which
have been confirmed [48,55,104,130,131].
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Pacemaker (SCN) Manifest the Annual Cycle of Metabolism. Circadian Organization of the Annual
Cycle of Metabolism of a Representative Mammalian Species. Afferent input signals to the SCN (e.g.,
dopaminergic and serotonergic) shift their circadian temporal organization seasonally as part of the
annual clock system in vertebrates to program changing seasonal output signals from the SCN to
the neuroendocrine axis that, in turn, manifest different seasonal metabolic conditions (e.g., obese,
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shift in metabolism even without a seasonal change in photoperiod (i.e., under laboratory conditions).
Updated from [26]; Copyright 1996 American Diabetes Association. From Diabetes Reviews®, Vol. 4,
1996; 464–487 [26], updated with permission.

5. SCN Output Circuits Controlling Metabolism and Cardiovascular Health

Inasmuch as the SCN communicates with the ventromedial hypothalamus (VMH)
and hypothalamic paraventricular nuclei (PVN), which are critical hypothalamic centers
for regulation of glucose homeostasis, body composition, feeding control, and autonomic
regulation [27,131–137], we conducted a series of studies to delineate the neurophysiologic
profile of these sites in seasonal SCN circadian peak eu-dopaminergic—lean, insulin-
sensitive versus seasonal SCN circadian peak—hypodopaminergic obese, insulin-resistant
animals. It was found that norepinephrine (NE) and serotonin (S) input to the VMH of sea-
sonally obese insulin-resistant animals was markedly increased relative to seasonally lean,
insulin-sensitive animals [138]. Moreover, studies from several laboratories demonstrated
that the increased noradrenergic activity at the VMH was demonstrable across a wide
variety of animal model systems of the obese, insulin-resistant state, including seasonal
insulin resistance, high-fat diet feeding, leptin deficiency, leptin receptor attenuation, lethal
yellow (Ay/a) mice with inhibited hypothalamic αMSH, genetic-based insulin resistant,
hypertension (SHR rat) and adult offspring of both pregnancy malnutrition and hyperin-
sulinemia mothers (reviewed in [27]). Further studies indicated that the responsiveness
to norepinephrine within VMH neurons was also markedly increased in obese, insulin-
resistant animals [139,140], providing a potential framework for sustained simultaneous
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increased noradrenergic stimulus and response systems in the VMH of obese, insulin-
resistant animals, suggesting neuronal plasticity designed/evolved to potentiate the obese,
insulin-resistant state. Importantly, administration of norepinephrine to the VMH of lean,
insulin-sensitive animals to raise its VMH area level to that observed in obese, insulin-
resistant animals induced the full cardiometabolic syndrome (including leptin resistance)
within days without alteration in feeding, demonstrating the cause–effect relationship
between increased VMH noradrenergic activity and cardiometabolic syndrome [141,142].
Supplementation of serotonin to the VMH norepinephrine administration exacerbated
this norepinephrine response [141]. Moreover, the hyperinsulinemia induced by such
VMH norepinephrine activity was found to feedback centrally to maintain such stimu-
lated norepinephrine release at the VMH [143], closing/perpetuating a cardiometabolic
syndrome precipitating loop, independent of feeding. Of additional note, the VMH is
a prominent CNS fuel sensing center, wherein increases in local VMH levels of FFA or
glucose (similar to post-meal levels) induce a VMH response that facilitates peripheral glu-
cose uptake [144–147]. Norepinephrine administration to the VMH was found to block this
VMH response to FFA and glucose, thereby facilitating glucose intolerance and, importantly,
such administration also simultaneously elevated blood pressure [148–151]. It is critical
to note that high-fat diet feeding both reduces the circadian peak in dopaminergic input
activity to the SCN and resultantly elevates VMH noradrenergic activity [94], and this effect
in and of itself is capable of attenuation of VMH fuel responsiveness, leading to decreased
peripheral glucose disposal [94,148]. This body of work may be summarized as follows:
An attenuation of the circadian peak dopaminergic activity at the CNS clock circuitry
programs an activation of noradrenergic and serotonergic input activities at the VMH,
which initiates multiple downstream neuroendocrine events leading to cardiometabolic
syndrome (hypertension, obesity, insulin resistance, glucose intolerance, dyslipidemia),
largely independent of alteration in feeding behavior. A similar circumstance regarding
circadian dopaminergic SCN input regulation of SCN-directed metabolism was found to
preside within the PVN as well, as described below.

The hypothalamic PVN is another critical physiological control center in the CNS with
major regulatory roles in feeding, glucose and lipid metabolism, autonomic balance, activa-
tion of the hypothalamic–pituitary–adrenal (HPA) corticosteroid hormone secretion axis,
whole-body water/electrolyte balance, and reproduction [131–137]. Like the VMH, PVN
activity is responsive to circadian dopaminergic modulation, and the PVN receives strong
direct and indirect innervation from the SCN, which modulates both PVN autonomic and
endocrine output signals to regulate hepatic glucose metabolism [131,152]. As it relates to
the present discussion on cardiometabolic disease, neuropeptide Y (NPY) input to the PVN
from the arcuate nucleus and brain stem and corticotropin-releasing hormone (CRH) from
PVN neurons to other brain areas play pivotal roles in the regulation of metabolism. The
neurophysiological interactions between hypothalamic NPY and CRH are complex and
dependent upon the prevailing local and organismal level biology [153,154], however in the
circumstance of the chronic stress-related obese, insulin-resistant state, a unique neuropatho-
logical interaction appears to preside. Accumulating evidence suggests that both PVN NPY
and CRH levels/activity are often simultaneously elevated and participate in the develop-
ment of the obese, insulin-resistant, hypertensive state as follows (reviewed in [27,155,156]).
Elevated PVN NPY activity is a potent stimulus for hyperinsulinemia, hyperlipidemia,
overfeeding, fattening, and chronically elevated SNS tone [27,132,155,157–161]. Chronic
PVN CRH activity not only activates the HPA axis to drive hypercortisolemia, itself a
potent stimulus for insulin resistance and fattening [155,162–166], but such activity also
alters the normal circadian rhythm of corticosteroid hormone critical in regulating CNS
clock control of whole-body physiology as discussed above in Section 2 [167,168], and both
perturbations can drive metabolic syndrome [27,155]. Moreover, PVN CRH activity is also
a driver of increased SNS tone [169–175] (adding to the insulin resistance potentiation of hy-
percortisolemia) that, in turn, can potentiate increases in plasma corticosteroid levels [176].
Furthermore, PVN CRH synthesis and secretion are stimulated by NPY, the synthesis
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and secretion of which in turn is stimulated by elevated corticosteroid levels, as well as
by norepinephrine from the brain stem (see ref. [155] for review of PVN NPY and CRH
interactions potentiating elevated SNS tone, increased HPA axis activity, and metabolic
syndrome). Additionally, PVN NPY is also a potent stimulus for activation of SNS tone
independent of its influence on CRH [177,178]. As such, crisscrossing positive feedback
loops between elevated PVN NPY activity and CRH secretion of the obese, insulin-resistant
condition initiate and maintain a state of elevated SNS tone and HPA axis overactivity that
induces and stabilizes the cardiometabolic syndrome (see Figure 4).
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Figure 4. Interacting Positive Feedback Loops between Elevated PVN NPY and CRH Potentiating
Insulin Resistance Syndrome. Diminished circadian peak dopaminergic input to the clock pacemaker
(SCN) stimulates chronic NPY synthesis and release to the PVN and increases PVN CRH release.
PVN NPY release stimulates feeding, hyperinsulinemia (via parasympathetic stimulation of the
B cell), hepatic triglyceride synthesis, hypertension and SNS activation, which itself also potently
potentiates insulin resistance syndrome. Importantly, NPY also stimulates PVN CRH synthesis and
release, which potentiates insulin resistance syndrome via activation of SNS tone and downstream
cortisol stimulation. Moreover, cortisol also feeds back to stimulate PVN NPY synthesis and release.
The interlocking positive feedback loops between NPY and CRH keep their peripheral effects of
dysmetabolism maintained long-term.
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Loss of the circadian peak in dopaminergic input to the SCN couples a transition to
both VMH noradrenergic/serotonergic hyperactivity and PVN NPY and CRH hyperactivity
to initiate insulin resistance syndrome [27]. This physiological survival response system to
low/no food availability (“therapeutic triad”) has transformed into a “treacherous triad”
(low SCN circadian peak dopaminergic activity, elevated VMH NE/S activity, and elevated
PVN NPY/CRH activity) when it is chronically, as opposed to seasonally, expressed that is more
than sufficient to initiate and sustain the cardiometabolic syndrome.

6. Targeting Low CNS Dopaminergic–Clock Activity to Treat Cardiometabolic Disease:
Circadian-Timed Bromocriptine Therapy for the Treatment of Cardiometabolic
Syndrome—Preclinical Findings

Since this treacherous triad neuropathology is triggered by the attenuation of CNS
dopaminergic activity, particularly by attenuation of the circadian peak of dopaminergic
input to the SCN, several studies were conducted to assess the impact of circadian timed
dopamine D2 receptor agonist therapy with bromocriptine (to re-establish the natural
circadian peak of CNS dopaminergic activity as in the insulin sensitive, glucose tolerant
state) upon multiple aspects of cardiometabolic syndrome within peripheral metabolic
organs in multiple animal model systems of the disorder. To succinctly summarize these
studies in composite, it was found that such circadian-timed bromocriptine treatment in
obese, insulin-resistant rodents normalized (attenuated) (a) VMH NE and S input over-
activity [138,179] and (b) elevated PVN NPY and CRH levels [155,180] and resulted in
attenuation of elevated plasma norepinephrine, hyperinsulinemia, hyperleptinemia, and
hypercortisolemia—while phase adjusting the plasma corticosteroid hormone circadian
rhythm towards normal [138,179,181]. As expected, such treatment that ameliorated disrup-
tion of these neuroendocrine factors was also associated with reductions in (the circadian
peak in) basal and insulin-stimulated hepatic lipogenesis [43,77] and simultaneous reduc-
tions in several hepatic master transcriptional activators of lipogenesis, gluconeogenesis,
and free fatty acid oxidation [179]. Such bromocriptine treatment also produced reduc-
tions in body fat stores, insulin resistance, glucose intolerance, hepatic glucose output
and whole body FFA oxidation rates [179,181,182], as well as reductions in liver fat con-
tent [179,183,184]. Such simultaneous reductions in hepatic lipogenesis and fatty acid
oxidation were associated with improved hepatic insulin actions to increase glucose dis-
posal and inhibit glucose output in part via inhibition of several insulin signal transduction
blocking proteins [179,182]. Moreover, as it relates to the cardioprotective effects of this
therapy, normalization of these hepatic metabolic pathways was coupled to treatment
reductions in several liver proinflammatory pathway proteins that contribute to cardio-
vascular inflammation [179] (see below). Bromocriptine treatment also reduced adipose
lipolysis, and this effect, concurrent with its actions on liver metabolism, resulted in a
reduction of plasma triglyceride and FFA levels [181]. Reduction in elevated plasma FFA is
well-known to reduce insulin resistance; however, it is less well appreciated that elevated
plasma FFA feedback centrally inhibits dopamine synthesis and maintains elevated SNS
tone, thereby contributing to the maintenance of cardiometabolic syndrome [185–193].

Consistent with these effects on liver and adipose metabolism, circadian-timed
bromocriptine treatment of seasonally insulin-resistant hamsters also increased glucose dis-
posal during both steady-state euglycemic and hyperglycemic hyperinsulinemic protocols,
as well as improved glucose tolerance (reduced AUC glucose and insulin) [181,182]. Simi-
larly, in a study of high fat/fructose-fed rats, bromocriptine treatment improved muscle
insulin-stimulated glucose disposal concurrent with a reduction in the pro-inflammatory/
insulin signaling blockade IL-6/JAK2/p-STAT3/SOCS3 pathway activity and an increase
in the PPAR-γ/adiponectin signaling pathway activity [194]. This improved insulin sensi-
tivity response was also observed in insulin-resistant, high-fat-fed dogs (assessed during a
sequential euglycemic and hyperglycemic—hyperinsulinemic clamp) that also was accom-
panied by improved glucose tolerance and changes in several muscle tissue levels of insulin
signal transduction proteins that resultantly potentiate insulin action [195]. Such dog
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treatment with bromocriptine also improved liver lipid profile, consistent with a reduction
in lipogenesis.

It was found that appropriately circadian-timed bromocriptine treatment to improve
muscle and liver insulin sensitivity was most pronounced during the postprandial state [196],
and further studies indicated that this effect was in part the consequence of such treat-
ment to reverse aberrations in hypothalamic post-meal glucose sensing that potentiate
impaired glucose tolerance [148]. In insulin-resistant states, VMH sensing of ambient
increases in meal-time-related glucose and FFA is attenuated, resulting in a diminished
normal VMH efferent response that would otherwise act to improve post-meal glucose
disposal and inhibit both hepatic glucose output and adipose FFA mobilization (reviewed
in [148]). This cardiometabolic syndrome aberration in VMH fuel sensing that induces
glucose intolerance was reversed by circadian administration of bromocriptine to mimic
the natural circadian peak of CNS dopaminergic activity in healthy animals but not by
such administration outside this circadian time window [148]. Since postprandial hy-
perglycemia and hypertriglyceridemia are contributors to CVD, these dopamine–clock
interactions to regulate CNS control of postprandial fuel metabolism factor into the car-
dioprotective effects of bromocriptine-QR in T2D subjects (see discussion below). Fuel
substrate disposition studies revealed that circadian-timed bromocriptine therapy shifted
energy expenditure away from lipogenesis and towards an increase in protein turnover,
resulting in a decrease in the body fat without appreciable lean mass loss (i.e., selective
fat loss) [181]. Additionally, while bromocriptine treatment has been observed to reduce
SNS tone in the liver, vasculature, white adipose, and immune cells, additional studies
demonstrated that bromocriptine treatment actually increased SNS activity at brown fat
stores to increase energy expenditure [197]. This finding is concordant with studies wherein
exogenous elevation of VMH NE activity in lean insulin-sensitive animals (mimicking VMH
responses to low CNS dopaminergic tone as described above) resulted in the “whitening” of
brown fat [142]. In other investigations, bromocriptine additions directly to white adipose
were found to increase FFA oxidation (in addition to its white adipose effects in other
studies to reduce lipolysis and FFA mobilization [179,181,182]) to reduce body fat [198]. In
agreement with its effect on increasing protein turnover and brown fat energy expenditure,
several studies have demonstrated a bromocriptine effect to selectively reduce body fat
without majorly altering food consumption [199]. However, despite the beneficial effects of
circadian-timed bromocriptine on intermediary peripheral fuel metabolism to reduce hy-
perinsulinemia, insulin resistance, glucose intolerance, hyperleptinemia, leptin resistance,
fatty liver, hyperFFAemia, postprandial hyperglycemia and hypertriglyceridemia, its effect
to attenuate the pro-oxidative/pro-inflammatory state in metabolic and immune tissues in
animal models of cardiometabolic disease [180] (and human T2D, [200]) may represent the
most significant mechanism by which bromocriptine-QR therapy reduced CVD risk in T2D
subjects [201–204].

The neuroendocrine pathophysiological state of concurrent elevated SNS tone and
low CNS dopaminergic activity that typifies cardiometabolic syndrome is a strong driver
of reactive oxygen species (ROS) and inflammation within the liver, immune, and vascu-
lar tissues that ultimately contributes significantly to cardiovascular disease (reviewed
in [180,200]). This neuroendocrine proinflammatory effect is both direct upon these liver,
immune, and vascular tissues, as well as indirect via induced insulin resistance, hyperin-
sulinemia, hypercortisolemia (inappropriately elevated plasma corticosteroid during the
nadir portion of its daily rhythm), leptin resistance, hyperleptinemia, and elevated plasma
prolactin (inappropriately elevated plasma prolactin during the nadir portion of its daily
rhythm). These pathophysiological consequences have been observed to be ameliorated
by circadian-timed sympatholytic, dopamine agonist bromocriptine therapy in various
animal models of cardiometabolic syndrome [180,194–199]. Significantly, bromocriptine is
also known to reduce pro-inflammatory immune reactions in a variety of non-metabolic-
induced animal models of inflammation and in certain human autoimmune disease states
(reviewed in [200]).
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There exists a potent self-amplifying positive feedback loop between pro-oxidative
state generation within liver, immune, and vascular cells (facilitated by the treacherous
triad) and proinflammatory state within these tissues that culminates in vascular tissue
endothelial nitric oxide synthase (eNOS) uncoupling, an oxidative stress response that
causes eNOS to generate pleiotropic cardiovascular damaging reactive oxygen/nitrogen
species (ROS/RNS) instead of pleiotropic cardiovascular protective nitric oxide leading to
endothelial dysfunction driven vascular disease (vasoconstriction, vascular smooth muscle
cell proliferation, vascular inflammation, immunocyte vascular infiltration, atherosclerosis,
arteriosclerosis, vascular cell death, and cardiovascular remodeling, as well as direct
myocardial tissue damage) (see refs. [180,200] for thorough reviews). If left unabated, this
positive feedback loop can inflict major damage to the vasculature not reliant on any change
in plasma lipid or cholesterol profile [180,200].

As described above, treatment of hypertensive SHR rats with the sympatholytic
dopamine D2 receptor agonist, bromocriptine, that corrected (attenuated) the elevated
VMH NE and S activities and ameliorated pathological biochemistry of fatty liver also
reduced the hepatic levels of several transcription factors (NFkB, IKKαβ, SOCS3, JNK) for
transcription of multiple proinflammatory proteins that are secreted into the circulation
and promote vascular inflammation [179]. Additionally, as described above, bromocrip-
tine treatment of high fat-fed rodents reduced proinflammatory factors in muscle while
improving insulin sensitivity [194]. Moreover, circadian-timed bromocriptine treatment
of hypertensive insulin-resistant SHR rats held on a high-fat diet reduced aortic oxidative
stress and re-coupled uncoupled eNOS to increase functional eNOS activity that resul-
tantly reduces endothelial dysfunction and vascular damage [180]. Such bromocriptine
treatment also reduced systolic and diastolic blood pressure in these animals, an effect
consistent with its sympatholytic, dopaminergic activity, well described in the literature.
This bromocriptine-induced improvement (attenuation) of vascular pro-oxidative/pro-
inflammatory status (and endothelial dysfunction) is in good agreement with another study
wherein bromocriptine treatment of high fructose-fed rats led to improvement of aortic
endothelial relaxant response to acetylcholine and reduced response to the pressor effects of
norepinephrine, epinephrine, and phenylephrine and protection from cardiac hypertrophy
and myocardium degeneration [205]. Finally, bromocriptine has been observed to reduce
oxidative stress/inflammation associated with ischemic/reperfusion injury and apoptosis
of cardiomyocytes and isolated heart, as well as of the kidney and also to protect against
ischemia-induced hippocampal neurodegeneration [206–210].

In summary, the composite of animal studies on CNS dopamine regulation of car-
diometabolic physiology indicates that the phase and amplitude of the circadian rhythm
of CNS dopaminergic input activity to the SCN area/clock circuitry critically regulate its
output control of metabolic and immune functions that modulate cardiometabolic physiol-
ogy. The natural seasonal diminution of the circadian peak in dopaminergic input activity
to the SCN clock circuitry among animals in the wild or held under natural conditions
in the laboratory programs the clock output functions to chronically elevate SNS tone
and the HPA axis and thereby potentiate insulin resistance and a pro-inflammatory state.
While this evolutionarily preserved seasonal mechanism to self-initiate the insulin-resistant
condition acts to sustain survival against stresses of seasonal low/no food availability in
the wild, its persistent (years long) expression is detrimental to cardiometabolic health.
Moreover, chronically decreased CNS dopaminergic tone has been observed in a variety of
genetic or induced animal models of cardiometabolic disease, including ob/ob mice, db/db
mice, AY/a agouti mice, high fat-fed rodents, as well as hypertensive SHR rats (reviewed
in [27]) and (circadian-timed) dopamine agonist treatment to reverse this diminution in
CNS circadian peak dopaminergic activity improved several metabolic aspects of the con-
dition in ob/ob mice, db/db mice, AY/a agouti mice, Zucker rats, high fat-fed rodents,
hypertensive SHR rats, and early weaned rodent pups at adulthood, obese pigs, and high
fat fed dogs [179,180,183,195,199,211–216]. In general, this treatment method ameliorated
several metabolic derangements, including hyperinsulinemia, insulin resistance, glucose
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intolerance, hyperleptinemia, leptin resistance, fatty liver, hyperFFAemia, obesity, and
postprandial hyperglycemia and hypertriglyceridemia. Additionally, and importantly,
in cardiometabolic disease animal models, this bromocriptine treatment attenuated (a)
the liver and vascular pro-oxidative/pro-inflammatory state and (b) vascular endothelial
dysfunction and subsequent cardiovascular disease. What is the evidence that alterations in
brain dopamine–clock interactions are present and operative in the development of human
cardiometabolic disease and that the disorder can be improved by appropriately circadian-
timed bromocriptine therapy? This question must be addressed first by a discussion of
documented circadian biology in humans generally and, more specifically, as it relates to
cardiometabolic physiology.

7. Circadian Rhythm Influence on Human Physiology

Not unexpectedly, circadian rhythms of a large number of neural and endocrine
activities have been documented in humans to date as in other studied mammalian
species [130,217–231]. Since the initial demonstrations of circadian responses to hormones
and the critical role of temporal synergisms of circadian rhythms of neuroendocrine activi-
ties in the manifestation of the annual cycle in vertebrates almost 60 years ago [35,39], the
field of circadian science research has exploded. A recent search of the National Institute
of Health, National Library of Medicine, and PubMed term “circadian” with/without
“human” filter yielded 61,312/103,018 hits, respectively, while the PubMed term “seasonal”
with/without “human” filter yielded 119,161/253,317 hits, respectively. As it relates to
the present cardiometabolic physiology discussion, the preponderance of evidence clearly
indicates that there exist circadian rhythms or daily variations of multiple metabolic control
hormones, including prolactin, cortisol, leptin, thyroid stimulating hormone and others in
humans as in other vertebrates [27,130,217–231]. There are also well-documented circadian
rhythms of responsiveness to neuroendocrine control, including insulin sensitivity, adipose
lipolysis, hepatic triglyceride synthesis, plasma triglyceride and free fatty acid level in
humans [224–236], thus providing a framework for temporal interactions of stimulus and
response rhythms to generate a gradation of target tissue metabolic effects depending upon
the phase relationship of the stimulus and response rhythms as is well documented in
non-human vertebrate species described in the earlier discussion above (see Sections 2–5).

Human circadian rhythms of immunity elicit circadian peaks of immune function
that potentiate local inflammation towards and attack of pathogens as a function of the
interactive phase relationships of numerous cellular stimulus and response rhythms among
the many immunocyte types that comprise the immune system [119–122,231]. Within
the cardiovascular system, there are prominent daily rhythms of immunocyte vascular
infiltration and proinflammatory activity, ROS generation, platelet aggregation, endothelial
function, and blood pressure regulation [237–242]. The heart also exhibits circadian rhythms
of metabolic functions governing its activity [243–246]. The interaction of the phase and
amplitude of these various circadian activities within the cardiovascular system sets the
appropriate daily growth, repair, hemodynamics, and metabolism of its cells/tissues and,
thus, the status of cardiovascular health (or disease) [10,245,247–264]. As a simple example
of postulated pathophysiology emanating from disruption of this circadian interaction,
vascular damage is greatest when circadian peaks of cellular/tissue pro-oxidative activities
increase and broaden and temporally coincide with such altered (increased and broadened)
circadian peaks in pro-inflammatory and vasoconstrictive biological functions—resulting
in a maximized prooxidative stimulation of a proinflammatory state. Recall that the
phase and amplitude of many of these peripheral circadian rhythms are set by the central
circadian pacemaker circuit output to the periphery via the neuroendocrine axis. In turn,
the temporal relations of circadian multiple neural activities within the central circadian
pacemaker circuit are adjusted by internal input from other brain centers and the periphery,
as well as from the external environment.
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8. Shift in CNS Circadian Dopamine–Clock Interactions to Initiate the CNS
Treacherous Triad Are Coupled to Known Peripheral Neuroendocrine Pathologies
That Potentiate Downstream Cardiovascular Disease in Humans

As reviewed above in Sections 4–6, preclinical studies indicate that seasonal atten-
uation of the CNS circadian peak in dopaminergic activity subsequently induces the
CNS “therapeutic triad” (decreased dopaminergic input to the SCN, elevated noradren-
ergic/serotonergic input to the VMH, and elevated NPY input to and CRH release from
the PVN) that in turn initiates and maintains the CNS hypo-dopaminergic, elevated SNS,
elevated HPA axis, insulin-resistant state as a survival response to seasonal low food avail-
ability stress. In this regard, it is extremely important to appreciate that circannual cy-
cles of metabolism, immunity, behavior, and cardiovascular physiology have been well
documented in humans. Under normal circumstances, the physiology of healthy (and
metabolic syndrome type) individuals in various locales around the globe oscillates season-
ally between a lean, insulin sensitive, reduced systemic inflammatory, normo-coagulative,
normotensive state to a (more metabolic syndrome-like) increased body fat store (not neces-
sarily overweight), less insulin sensitive, relatively more pro-inflammatory, pro-coagulative,
hypertensive state (that generally coincides with the season of reduced food supply in the
wild [e.g., Winter]) [265–285]. Furthermore, actual adverse CV events are reported most
frequently during this metabolic syndrome-like season [286–290]. Is there any evidence that
seasonal shifts in CNS dopamine–clock interactions driving the “therapeutic triad” that potentiate
seasonal insulin resistance for survival in animals under natural conditions are somehow opera-
tive long term (years long) in humans to similarly express the chronic metabolic syndrome (thus
converting the “therapeutic” triad into the “treacherous triad”) leading to cardiovascular disease?
While it is not currently possible to directly assess in humans such CNS circadian changes
in neural (hypothalamic) physiology expressing this treacherous triad, there are several
indirect measures of such CNS activities that can and have been made that do strongly
suggest that such altered CNS dopaminergic input to the clock circuitry exists in human
metabolic syndrome and they may be summarized as follows.

Firstly, a cardiometabolic disease resulting from a diminution of the circadian peak
of dopaminergic input activity to the SCN is coupled to such decreases in several brain
regions, such as the striatum (dopaminergic input to which is modulated by control
from the supramammillary nucleus, the same center regulating dopaminergic input
control to the SCN) in study animals [291,292] Several studies (though not all [likely
due to time of day variation in measurement]) of obese, insulin-resistant humans have
also documented a decrease In striatal dopaminergic activity (either as a consequence of
decreased neurotransmitter release or of decreased receptor number or binding affinity)
relative to lean, insulin-sensitive counterparts [293–297]. Additionally, administration of
alpha-methyl-para-tyrosine, a false dopamine neurotransmitter that results in short-term
decreased brain dopamine synthesis, to young, healthy lean insulin-sensitive individuals
in a manner that attenuates the normal morning rise in brain dopamine activity induces
insulin resistance within only a day or two [298,299]. Similarly, administration of the
dopamine D2 receptor agonist, bromocriptine, to obese, insulin-resistant individuals
at the time of the daily peak in CNS circadian dopaminergic activity (near waking
time in the morning) but not when administered in the evening improved postprandial
insulin sensitivity [300]. Secondly, seasonal shifts in brain dopamine and serotonin
neurochemistry, an occurrence associated with seasonal physiological shifts in animals,
have been observed in healthy humans [275,301], and attenuation of brain dopamine
activity, a major regulator of serotonin functions [302,303], can allow for shifts in cir-
cadian serotonergic activity. Peripheral expressions of CNS dopamine and serotonin
circadian activities in animals include the circadian rhythms of plasma prolactin and
cortisol, respectively, whose phase relationship regulates the expression of the lean,
insulin-sensitive or obese, insulin-resistant state in large part by feeding back centrally to
set the CNS dopamine and serotonin activity rhythms as described above in Section 4. In
fact, the phase relationship of the circadian rhythms of plasma prolactin and cortisol like-
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wise differ between obese, insulin resistant and lean, insulin-sensitive humans [304] as
in studied animals across the vertebrate subphylum described above in Sections 3 and 4.
Thirdly, an increase in PVN NPY and CRH activities observed in cardiometabolic syn-
drome rodents are strong stimuli leading to increases in SNS tone and HPA axis activity
and such (often concurrent) neuroendocrine aberrations are often observed in human
cardiometabolic syndrome [305–322]. Lastly, increases in noradrenergic/serotonergic
input activities to the VMH observed in animal models of cardiometabolic syndrome
drive increases in SNS tone and leptin resistance that induce postprandial insulin re-
sistance and glucose intolerance, hypertension, and obesity, all common features of
human cardiometabolic syndrome [323–342]. The very critical point here is that elevations
in SNS tone (with or without increased HPA axis activity) to the liver, white adipose, muscle,
vasculature, heart, and immune system not only merely associate with but drive multiple as-
pects of the cardiometabolic syndrome [305–321,323–341]. In total, both naturally evolved
seasonal metabolic syndrome-like physiology and pathological chronic cardiometabolic
syndrome are generally typified by decreased CNS dopaminergic activity, increased
SNS tone to white adipose, liver, muscle, and the cardiovascular system (with a possible
decrease to brown fat [197]), increased central and peripheral leptin resistance, and
increased HPA axis activity. The composite of this neuroendocrine shift potentiates the
cardiometabolic syndrome. What environmental (or genetic) factors may predispose for the
inappropriate amplification and prolongation of the natural (seasonal) circadian neuroendocrine
induction of the “therapeutic triad” to manifest its years-long sustained expression (the “treacher-
ous triad”) precipitating cardiometabolic disease and associated CVD observed in humans? Such
factors would necessarily attenuate brain dopamine activity and alter brain clock circuit
functions regulating the autonomic and endocrine control of peripheral fuel metabolism
and cardiovascular biology.

9. Common Chronic Environmental Stress Factors of Modern Man Disrupt the CNS
Dopaminergic–Clock Circuit, Reduce CNS Dopaminergic Activity and Increase SNS
Tone to Potentiate Cardiometabolic Disease and CVD

Chronic environmental stressors in humans, including Western diets (high saturated
fat/simple sugar [including in particular high fructose] diets), altered sleep/wake architec-
ture (photoperiod disruptions including shift work, shortened or prolonged sleep cycle
duration, sleep apnea, interrupted sleep, light exposure during sleep, insomnia), or psy-
chosocial stress and depression, are known to alter CNS clock function, attenuate CNS
dopaminergic activity and also elevate SNS tone (and the HPA axis) (i.e., manifestations
of the hypothalamic treacherous triad) and concurrently associate with cardiometabolic
syndrome and CVD [4–20,49,185,297,324,341,343–366]. The common denominator of the
CNS-altered clock—hypodopaminergic/elevated SNS tone (overactivated HPA axis) neu-
roendocrine state (neuroendocrine output of the treacherous triad)—among these various
stressors’ pathway towards cardiometabolic disease can hardly be overstated. Such find-
ings suggest that these chronically expressed aberrant environmental cues are processed
by the CNS dopaminergic input to the clock system as a stress signal prompting a clock-
driven neuronal induction of a metabolic survival response—the therapeutic triad-induced
insulin-resistant state to maintain a glucose supply to the CNS. However, if sustained
long term, this CNS-clock response system becomes the treacherous triad that sets up a
positive feedback loop between itself and the peripheral neurometabolic state it creates, and
chronic cardiometabolic disease is potentiated (see Figure 5) as demonstrated in numerous
preclinical studies described above in Section 6.
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Figure 5. CNS hypodopaminergic activity alters CNS clock output to induce chronic elevated
SNS tone that initiates a positive feedback loop to maintain the CNS hypodopaminergic/elevated
SNS tone expression and precipitate cardiometabolic disease. Decreased CNS circadian dopamin-
ergic activity, induced by Western lifestyle “stressors”, encompasses decreased circadian peak
dopaminergic activity at the pacemaker clock (SCN) that effectuates an increased CNS SNS tone
which collectively potentiates metabolic syndrome. Biochemical aspects of the metabolic syn-
drome then positively feed back centrally via multiple pathways to maintain this neuropatho-
logical state. Within the cycling events of this positive feedback system are sustained systemic
pro-oxidative/pro-inflammatory activities that potentiate cardiovascular disease. References for
Figure 5: a© [94,188,367–373]; b© [186,187,293–295,349,374–379]; c© [141,142,149,155,179,380,381];
d© [312,313,340,382–392], e© [305,393–398], f© [394,395]; g© [305,399,400]; h© [401–403]; i© [403,404];
j© [141,142,381]; k© [405]; l© [188,406–412]; m© [94,185,188,189,297,344–346,375,413–419]; n© [420–425];
o© [426,427]; p© [179,392,428–442].

Such chronic environmental stressors that shift the CNS clock circuit temporal organi-
zation to amplify and lock the individual in the seasonal insulin-resistant neurometabolic
physiology for years on end can lead to cardiometabolic and cardiovascular disease (see
Figure 6).
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Figure 6. Evidence-based proposed mechanisms of CNS clock-alterations that drive metabolic syn-
drome: Western lifestyle perturbations to normal physiology (chronic high fat/simple sugar diets,
altered sleep/wake architecture, psychosocial stress and/or stimulated depression) potentiate
a reduction in CNS circadian peak dopaminergic activity at the pacemaker clock to initiate the
hypothalamic treacherous triad leading to neuroendocrine shifts driving metabolic syndrome and
its sequelae.

Importantly, as it relates to cardiovascular disease specifically, all of the above listed
environmental stress factors (high saturated fat/high simple sugar diet, altered sleep/wake
architecture [photoperiod disruptions including shift work, shortened or prolonged sleep
cycle duration, sleep apnea, interrupted sleep, light exposure during sleep, insomnia], or
psychosocial stress and depression) depress brain dopamine activity and alter brain clock
circuitry to initiate the treacherous triad (chronic low brain dopaminergic and increased SNS
[and increased HPA axis] activities) which in turn acts as a strong stimulus for systemic low-
grade inflammation [17,18,20,64,200,259–264,293,294,311,347,348,356,359,443–446], a major
driving force for CVD [17,18,20,200,447–449]. Of note, high fructose (and sucrose) contain-
ing diets not only reduce brain dopaminergic activity (contributing to the attenuation of
satiety and initiation of the treacherous triad) [450–452] but also directly stimulate hepatic
de novo lipogenesis, fatty liver, and increased (atherogenic) postprandial triglyceride-rich
lipoprotein levels [22–25]. Since hepatic de novo lipogenesis and triglyceride secretion
can be potentiated by the treacherous triad, consumption of high levels of fructose (or
sucrose) can offer a particularly potent double negative hit on both increased fat stores
and CVD [22–25]. Respecting the impact of dietary saturated fat on CVD, the relationship
is more nuanced. Chronically increased dietary saturated fat consumption is known to
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inhibit CNS dopaminergic activity in animals and humans, as described above, yet clinical
studies of reducing dietary saturated fat have not demonstrated overwhelming evidence
of reduced CVD outcomes [6,7]. However, there are few, if any, long-term randomized
controlled clinical trials assessing the impact of dietary saturated fat on CVD outcomes
wherein both on-study accompanying nutrient mix (fats, carbohydrates, simple sugar
types) and baseline metabolic status (e.g., degree of obesity and insulin resistance) were
each controlled for. Significant evidence indicates that replacing dietary saturated fats
with dietary n-3 or n-6 polyunsaturated fats and/or Mediterranean based fat (mixed mono
and poly-unsaturated fats) does reduce CVD event rate [reviewed in [6,7], and importantly
such replacement stimulates a return to normal CNS dopaminergic function [186,453]. Moreover,
increased levels of stored saturated fatty acids released from adipose into the circulation
induce feedback centrally to induce the treacherous triad and also stimulate cellular and
tissue cardiometabolic pathology that are each reversed by oleic acid replacement or addi-
tion in multiple animal studies [454–456]. The “western diet”, which is a composite of high
saturated fat and simple sugar [e.g., high fructose], offers a potent and pleiotropic stimulus
for hypothalamic treacherous triad induction and may potentiate CVD risk over the long
term (e.g., years in humans).

The plethora of data from multiple angles of investigation among several different
laboratories reviewed herein thus far clearly indicate an important role for CNS circadian
dopaminergic communication with the brain clock circuit in the control of whole-body fuel
metabolism and cardiovascular health. Results of clinical studies investigating the effect
of circadian-timed bromocriptine-QR therapy to improve cardiometabolic syndrome and
T2D in humans largely reflect the findings observed in similar preclinical studies across
multiple animal model systems of insulin resistance described above as detailed below.

10. Circadian-Timed Bromocriptine-QR for the Treatment of Cardiometabolic
Disease–Human Studies

Bromocriptine-QR is a unique formulation of specifically micronized bromocriptine
mesylate that provides for rapid dissolution and absorption from the gut with a relatively
short half-life, thus generating a brief pulse of bromocriptine to the circulation [457] and
by extension to the CNS [458,459]. Early morning (within 2 h of waking) circadian-timed
administration of bromocriptine-QR is intended to mimic the early morning circadian
peak in central dopaminergic activity observed in healthy non-T2D subjects, diminished
expression of which in insulin-resistant states contributes to the development of the con-
dition [298,299,457] as demonstrated in numerous animal models of insulin resistance as
described above in Sections 2–6.

In pre-diabetes subjects, as in preclinical studies of metabolic syndrome animals,
such circadian-timed (morning within 2 h of waking) bromocriptine-QR therapy has been
observed to reduce postprandial hyperglycemia and hyperinsulinemia across the standard
meals of the day (breakfast, lunch, and dinner) [380]. Similarly, in T2D subjects, such
bromocriptine-QR therapy reduced postprandial hyperglycemia, without raising plasma
insulin levels, across the standard meals of the day [460]. Bromocriptine-QR therapy of
T2D subjects was also demonstrated to increase maximally stimulated insulin-mediated
glucose disposal assessed in the fasting state via euglycemic hyperinsulinemic clamp
methodology [461]. Assessment of bromocriptine-QR therapy upon whole-body glucose
balance during the postprandial state (via radiolabeled glucose ingestion at the meal)
in T2D subjects whose glycemia was inadequately controlled on GLP-1 receptor agonist
revealed that the treatment reduced glucose rate of appearance and postprandial glucose
level, without raising the plasma insulin level, presumably by increasing hepatic glucose
extraction (the treatment has no known effect to inhibit gastrointestinal absorption of
glucose and its parenteral administration in a variety of animal studies described above
attenuated the insulin-resistant syndrome) and also by reducing hepatic glucose output
(i.e., attenuating two major liver glucose metabolism abnormalities in T2D) [462]. The
predominant beneficial effect of bromocriptine-QR on glycemic control in prediabetes and
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T2D is upon postprandial hyperglycemia, consistent with its effect to improve VMH glucose
sensing of local hyperglycemia (meal-associated levels) [148], which in turn activates post-
meal peripheral glucose disposal mechanisms [146,147]. The effects of bromocriptine-
QR on HbA1c across various study populations vary from 0.5 to 1.8 reduction versus
placebo [460,463,464] (Figure 7), depending upon the concomitant anti-diabetes medication
(including insulin [465,466]) and/or level of elevated SNS tone-associated biomarkers
(elevated resting heart rate, hypertension with elevated plasma triglyceride levels) at
baseline [380,457,465–468].
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add-on therapy to a variety of anti-diabetes agents. References for Figure 7: Cincotta AH 1999 [460];
Vinik AI 2012 [463]; Florez H 2011 [464]; Chamarthi B 2017 [466]; Roe ED 2015 [465].

In general, the impact of circadian-timed bromocriptine-QR therapy to reduce HbA1c
in T2D subjects increases as the baseline post-meal plasma insulin level of the subject
increases [380], in agreement with its effect to improve post-meal insulin-mediated glucose
disposal. The therapy is particularly effective in subjects on basal/mealtime insulin (with
metformin), again likely owing to its insulin-sensitizing effects (HbA1c reductions of
1.10–1.89 vs. placebo over 52 weeks) [465,466]. Additionally, in T2D subjects with signs of
particularly elevated SNS tone, such as elevated resting heart rate (≥80 beats per minute)
or presence of hypertension plus hypertriglyceridemia, the therapy has been noted to
produce HbA1c reductions of 1.2–1.3 versus placebo, while also reducing elevated resting
heart rate (by 4–10 beats per minute) or plasma hypertriglyceridemia and hypertension,
respectively [457,467,468]. As the levels of these biomarkers associated with elevated SNS
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tone increase, so too does the magnitude of the impact of circadian-timed bromocriptine-
QR to reduce HbA1c level. These clinical findings are in very good agreement with
those of similar preclinical studies of time-of-day dependent CNS dopamine or systemic
bromocriptine effects on metabolism, as detailed above in Section 6. Most importantly, in
clinical studies assessing the time-of-day-dependent effects of bromocriptine to improve
post-glucose load insulin resistance in obese individuals, the effect was present when
administered at the onset of waking (time of day of natural peak CNS dopaminergic
activity in healthy insulin-sensitive individuals) but not when administered outside of
its natural CNS peak activity late in the day [300] as observed in preclinical studies (see
Section 6).

Circadian-timed bromocriptine-QR therapy has also been demonstrated to reduce
elevated levels of plasma triglyceride (29%) and FFA (19%) across the diurnal portion of
the day (including meal times) in T2D subjects [460], as in animal studies (see Section 6)
(Figure 8).Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 26 of 50 
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meals of the day) plasma triglyceride and free fatty acid levels versus placebo in T2D subjects whose
glycemia was inadequately controlled on sulfonylurea. Updated from [460,469]; Copyright 1999
Ashley Publications Ltd. – current: Informa UK Ltd. From Expert Opin Investig Drugs® Vol. 8, 1999;
1683-1707 [460], updated with permission. Copyright 2010 Taylor and Francis, www.tandfonline.
com. From Expert Opin Pharmacother® Vol. 11, 2010; 269-279 [469], updated with permission.
* Denotes a significant difference from placebo (p < 0.005). § Denotes a significant difference from
placebo (p < 0.05). † A two-way repeated measures ANOVA on treatment and hour with interaction
demonstrated a significant treatment effect over the entire day (p < 0.0001). ‡ A two-way repeated
measures ANOVA on treatment and hour with interaction demonstrated a significant treatment effect
over the entire day (p < 0.02). X axis represents time of day between 7 am and 7 pm.

Owing to its sympatholytic effects [458,470], bromocriptine therapy has long been
demonstrated to reduce hypertension [471], and the effects of Cycloset to reduce elevated
resting heart rate are coupled with reductions in systolic and diastolic blood pressures (−3.6
and −1.9 mmHg relative to placebo, respectively), an indicator of reduced sympathetic
tone [457]. While bromocriptine-QR therapy effects to simultaneously reduce insulin
resistance, postprandial hyperglycemia and dyslipidemia, elevated resting heart rate,
and hypertension can certainly contribute to a reduced cardiovascular disease risk, this
composite effect alone simply cannot explain the significant rapid (within 1 year) and
robust (40–55%) reduction of adverse cardiovascular events observed with the therapy in
the Cycloset Safety Trial (CST) of T2D subjects [201–204]. Among several different analyses
of adverse cardiovascular outcomes in the one-year CST, circadian-timed, bromocriptine-
QR therapy was found to significantly reduce the composite cardiovascular (CV) endpoint
of myocardial infarction, stroke, and hospitalization for unstable angina, revascularization
surgery, and heart failure (with or without CVD death included), as well as of the composite
CV endpoint of myocardial infarction, stroke, and CV death by between 40–55%. This
bromocriptine-QR effect was demonstrable even among T2D subjects in good glycemic
control at baseline (HbA1c ≤ 7.0) [203]. Moreover, the study subjects from the CST were
largely (>75%) without established preexisting cardiovascular disease [201–204] (Figure 9).

As observed preclinically, a growing body of clinical evidence implicates circadian-
timed bromocriptine-QR therapy attenuation of the immune pro-oxidative/pro-inflammatory
state and improvement of endothelial dysfunction that is each typical of and dominant in
the development of the cardiometabolic syndrome and CVD as major mechanisms of the
therapy’s beneficial impact on CVD [200,462].

Endothelial dysfunction is generally recognized as the initial insult to the vascula-
ture that leads to CVD [472–476]. Endothelial dysfunction in cardiometabolic syndrome
is largely a consequence of a biochemical phenomenon termed endothelial nitric oxide
synthase (eNOS) uncoupling [477–480]. Uncoupling of the eNOS enzyme dimer prevents
its function from synthesizing nitric oxide (NO) from the arginine substrate. NO is a
major autocrine/paracrine stimulus for the maintenance of vascular health (stimulation of
processes responsible for vasodilation and endothelial cell repair and health and inhibition
of local inflammation, immunocyte infiltration, smooth muscle cell proliferation, adhesion
molecule aggregation, fibrosis, and arteriosclerosis). Moreover, eNOS uncoupling not only
reduces NO production but also alters the function of the enzyme to now generate a variety
of reactive oxygen and reactive nitrogen species (ROS and RNS, respectively) that, via
pleiotropic mechanisms, induce vascular inflammation, immunocyte vascular infiltration,
arteriosclerosis and atherosclerosis. Worse yet, since ROS and RNS produced by uncoupled
eNOS feedback to stimulate further eNOS uncoupling and eNOS transcription, a vascular
destructive self-sustaining cyclical loop is generated [180,200,477–480]. Increased SNS tone
in conjunction with a hypodopaminergic state also acts upon the circulating immunocytes
to stimulate a pro-oxidative/pro-inflammatory state leading to serious damage to the vas-
culature via immunocyte infiltration and extracellular matrix expansion, vascular cell prolif-
eration and calcification and further eNOS uncoupling [180,200]. Additionally, chronically

www.tandfonline.com
www.tandfonline.com


Int. J. Mol. Sci. 2023, 24, 13255 26 of 48

elevated SNS tone in conjunction with a hypodopaminergic state stimulates the induction
of insulin resistance, hypertriglyceridemia, and hypertension—all of which also drive vas-
cular eNOS uncoupling and immune-inflammatory damage [180,200,331,428,481,482]. As
such, chronically elevated SNS tone/CNS hypodopaminergic state is a pleiotropic stimulus
that initiates and sustains vascular eNOS uncoupling and inflammation/damage, thus
potentiating CVD. Preclinical studies with circadian timed bromocriptine indicate that the
treatment reversed elevated SNS tone and biochemical processes of metabolic syndrome,
liver inflammation, and vascular eNOS uncoupling in hypertensive, metabolic syndrome
SHR rats [179,180]. Importantly, bromocriptine-QR therapy of human T2D subjects resulted
in an improvement in endothelial dysfunction and hypertension [462].
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Copyright 2016, Taylor and Francis, www.tandfonline.com. From Postgrad Med®Vol. 128, 2016;
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These bromocriptine-QR clinical study findings regarding its attenuation of endothe-
lial dysfunction led us to investigate in these same T2D subjects the impact of the therapy
upon peripheral blood mononuclear cell pro-oxidative/pro-inflammatory status, eleva-
tions of which are a major driver of endothelial dysfunction, vascular inflammation, and
CVD. It was found that such circadian-timed bromocriptine-QR therapy in T2D subjects
reduced a wide range of peripheral blood mononuclear cell (PBMC) gene expressions
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(25 different genes) for proteins involved in endoplasmic reticulum stress, whole-cell
oxidative stress, response to existing oxidative stress, and activation of potent Toll-like
receptor (TLR) receptor pathways for inflammatory cytokine production and adhesion
molecule synthesis and secretion. Each of PBMC (and endothelial cell) endoplasmic reticu-
lum stress, whole-cell oxidative stress, and TLR proinflammatory pathways activation is
known to contribute to cardiometabolic disease risk, particularly arterial stiffness (reviewed
in [200]). These bromocriptine-QR-induced reductions in multiple pro-oxidative/pro-
inflammatory pathway gene expressions within the PBMCs were coupled to reductions
in plasma pro-inflammatory cytokines, proteins and markers of oxidative stress, as well
as of norepinephrine and normetanephrine (a measure of SNS tone) and endothelial dys-
function [200,462]. Although the breadth and magnitude of these results may be notable,
the direction of response should not be so surprising since each chronically elevated sym-
pathetic tone and CNS hypo-dopaminergic activity have been demonstrated to potentiate
immune sterile inflammation and systemic oxidative stress (reviewed in [200]), and each of
these neuroendocrine aberrations has been observed to be ameliorated by circadian-timed
bromocriptine-QR therapy in preclinical and clinical studies (as described and referenced
herein). In addition to this pathophysiological neuroendocrine effect of chronically elevated
sympathetic tone and CNS hypo-dopaminergic activity on the immune-vascular axis, it
should be recognized that the CNS hypodopaminergic activity/elevated SNS tone—to
the liver potentiates hepatic inflammatory cytokine secretion, triglyceride synthesis and
secretion, and insulin resistance [179,332,401,402,483,484]—to the adipose, potentiates
inflammation and FFA secretion that induces systemic insulin resistance and vascular
damage [485–488]—to the kidney, stimulates the renin-angiotensin system that potenti-
ates vascular damage [489–496],—to the heart, stimulates cardiomyocyte inflammation
and damage and heart failure [200,262,263,497–505]—that all have been observed to be
ameliorated by bromocriptine as mentioned above. Consequently, since circadian-timed
bromocriptine-QR therapy of T2D/metabolic syndrome simultaneously reverses both the
elevated SNS tone and CNS hypo-dopaminergic activity to directly attenuate this im-
mune/vascular pro-oxidative/pro-inflammatory state, as well as systemic dysmetabolism
that adds to this immune/vascular pathology, it should not be unexpected that the therapy
produces a significant (and rather rapid) reduction in CV events in T2D subjects [201–204].
In good agreement with such bromocriptine-QR cardiovascular findings in T2D subjects
are the recent findings that such bromocriptine-QR therapy of T1DM subjects resulted
in rapid (within 4 weeks) reductions in arterial stiffness and blood pressure [506]. More-
over, bromocriptine has been observed to significantly reduce postpartum cardiomyopathy
within just a few weeks of treatment in several clinical studies, suggested to be the result
of its anti-inflammatory impact on the heart in part via plasma reductions of the prolactin
16 kD fragment [507,508]. Others have noted an influence of bromocriptine to reduce
congestive heart failure symptoms and to induce regression of left ventricular hypertrophy
in peritoneal dialysis patients in small clinical studies [509,510]. In composite, the collec-
tion of these clinical studies in cardiometabolic syndrome subjects highlights the real and
potential utility of circadian-timed bromocriptine-QR therapy, which re-establishes the
natural circadian peak CNS dopaminergic activity and attenuates the treacherous triad, to
ameliorate cardiometabolic syndrome and cardiovascular disease risk.

11. Conclusions

In conclusion, the biological clock system in vertebrates has evolved mechanisms to
anticipate future periods (seasons) of energy demand stress and accordingly prepare/alter
whole body metabolism via the neuroendocrine axis to manifest the insulin-resistant state
to ensure an adequate glucose supply to the brain and, thus, increase survival potential
against the long energy stress period. This seasonal clock system is comprised of season-
ally changing temporal interactions of multiple circadian neuronal input activities to the
CNS pacemaker clock circuit to thereby regulate its output control of metabolism via the
neuroendocrine axis. This circadian metabolic survival system is activated in large part by
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a decrease in the natural circadian peak of dopaminergic input to the CNS clock system
that results in an induction of a CNS hypodopaminergic/elevated SNS tone (often with
an overactive HPA axis) to initiate a plethora of cascading downstream neuroendocrine
events to induce the obese, insulin-resistant state. This CNS-clock-driven neurophysiol-
ogy can be triggered by common chronic environmental stresses of Westernized lifestyle
(high fat/simple sugar diets, psychosocial stress, altered sleep/wake architecture). In
modern man, these chronic “stress” signals “lock” the CNS-clock control of metabolism in
the insulin-resistant state chronically (i.e., for years), which over time potentiates insulin
resistance syndrome and cardiovascular disease (see Figures 5 and 6). In such pathophys-
iological states of T2D, circadian-timed administration of the sympatholytic dopamine
D2 receptor agonist, bromocriptine-QR, to reinstate the natural circadian peak of CNS
dopaminergic activity (and reduce elevated SNS tone) leads to improvement of glucose
and lipid dysmetabolism and attenuation of cardiometabolic risk. Prodigious studies
across multiple species and several clinical trials demonstrate critically important roles for
CNS circadian dopaminergic activity as a major contributing physiological factor in the
regulation of cardiometabolic health.
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T2D type 2 diabetes
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JNK Mitogen-Activated Protein Kinase 8
NFIL3 Nuclear Factor, Interleukin 3 Regulated
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REV-ERBα/β Nuclear Receptor Subfamily 1 Group D Member 1/2
RORα/β/γ RAR Related Orphan Receptor A/B/C
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163. Prpić-Križevac, I.; Canecki-Varžić, S.; Bilić-Ćurčić, I. Hyperactivity of the hypothalamic-pituitary-adrenal axis in patients with
type 2 diabetes and relations with insulin resistance and chronic complications. Wien. Klin. Wochenschr. 2012, 124, 403–411.
[CrossRef]

164. Huybrechts, I.; De Vriendt, T.; Breidenassel, C.; Rogiers, J.; Vanaelst, B.; Cuenca-Garcia, M.; Moreno, L.A.; Gonzalez-Gross, M.;
Roccaldo, R.; Kafatos, A.; et al. Mechanisms of stress, energy homeostasis and insulin resistance in European adolescents--the
HELENA study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1082–1089. [CrossRef] [PubMed]

165. Yokoyama, K.; Yamada, T.; Mitani, H.; Yamada, S.; Pu, S.; Yamanashi, T.; Matsumura, H.; Nakagome, K.; Kaneko, K. Relationship
between hypothalamic–pituitary–adrenal axis dysregulation and insulin resistance in elderly patients with depression. Psychiatry
Res. 2015, 226, 494–498. [CrossRef]

166. Sharma, V.K.; Singh, T.G. Chronic Stress and Diabetes Mellitus: Interwoven Pathologies. Curr. Diabetes Rev. 2020, 16, 546–556.
[PubMed]

167. Plat, L.; Byrne, M.M.; Sturis, J.; Polonsky, K.S.; Mockel, J.; Fery, F.; Van Cauter, E. Effects of morning cortisol elevation on insulin
secretion and glucose regulation in humans. Am. J. Physiol. 1996, 270 Pt 1, E36–E42. [CrossRef] [PubMed]

168. Joseph, J.J.; Wang, X.; Roux, A.V.D.; Sanchez, B.N.; Seeman, T.E.; Needham, B.L.; Golden, S.H. Antecedent longitudinal changes in
body mass index are associated with diurnal cortisol curve features: The multi-ethnic study of atherosclerosis. Metabolism 2017,
68, 95–107. [CrossRef] [PubMed]

169. Jiang, Z.; Rajamanickam, S.; Justice, N.J. CRF signaling between neurons in the paraventricular nucleus of the hypothalamus
(PVN) coordinates stress responses. Neurobiol. Stress 2019, 11, 100192. [CrossRef]

170. Nakamura, K.; Nakamura, Y.; Kataoka, N. A hypothalamomedullary network for physiological responses to environmental
stresses. Nat. Rev. Neurosci. 2022, 23, 35–52. [CrossRef]

171. Bernardis, L.L.; Bellinger, L.L. The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc. Soc. Exp. Biol. Med. 1998, 218,
284–306. [CrossRef]

172. Irwin, M.; Hauger, R.; Brown, M. Central corticotropin-releasing hormone activates the sympathetic nervous system and reduces
immune function: Increased responsivity of the aged rat. Endocrinology 1992, 131, 1047–1053. [CrossRef]

173. Brown, M.R.; Fisher, L.A.; Spiess, J.; Rivier, C.; Rivier, J.; Vale, W. Corticotropin-Releasing Factor: Actions on the Sympathetic
Nervous System and Metabolism*. Endocrinology 1982, 111, 928–931. [CrossRef]

174. Strack, A.; Sawyer, W.; Hughes, J.; Platt, K.; Loewy, A. A general pattern of CNS innervation of the sympathetic outflow
demonstrated by transneuronal pseudorabies viral infections. Brain Res. 1989, 491, 156–162. [CrossRef]

175. Valentino, R.J.; Foote, S.L.; Aston-Jones, G. Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus.
Brain Res. 1983, 270, 363–367. [CrossRef]

176. Lowrance, S.A.; Ionadi, A.; McKay, E.; Douglas, X.; Johnson, J.D. Sympathetic nervous system contributes to enhanced corticos-
terone levels following chronic stress. Psychoneuroendocrinology 2016, 68, 163–170. [CrossRef] [PubMed]

177. Kenney, M.J.; Weiss, M.L.; Haywood, J.R. The paraventricular nucleus: An important component of the central neurocircuitry
regulating sympathetic nerve outflow. Acta Physiol. Scand. 2003, 177, 7–15. [CrossRef]

178. Grzeda, E.; Ziarniak, K.; Sliwowska, J.H. The paraventricular nucleus of the hypothalamus—The concertmaster of autonomic
control. Focus on blood pressure regulation. Acta Neurobiol. Exp. (Wars) 2023, 83, 34–44. [CrossRef] [PubMed]

179. Ezrokhi, M.; Luo, S.; Trubitsyna, Y.; Cincotta, A.H. Neuroendocrine and metabolic components of dopamine agonist amelioration
of metabolic syndrome in SHR rats. Diabetol. Metab. Syndr. 2014, 6, 104. [CrossRef] [PubMed]

180. Ezrokhi, M.; Zhang, Y.; Luo, S.; Cincotta, A.H. Time-of-Day-Dependent Effects of Bromocriptine to Ameliorate Vascular Pathology
and Metabolic Syndrome in SHR Rats Held on High Fat Diet. Int. J. Mol. Sci. 2021, 22, 6142. [CrossRef] [PubMed]

181. Cincotta, A.H.; MacEachern, T.A.; Meier, A.H. Bromocriptine redirects metabolism and prevents seasonal onset of obese
hyperinsulinemic state in Syrian hamsters. Am. J. Physiol. Metab. 1993, 264 Pt 1, E285–E293. [CrossRef]

182. Cincotta, A.H.; Meier, A.H. Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally
obese hamsters (Mesocricetus auratus). Metabolism 1995, 44, 1349–1355. [CrossRef]

183. Davis, L.M.; Pei, Z.; Trush, M.A.; Cheskin, L.J.; Contoreggi, C.; McCullough, K.; Watkins, P.A.; Moran, T.H. Bromocriptine reduces
steatosis in obese rodent models. J. Hepatol. 2006, 45, 439–444. [CrossRef]

184. Tsai, T.-H.; Cincotta, A. 1868-P: Bromocriptine (BC) Improves Hepatic Steatosis, Inflammation, and ER Stress in a Mouse
Obesogenic Dietary Model of Nonalcoholic Steatohepatitis (NASH). Diabetes 2019, 68 (Suppl. 1), 1868-P. [CrossRef]

185. Tellez, L.A.; Medina, S.; Han, W.; Ferreira, J.G.; Licona-Limón, P.; Ren, X.; Lam, T.T.; Schwartz, G.J.; De Araujo, I.E. A Gut Lipid
Messenger Links Excess Dietary Fat to Dopamine Deficiency. Science 2013, 341, 800–802. [CrossRef] [PubMed]

186. Hryhorczuk, C.; Florea, M.; Rodaros, D.; Poirier, I.; Daneault, C.; Rosiers, C.D.; Arvanitogiannis, A.; Alquier, T.; Fulton, S.
Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsy-
chopharmacology 2016, 41, 811–821. [CrossRef] [PubMed]

https://doi.org/10.1038/ijo.2016.183
https://doi.org/10.1590/1806-9282.60.01.017
https://www.ncbi.nlm.nih.gov/pubmed/24918858
https://doi.org/10.1007/s00508-012-0191-4
https://doi.org/10.1016/j.numecd.2014.04.014
https://www.ncbi.nlm.nih.gov/pubmed/24907850
https://doi.org/10.1016/j.psychres.2015.01.026
https://www.ncbi.nlm.nih.gov/pubmed/31713487
https://doi.org/10.1152/ajpendo.1996.270.1.E36
https://www.ncbi.nlm.nih.gov/pubmed/8772471
https://doi.org/10.1016/j.metabol.2016.12.001
https://www.ncbi.nlm.nih.gov/pubmed/28183457
https://doi.org/10.1016/j.ynstr.2019.100192
https://doi.org/10.1038/s41583-021-00532-x
https://doi.org/10.3181/00379727-218-44296
https://doi.org/10.1210/endo.131.3.1505449
https://doi.org/10.1210/endo-111-3-928
https://doi.org/10.1016/0006-8993(89)90098-X
https://doi.org/10.1016/0006-8993(83)90615-7
https://doi.org/10.1016/j.psyneuen.2016.02.027
https://www.ncbi.nlm.nih.gov/pubmed/26974501
https://doi.org/10.1046/j.1365-201X.2003.01042.x
https://doi.org/10.55782/ane-2023-004
https://www.ncbi.nlm.nih.gov/pubmed/37078812
https://doi.org/10.1186/1758-5996-6-104
https://www.ncbi.nlm.nih.gov/pubmed/25937836
https://doi.org/10.3390/ijms22116142
https://www.ncbi.nlm.nih.gov/pubmed/34200262
https://doi.org/10.1152/ajpendo.1993.264.2.E285
https://doi.org/10.1016/0026-0495(95)90041-1
https://doi.org/10.1016/j.jhep.2006.03.019
https://doi.org/10.2337/db19-1868-P
https://doi.org/10.1126/science.1239275
https://www.ncbi.nlm.nih.gov/pubmed/23950538
https://doi.org/10.1038/npp.2015.207
https://www.ncbi.nlm.nih.gov/pubmed/26171719


Int. J. Mol. Sci. 2023, 24, 13255 36 of 48

187. Geiger, B.; Haburcak, M.; Avena, N.; Moyer, M.; Hoebel, B.; Pothos, E. Deficits of mesolimbic dopamine neurotransmission in rat
dietary obesity. Neuroscience 2009, 159, 1193–1199. [CrossRef] [PubMed]

188. Florian, J.P.; Pawelczyk, J.A. Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans.
Clin. Sci. 2009, 118, 61–69. [CrossRef] [PubMed]

189. Benthem, L.; Keizer, K.; Wiegman, C.; De Boer, S.F.; Strubbe, J.H.; Steffens, A.B.; Kuipers, F.; Scheurink, A.J.W. Excess portal
venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation. Am. J. Physiol. Metab. 2000, 279,
E1286–E1293. [CrossRef]

190. Stojiljkovic, M.P.; Zhang, D.; Lopes, H.F.; Lee, C.G.; Goodfriend, T.L.; Egan, B.M. Hemodynamic effects of lipids in humans. Am. J.
Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R1674–R1679. [CrossRef]

191. Steinberg, H.O.; Tarshoby, M.; Monestel, R.; Hook, G.; Cronin, J.; Johnson, A.; Bayazeed, B.; Baron, A.D. Elevated circulating free
fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Investig. 1997, 100, 1230–1239. [CrossRef]

192. Haastrup, A.T.; Stepniakowski, K.T.; Goodfriend, T.L.; Egan, B.M. Intralipid enhances alpha1-adrenergic receptor mediated
pressor sensitivity. Hypertension 1998, 32, 693–698. [CrossRef]

193. Benthem, L.; Kuipers, F.; Steffens, A.B.; Scheurink, A.J.W. Excessive portal venous supply of long-chain free fatty acids to the
liver, leading to hypothalamus-pituitary-adrenal-axis and sympathetic activation as a key to the development of syndrome X. A
proposed concept for the induction of syndrome X. Ann. N. Y. Acad. Sci. 1999, 892, 308–311. [CrossRef]

194. Reda, E.; Hassaneen, S.; El-Abhar, H.S. Novel Trajectories of Bromocriptine Antidiabetic Action: Leptin-IL-6/JAK2/p-
STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-gamma/Adiponectin, Nrf2/PARP-1, and GLP-1. Front. Pharmacol. 2018, 9, 771.
[CrossRef]

195. Moore, M.C.; Smith, M.S.; Swift, L.L.; Cincotta, A.H.; Ezrokhi, M.; Cominos, N.; Zhang, Y.; Farmer, B.; Cherrington, A.D.
Bromocriptine mesylate improves glucose tolerance and disposal in a high-fat-fed canine model. Am. J. Physiol. Metab. 2020, 319,
E133–E145. [CrossRef]

196. Ezrokhi, M.; Luo, S.; Trubitsyna, Y.; Cincotta, A.H. Weighted effects of bromocriptine treatment on glucose homeostasis during
hyperglycemic versus euglycemic clamp conditions in insulin resistant hamsters: Bromocriptine as a unique post-prandial insulin
sensitizer. J. Diabetes Metab. 2012, S2, 1–4. [CrossRef]

197. Folgueira, C.; Beiroa, D.; Porteiro, B.; Duquenne, M.; Puighermanal, E.; Fondevila, M.F.; Barja-Fernandez, S.; Gallego, R.;
Hernandez-Bautista, R.; Castelao, C.; et al. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat. Metab.
2019, 1, 811–829. [CrossRef]

198. Tavares, G.; Marques, D.; Barra, C.; Rosendo-Silva, D.; Costa, A.; Rodrigues, T.; Gasparini, P.; Melo, B.; Sacramento, J.; Seiça, R.;
et al. Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic
pathways, improving metabolic profile in type 2 diabetes. Mol. Metab. 2021, 51, 101241. [CrossRef] [PubMed]

199. Cincotta, A.H.; Meier, A.H. Reductions of body fat stores and total plasma cholesterol and triglyceride concentrations in several
species by bromocriptine treatment. Life Sci. 1989, 45, 2247–2254. [CrossRef]

200. Cincotta, A.H.; Cersosimo, E.; Alatrach, M.; Ezrokhi, M.; Agyin, C.; Adams, J.; Chilton, R.; Triplitt, C.; Chamarthi, B.; Cominos, N.;
et al. Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in
Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects. Int. J. Mol. Sci. 2022, 23, 8851. [CrossRef] [PubMed]

201. Gaziano, J.M.; Cincotta, A.H.; O’Connor, C.M.; Ezrokhi, M.; Rutty, D.; Ma, Z.J.; Scranton, R.E. Randomized clinical trial of
quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care
2010, 33, 1503–1508. [CrossRef]

202. Gaziano, J.M.; Cincotta, A.H.; Vinik, A.; Blonde, L.; Bohannon, N.; Scranton, R. Effect of Bromocriptine-QR (a Quick-Release
Formulation of Bromocriptine Mesylate) on Major Adverse Cardiovascular Events in Type 2 Diabetes Subjects. J. Am. Hear Assoc.
2012, 1, e002279. [CrossRef]

203. Chamarthi, B.; Gaziano, J.M.; Blonde, L.; Vinik, A.; Scranton, R.E.; Ezrokhi, M.; Rutty, D.; Cincotta, A.H. Timed Bromocriptine-QR
Therapy Reduces Progression of Cardiovascular Disease and Dysglycemia in Subjects with Well-Controlled Type 2 Diabetes
Mellitus. J. Diabetes Res. 2015, 2015, 157698. [CrossRef]

204. Chamarthi, B.; Ezrokhi, M.; Rutty, D.; Cincotta, A.H. Impact of bromocriptine-QR therapy on cardiovascular outcomes in type 2
diabetes mellitus subjects on metformin. Postgrad. Med. 2016, 128, 761–769. [CrossRef]

205. Nade, V.S.; Kawale, L.A.; Todmal, U.B.; Tajanpure, A.B. Effect of bromocriptine on cardiovascular complications associated with
metabolic syndrome in fructose fed rats. Indian J. Pharmacol. 2012, 44, 688–693.

206. Gao, J.; Guo, J.; Li, H.; Bai, S.; Li, H.; Wu, B.; Wang, L.; Xi, Y.; Tian, Y.; Yang, G.; et al. Involvement of dopamine D2 receptors
activation in ischemic post-conditioning-induced cardioprotection through promoting PKC-epsilon particulate translocation in
isolated rat hearts. Mol. Cell. Biochem. 2013, 379, 267–276. [CrossRef]

207. Li, H.; Wei, C.; Gao, J.; Bai, S.; Li, H.; Zhao, Y.; Li, H.; Han, L.; Tian, Y.; Yang, G.; et al. Mediation of dopamine D2 receptors
activation in post-conditioning-attenuated cardiomyocyte apoptosis. Exp. Cell Res. 2014, 323, 118–130. [CrossRef] [PubMed]

208. Li, H.-Z.; Guo, J.; Gao, J.; Han, L.-P.; Jiang, C.-M.; Bai, S.-Z.; Zhang, W.-H.; Li, G.-W.; Wang, L.-N.; Zhao, Y.-J.; et al. Role of
dopamine D2 receptors in ischemia/reperfusion induced apoptosis of cultured neonatal rat cardiomyocytes. J. Biomed. Sci. 2011,
18, 18. [CrossRef]

https://doi.org/10.1016/j.neuroscience.2009.02.007
https://www.ncbi.nlm.nih.gov/pubmed/19409204
https://doi.org/10.1042/CS20090063
https://www.ncbi.nlm.nih.gov/pubmed/19426144
https://doi.org/10.1152/ajpendo.2000.279.6.E1286
https://doi.org/10.1152/ajpregu.2001.280.6.R1674
https://doi.org/10.1172/JCI119636
https://doi.org/10.1161/01.HYP.32.4.693
https://doi.org/10.1111/j.1749-6632.1999.tb07804.x
https://doi.org/10.3389/fphar.2018.00771
https://doi.org/10.1152/ajpendo.00479.2019
https://doi.org/10.4172/2155-6156.S2-007
https://doi.org/10.1038/s42255-019-0099-7
https://doi.org/10.1016/j.molmet.2021.101241
https://www.ncbi.nlm.nih.gov/pubmed/33933677
https://doi.org/10.1016/0024-3205(89)90066-0
https://doi.org/10.3390/ijms23168851
https://www.ncbi.nlm.nih.gov/pubmed/36012132
https://doi.org/10.2337/dc09-2009
https://doi.org/10.1161/JAHA.112.002279
https://doi.org/10.1155/2015/157698
https://doi.org/10.1080/00325481.2016.1243003
https://doi.org/10.1007/s11010-013-1648-0
https://doi.org/10.1016/j.yexcr.2013.12.028
https://www.ncbi.nlm.nih.gov/pubmed/24412422
https://doi.org/10.1186/1423-0127-18-18


Int. J. Mol. Sci. 2023, 24, 13255 37 of 48

209. O’Neill, M.J.; Hicks, C.A.; Ward, M.A.; Cardwell, G.P.; Reymann, J.-M.; Allain, H.; Bentué-Ferrer, D. Dopamine D2 receptor
agonists protect against ischaemia-induced hippocampal neurodegeneration in global cerebral ischaemia. Eur. J. Pharmacol. 1998,
352, 37–46. [CrossRef] [PubMed]

210. Narkar, V.; Kunduzova, O.; Hussain, T.; Cambon, C.; Parini, A.; Lokhandwala, M. Dopamine D2-like receptor agonist bromocrip-
tine protects against ischemia/reperfusion injury in rat kidney. Kidney Int. 2004, 66, 633–640. [CrossRef]

211. Scislowski, P.W.; Tozzo, E.; Zhang, Y.; Phaneuf, S.; Prevelige, R.; Cincotta, A.H. Biochemical mechanisms responsible for the
attenuation of diabetic and obese conditions in ob/ob mice treated with dopaminergic agonists. Int. J. Obes. Relat. Metab. Disord.
1999, 23, 425–431. [CrossRef]

212. Liang, Y.; Jetton, T.L.; Lubkin, M.; Meier, A.H.; Cincotta, A.H. Bromocriptine/SKF38393 ameliorates islet dysfunction in the
diabetic (db/db) mouse. Cell. Mol. Life Sci. 1998, 54, 703–711. [CrossRef] [PubMed]

213. Cincotta, A.H.; Scislowski, P.; Phaneuf, S.; Prevelige, R.; Meier, A.H.; Joslin, J. Dopamine agonist treatment ameliorates the obese
hyperglycemic condition in lethal yellow (A y/a) mice. Diabetes 1998, 47, A318.

214. Davis, L.M.; Michaelides, M.; Cheskin, L.J.; Moran, T.H.; Aja, S.; Watkins, P.A.; Pei, Z.; Contoreggi, C.; McCullough, K.; Hope, B.;
et al. Bromocriptine Administration Reduces Hyperphagia and Adiposity and Differentially Affects Dopamine D2 Receptor and
Transporter Binding in Leptin-Receptor-Deficient Zucker Rats and Rats with Diet-Induced Obesity. Neuroendocrinology 2009, 89,
152–162. [CrossRef] [PubMed]

215. Southern, L.L.; Cincotta, A.H.; Meier, A.H.; Bidner, T.D.; Watkins, K.L. Bromocriptine-induced reduction of body fat in pigs.
J. Anim. Sci. 1990, 68, 931–936. [CrossRef] [PubMed]

216. Peixoto-Silva, N.; Moura, E.G.; Carvalho, J.C.; Nobre, J.L.; Quitete, F.T.; Pinheiro, C.R.; Santos-Silva, A.P.; de Oliveira, E.;
Lisboa, P.C. Bromocriptine treatment at the end of lactation prevents hyperphagia, higher visceral fat and liver triglycerides in
early-weaned rats at adulthood. Clin. Exp. Pharmacol. Physiol. 2017, 44, 488–499. [CrossRef]

217. Cermakian, N.; Boivin, D.B. The regulation of central and peripheral circadian clocks in humans. Obes. Rev. 2009, 10 (Suppl. 2),
25–36. [CrossRef]
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