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Abstract: The comprehensive narrative review conducted in this study delves into the mechanisms
of communication and action at the molecular level in the human organism. The review addresses
the complex mechanism involved in the microbiota–gut–brain axis as well as the implications of
alterations in the microbial composition of patients with neurodegenerative diseases. The patho-
physiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the
mechanisms of action of the main metabolites involved in the bidirectional communication through
the microbiota–gut–brain axis. In addition, interventions targeting gut microbiota restructuring
through fecal microbiota transplantation and the use of psychobiotics—pre- and pro-biotics—are
evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in
these pathologies. This review provides valuable information and facilitates a better understanding
of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.

Keywords: neurodegenerative diseases; microbiota; dysbiosis; metabolites; interventions; prebiotics;
probiotics; psychobiotics; fecal microbiota transplantation

1. Introduction
1.1. Microbiota and Neurodegeneration

Within the classification of neurodegenerative diseases, we find at least 100 differ-
ent pathologies, which present specific symptomatology, with the most prevalent being
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
and multiple sclerosis (MS). It is estimated that more than 55 million people are living with
Alzheimer’s disease, and the prevalence of PD has significantly increased in recent decades,
reaching nearly 9 million people affected worldwide. MS affects almost 3 million people
worldwide. As for ALS, the incidence rate in the general population is 5/100,000 people
worldwide. All these data indicate that the impact of neurodegenerative diseases has
considerably increased, while the number of years with a reduced quality of life has also
increased [1–3].

On the other hand, the understanding of the microbiota and its implication in different
metabolic processes has received growing interest from the scientific community over the
years, and specifically the study of these processes and its implication in neurodegenerative
diseases. It is now known that the brain regulates intestinal functions in communication
with the hypothalamic–pituitary–adrenal axis, as well as the autonomic nervous system
(ANS) [4,5]. In addition, the intestine modulates certain functions in the central nervous
system (CNS) involving various metabolites produced by the microbiota, as certain gut
hormones and neuroactive compounds that propagate through the enteric nervous system
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(ENS), the circulatory system, the vagus nerve, or the immune system, until reaching the
brain [6,7]. This chain of communication forms the so-called microbiota–gut–brain axis,
where it is estimated that 1013–1014 live microorganisms exist. Thus, this microbiota–gut–
brain axis is a bidirectional communication pathway consisting of neuronal, neuroimmune,
endocrine, and metabolic signals [8–10].

In this regard, it is known that alterations in the composition of the microbiota are
associated with multiple pathologies, including obesity, certain mental disorders, CNS
disorders, gastric disorders, as well as neurodegenerative diseases, with very specific
microbial profiles being found in these patients [11]. Microbial-derived substances circulate
freely along the microbiota–gut–brain axis, allowing the passage of harmful substances
and their propagation in different pathways and systems of the organism. Precisely this
constant communication through this axis makes it possible to consider the microbiota as a
treatment opportunity, a therapeutic target for intervention in neurodegenerative diseases,
with the aim of protecting the gut and hindering the entry of pathogenic substances into
the modulating axis [12].

Therefore, the main objectives of this comprehensive narrative review are: (i) to ana-
lyze the role of the gut microbiota (GM), its dysbiosis, and the microbial metabolome in the
pathogenesis of the neurodegenerative diseases, and (ii) to explore the use of psychobiotics
and fecal microbiota transplantation as a therapeutic approach.

1.2. Methodology of Search

In order to perform this literature review, different databases containing the most
current information in this field of study were consulted, i.e., WoS (Web of Science), PubMed,
ScienceDirect, Cochrane (Wiley), and Scopus. The search was performed using this article’s
keywords: neurodegenerative diseases, microbiota, dysbiosis, metabolites, interventions,
prebiotics, probiotics, psychobiotics, and fecal microbiota transplantation, in addition to
the names of each pathology (Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,
or amyotrophic lateral sclerosis). The MeSH guidelines were followed, thus ensuring the
adequacy of the literature consulted. The search period was limited to articles published
between 2000 and 2023, which guarantees the timeliness and relevance of the information
included in this review. Nevertheless, a very small number of papers prior to these dates
were included, with the aim of providing a specific background and initial data on studies
in this line of research.

The authors meticulously revised the titles and abstracts of all the articles consulted.
Exclusion criteria were applied according to procedures of previous reviews [13–15]:
(i) studies outside the period analyzed, (ii) topics presented outside the scope of the
review, and (iii) books, conference proceedings, doctoral theses, and abstracts. All studies
that complied with scientific methodological standards and relevant information from the
subsections of the present review were used. Once the most appropriate articles were
identified, the authors began to work individually to extract the most significant results.
The treatment of the information was carried out by all the authors of the review and, finally,
the selected articles were discussed in order to write the present narrative review, which
allowed maintaining the rigor of the information, with a shared perspective. Precisely
for this purpose, meetings were held in which the obtained findings were pooled and
the information was discussed and synthesized. This teamwork process facilitated the
integration of the information and guaranteed the coherence of the data in this study.

2. Microbiota–Gut–Brain Axis in Neurodegenerative Diseases: Role of Microbial
Metabolome
2.1. Eubiosis and Dysbiosis

It is known that people have a very high number of microorganisms that form an
essential ecosystem in the human organism [16]. It is estimated that there are around
100 million bacteria and more than 300 different species, with different functions that allow
the organism to function properly [8,17]. Although there are several tissues that are ideal
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for microorganisms to develop, such as the skin, the oral cavity, or the vaginal tract, it is in
the digestive tract where 95% of these bacteria are found [18]. They are essential for the
correct absorption of nutrients and function as a defensive barrier of intestinal mucus. This
facilitates the non-proliferation of pathogenic bacteria and/or viruses [19,20].

When there is an alteration of the intestinal flora, or even an elimination of it, we
speak of dysbiosis [21]. This imbalance can be determined by inflammatory processes,
autoimmune diseases, unhealthy diets that include high amounts of protein and low
amounts of fiber, chronic stress situations, drug abuse, and pharmacological treatments,
such as metformin, nonsteroidal anti-inflammatory drugs, opioids, and statins, among
others [22–24]. It is important to highlight that the use of antibiotics modifies the microbiota
of the organism, affecting not only gene expression and protein activity, but also altering
the functioning of the endocrine, metabolic, and immune systems [25,26].

When dysbiosis appears, very heterogeneous symptoms can be observed, not always
of a gastrointestinal nature [27]. Among the most frequent are muscular disorders, joint
disorders, skin disorders, headaches and migraines, irritability, sleep disturbances, chronic
fatigue, and digestive discomfort, such as acute episodes of diarrhea, stomach gas, abdomi-
nal bloating, steatorrhea, diverticulitis, vitamin B12 deficiency, and even irritable bowel
syndrome [27,28].

If dysbiosis is suspected, it is necessary to collect fecal samples for analysis by stool
culture to quantify the intestinal microbiota or flora [29]. If the patient has a healthy or
preserved microbiota (eubiosis), adequate concentrations of the microorganisms E. coli,
Enterococcus sp., Lactobacillus sp., Bifidubacterium, Bacteroides sp., and Prevotella sp. will
be observed [30–32]. However, there are different types of dysbiosis, depending on the
intestinal region affected, such as IMO (intestinal methanogen overgrowth), LIBO (large
intestine bacterial overgrowth), SIFO (small intestine fungal overgrowth), and LIFO (large
intestine fungal overgrowth), but all of them are known as SIBO (small intestinal bacterial
overgrowth) [33]. In all the above, there is a common denominator: the migration of bacteria,
for example, from the colon to the small intestine, which will facilitate the appearance of
toxins and intestinal gas [33–35].

In recent years, the study of the human microbiome has greatly advanced. This term
refers to the set of microorganisms, as well as their genes and metabolites [36]. The same is
true of metagenomics, which is the analysis of the genetic material of bacteria, making it
possible to identify them through a biological sample [37]. These advances have allowed
to identify 30% of the intestinal microbiota and its genes, although not all of them are
culturable [38]. Thus, it is now known that the human gut microbiota community is formed
by more than 1000 different species, which have a total of 150 times more genes than
the human genome [39]. Within this great number of microorganisms that live in the
human gut, bacteria from the Firmicutes and Bacteroidetes phyla, which together make up
approximately 90% of the total, are the most notable. Other examples of bacteria present in
the GM are the Actinobacteria, Proteobacteria, and Verrucomicrobia phyla. Besides the bacteria,
the gut microbiota is comprised of other microorganisms such as archaea, viruses, fungi,
and protozoa [40–42] (see Figure 1).

There are several elements that have an impact on the microbiota, with genetics and
each person’s diet being determining factors [43]. Great advances have been made in recent
decades in relation to the pathologies associated with alterations in the microbiota that
allow determining the negative impact of this dysbiosis in different pathologies [44]. The
microbiota is closely related to the response of the immune system, and it is also known that
the decrease in the microbial load may be influenced by the hygienic habits of developed
societies [45,46]. Similarly, diet is a key element in explaining this response when studying
the incidence and prevalence of inflammatory diseases, such as type 1 diabetes, obesity,
allergies, and asthma [47]. The so-called Western diet, rich in fat and sugars and low in
fiber, produces changes in the microbiota [48], and recent studies have shown how this
diet produces alterations in the microbial composition in mice, in a single day. These mice
showed adiposity in two weeks, and alterations in metabolic pathways. Specifically, they
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showed an increase in Firmicutes and a decrease in Bacteroidetes [49,50]. On the other hand,
the incorporation of fiber in the diet may be associated with the speed of intestinal transit
since the same results were obtained by including osmotic laxatives in the diet [51].
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archaea, eukaryota, and viruses.

Regarding immune and inflammatory responses, the microbiota performs adaptive
functions through antigens called pathogen-associated molecular patterns (PAMPs), such
as lipopolysaccharides (LPS), lipids, and lipoproteins [52]. The interaction between PAMPs
and pattern recognition receptors favors the production of interferons and cytokines, which
activate an immune response [53]. In this sense, it seems that the microbiota of children
in developing countries and children in developed societies are different, justifying an
increase in the diagnosis of pathologies associated with allergies and asthma in the latter,
while there is no accumulation of PAMPs in the microbiota of children in developing
countries [54].

2.2. Dysbiosis in Neurodegenerative Pathologies

The GM not only affects different diseases directly related with the digestive tract,
as described above, but there is scientific evidence that associates the human microbiome
with psychopathologies. For example, recent studies have shown that the gut microbiota is
essential in the onset and maintenance of diseases that are related to the CNS, such as mood
disorders, schizophrenia, or autism, and even with neurodegenerative disorders such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic
lateral sclerosis (ALS), or Huntington´s disease, among others [55–57]. In addition, we
now know that the certain markers of the pathology are related to an increase in intestinal
permeability, called leaky gut syndrome [58].

2.2.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent form of dementia, and its onset is
associated with an accumulation of β-amyloid and neurofibrillary tangles formed by phos-
phorylated Tau protein [59,60]. The relationship between mild behavioral impairment
(MBI) and AD seems increasingly clear. Thus, MBI could be implicated at the onset of
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AD by different metabolic pathways and processes, such as low bacterial diversity, pro-
duction of different harmful metabolites, direct activation of pro-inflammatory cytokines,
or altered intestinal permeability. This allows different metabolites to cross the intestinal
barrier and reach the brain, inducing neuroinflammation and brain and hippocampal
dysfunction [61–63].

Currently, there are many studies that highlight the relationship between different
bacteria and AD. In this sense, patients with AD present an increase in Proteobacteria and
Bacteroidetes phyla, together with a decrease in Firmicutes and Actinobacteria phyla [64–66].
For example, microorganisms such as Chlamydia pneumoniae, Borrelia burgdorferi, Treponema
pallidum, Helicobacter pylori, Escherichia coli, Escherichia-Shigella, spirochetes, or P. gingivalis
have been found in a higher proportion in the brain or cerebrospinal fluid (CSF) in patients
with AD than in the general population, while the reduction of other species has been found
in patients with AD, such as Butyrivibrio, Eubacterium Clostridium sp., Roseburia hominis,
and Faecalibacterium prausnitzii [67]. Thus, a dysbiosis in the GM due to an increase in the
pro-inflammatory bacteria and a decrease in the anti-inflammatory bacteria can be seen in
AD, all of which produces an increase of different metabolites (e.g., LPS, trimethylamine-
N-oxide, or pro-inflammatory cytokines) and a decrease of other metabolites, such as
butyrate [68]. In this section, the main microbial metabolites implicated in the apparition of
AD will be summarized, focusing on their action in the functioning of the central nervous
system (see Figure 2).

Metabolites Altered in AD

• AD and Trimethylamine-N-oxide

Trimethylamine-N-oxide (TMAO) is a bacterial derivate metabolite of choline, l-
carnitine, and betaine, among others, which is related to the AD apparition [69,70]. Thus,
for example, patients with AD presented high levels of TMAO in their cerebrospinal fluid.
Moreover, the presence of TMAO in this fluid demonstrates that this metabolite has the
capacity to reach the CNS and, therefore, could affect its function [71].

The synthesis of TMAO requires the GM and the liver to intervene. Therefore, the first
step is for the microbiota to synthesize trimethylamine (TMA) from choline, l-carnitine, or
betaine. Lastly, the TMAO will be synthesized in the liver by the oxidation of TMA [72,73].
Some of the phyla with a high production of TMA could be Clostridium, Escherichia, and
Proteus (Firmicutes and Proteobacteria), and a high presence of these bacteria could result in
a high level of TMAO that could be related to dementia and AD [74,75].

A recent study by Vogt et al. (2018) analyzed this relation between TMAO and AD and
found that the level of TMAO was elevated in patients with AD and associated with neuron
death [69]. In this study, the authors analyzed TMAO levels in the CSF in 424 patients with
AD and, using a comprehensive neuropsychological battery, they analyzed the patients’
cognitive status. They found that the level of TMAO was associated with higher AD
dementia and cognitive impairment. Moreover, positive relations were found between
TMAO levels and p-tau and p-tau/Aβ42, but not with amyloid biomarkers. In addition,
they found that the TMAO seems to be related to the axon but not the dendritic injury due
to the relation between TMAO and t-tau (axon injury), but not with neurofilament light
chain (NFL, dendritic injury) [69,76].

The observed negative effect of TMAO could be explained by different mechanisms.
In this sense, TMAO seems to alter hormonal and lipid homeostasis, cause platelet hyper-
reactivity, decrease cholesterol transport by changing sterol and cholesterol metabolisms,
or activate the NLRP3 inflammasome, producing endothelial dysfunction. Additionally,
it induces the release of inflammatory cytokines such as IL-1β and IL-18, produces neu-
ral senescence, causes oxidative stress, impairs mitochondrial function, inhibits mTOR
signaling, induces CD68 expression (cellular marker associated with dementia), and upreg-
ulates macrophage scavenger receptors. Furthermore, in mice, TMAO is associated with
atherosclerosis, which in turn is associated with dementia [69,77–80].
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Finally, it should be noted that TMAO precursors, such as choline, have been linked to
proper brain function, for example, through the reduction of homocysteine levels, which
have neurotoxic properties [81]. In fact, an increase in choline levels (e.g., through diet)
could present both benefits, due to choline function in the CNS, and disadvantages, due to
TMAO synthesis. However, at least in young, healthy individuals, an increase in dietary
TMAO precursors was not associated with an increase in plasma TMAO levels [81,82].
Therefore, although the relation between TMAO and cognitive impairment seems to be
complex, the GM may play a key role [83].

• AD and Lipopolysaccharide

Another microbiota product that could be involved in AD is the Gram-negative
membrane protein lipopolysaccharide (LPS), an endotoxin that produced inflammation in
experimental animals [84]. LPS has been attributed pro-inflammatory properties and was
found in patients with AD in higher levels compared to controls. Moreover, it has been
found in the amyloid plaques and in vessels in patients with AD [85,86].

A related study carried out by Marizzoni et al. (2020) analyzed the possible relation
between LPS with the amyloid pathology [87]. In this study, the LPS could be a risk factor in
AD. The authors found that there was an association between elevated LPS levels in plasma
and greater amyloid pathology in all cerebral regions studied. Other authors found how
P. gingivalis, which secretes LPS (and causes periodontal disease in human), is associated
not only with AD but also with a higher cerebral Aβ load [88,89]. Moreover, high levels of
LPS were associated with higher blood levels of pro-inflammatory cytokines, such as IL-1β,
NLRP3, CXCL2, and IL-18.

There are different mechanisms that could explain this effect of LPS in AD. For exam-
ple, in in vitro experiments, LPS increased the Aβ fibrils’ formation, and when administered
to rats (injected into the ventricles), it caused inflammation and other pathologies associated
with AD [64]. In addition, LPS and Aβ increase the expression of ICAM-1 and PECAM-1,
which modulate the trans-endothelial migration of leukocytes across the blood–brain bar-
rier (BBB) and, therefore, could be the first step in the endothelial signaling cascade and
accelerate neuroinflammation [90]. Thus, LPS provoked an inflammatory response. For
example, the exposition of the human primary brain cells to LPS activates the transcrip-
tion of the pro-inflammatory factor NF-κB (p50/p65) complex, triggering inflammatory
neurodegeneration in the AD brain [91]. Finally, LPS joined with TLR4 receptors in the
microglia produces an immune response similar to that observed in the microglia of AD
patients [92].

It is important to highlight that some authors have analyzed the possible impact of
SCFAs in AD, with controversial results. Traditionally, SCFAs have been proposed as
metabolites with neuroprotective properties [93]. SCFAs could attenuate AD since these
products could serve as a substrate for metabolic energy, inhibit histone deacetylases,
induce the enteroendocrine signaling, activate the vagus nerve, have anti-inflammatory
properties, and are involved in the correct function of the microglia in the brain, among
other functions [94–96]. For example, propionate and butyrate inhibit histone deacetylase
and, as a result, change the gene expression, which in the end reduced tumor formation and
inflammation signaling. However, Marizzoni et al. (2020) found a positive relation between
butyrate with the endothelial integrity; in fact, species which produced butyrate, such as
Clostridium butyricum, improved AD symptoms [87,97]. In addition, the study showed a
positive relation between acetate and valerate with the amyloid deposition. The authors
hypothesized that acetate elevates the production of cytokines (IL-6, CXCL1, and CXCL2)
in intestinal cells [98] and could have an important role in the amyloid aggregation and
endothelial dysfunction. Therefore, considering these contradictory effects observed in
different studies, the influence of each specific SCFA in AD should be further studied.

• AD and Amyloid

Some bacteria in the GM have the capacity to synthesize amyloid. These proteins
have self-aggregation properties and cause cell deterioration when they accumulate [68,99].
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Examples include Escherichia coli (curli), Bacillus subtilis (TasA), Salmonella Typhimurium
(CsgA), Pseudomonas fluorescens (FapC), and Staphylococcus aureus (phenol-soluble mod-
ulins), among others. The amyloid allows bacteria to bind together and generate a biofilm
that makes them more resistant to physical damage or immune attack [100]. These proteins
have been associated with the misfolding of Aβ fibrils and other oligomers [68]. Thus, it
seems that the amyloid produced by the GM is very similar to others present in the brain, at
least in their tertiary form [101]. Therefore, bacterial amyloid could act as prion proteins and
cause, through molecular mimicry, the proteins to adopt a pathogenic configuration (such
as a β-sheet structure) [100]. In this sense, phenol-soluble modulins have cross-α structures
and form cross-β fibrils that are associated with AD [102]. CsgA, which is a subunit of curli,
is similar in shape to Aβ42 and induces plaque deposition in the brain [103]. Moreover, the
authors found that the presence of some bacterial amyloid was associated with an increase
in the immune system activation and in the pro-inflammatory cytokines’ (IL-17A, IL-22,
IL-6, or TNF) production, and with a reduction of anti-inflammatory cytokines (IL-10) [104].
This effect could be provoked by the production of amyloid in the brain [104].

• AD and Neurotransmitters

Some GM bacteria have the ability to synthesize neurotransmitters associated with
human physiology [105]. For example, Escherichia sp. synthesizes catecholamines such as
norepinephrine [106], Bacillus sp. synthesizes dopamine and norepinephrine [107], and
Escherichia spp. and Lactobacillus spp. produce GABA [108].

Glutamate is a neurotransmitter with a crucial role in cognition and CNS functioning.
In fact, glutamate is the major excitatory neurotransmitter in mammalian CNS [109], and
the disruption of normal glutamate signaling is associated with AD and many other
neurodegenerative disorders (such as Parkinson’s disease, Huntington’s disease, multiple
sclerosis, and schizophrenia, among others) [110,111]. Indeed, in patients with AD, the level
of glutamate in cerebrospinal fluid is diminished [112], although the neurodegeneration
observed in AD is associated with an increase in the glutamate level in the synapsis due to
exocytosis. This glutamate effect seems to be mediated by the excessive Ca2+ entry in the
cell [113,114].

Recent studies suggest that some D-amino acids, such as D-glutamate, N-methyl-D-
aspartate, D-alanine, and D-glutamine, could also function as messenger molecules [115].
In fact, D-glutamate is a component of the cell wall in some bacteria and is synthesized by
a pyridoxal 5′-phosphate (PLP)-dependent glutamate racemase [116,117]. Furthermore, the
levels of D-glutamate seem to be related to the cognitive functions of individuals with AD
or mild cognitive impairment [118]. Various pieces of evidence have linked the plasma
levels of D-glutamate with the extent of cognitive decline. Consequently, patients with AD
or mild cognitive impairment presented lower levels of D-glutamate in plasma, which in
turn correlates with their performance on cognitive assessment tools such as the MMSE
or the Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-cog) [118,119].
It seems clear that an appropriate level of D-glutamate is needed for adequate cognitive
performance, and a decrease in its concentration could lead to cognitive impairment.

Although dietary intake of glutamate is possible (e.g., coffee, cheese, fish, vegeta-
bles, and fruits, among others), GM has an important role to play in the presence of this
neurotransmitter due to the ability of different species to synthesize it. Some bacteria
with the ability to synthesize glutamate during food fermentation are: Coryneform bacteria,
Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus paracasei [120,121], while oth-
ers are able to create D-glutamate from L-glutamate, such as Corynebacterium glutamicum,
Brevibacterium lactofermentum, Brevibacterium avium, Mycobacterium smegmatis, and Bacillus
subtilis [122,123]. As glutamate reaches the CNS, various transporters come into play,
facilitating its passage across the BBB, for example, in the luminal membrane, there is a
facilitative glutamate transport, whereas Na+-dependent glutamate transport exists in the
abluminal membrane [124].

GABA, a prominent inhibitory neurotransmitter in humans, is closely associated with
glutamate. Certain bacteria, such as Lactobacillus brevis and Bifidobacterium dentium, produce
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GABA from glutamate [125]. Moreover, the synthesis of GABA in the gut is related to the
increase of GABA in the CNS [59], and a reduction in the presence of GABA-producing
species might result in decreased GABA levels within the CNS. This fact has been associated
with cognitive impairment and AD [126]. Correspondingly, the postmortem examination of
brains from individuals with AD showed diminished GABA concentrations in the frontal,
parietal, and temporal lobes [126,127].

Histamine has several roles, with its primary functions encompassing cell prolifera-
tion, its involvement in allergic responses, and its neurotransmitter function within the
brain [128]. Another important role of histamine is related to its involvement in the immuno-
logic function, and it seems that histamine could act both as a pro- and an anti-inflammatory
metabolite. Hence, within the brain, histamine can induce allergic inflammation by trig-
gering the rise of pro-inflammatory cytokines, such as IL-1a, IL-1b, IL-6, and chemokines.
Conversely, its interaction with H4R receptors produced anti-inflammatory responses,
particularly important in the CNS [129]. Other authors found that L. reuteri produces
histamine (at least in vitro), which inhibits the production of pro-inflammatory cytokine
TNF in monocytes (TLR-2-activated). This inhibition occurs through the activation of the
histamine receptor H2, ultimately regulating the transcription of the TNF genes. Addition-
ally, other authors have found that L. saerimneri has the capacity to synthesize histamine,
which acts as an immunoregulatory metabolite [130].

Focusing on the relationship of histamine with AD and neurodegeneration, there are
again controversial data. Increased histamine levels have been associated with the illness,
attributing this connection to increased neuroinflammation as a result of an elevated level of
nitric oxide [131], in opposition to a diminished level of histaminergic signaling in rats with
vascular dementia [132]. Further research is required to delve into the role of histamine,
along with exploring its potential use as a therapy for neurodegeneration and AD.

Serotonin is an essential neurotransmitter that has a connection with AD. A decrease
in the serotonin levels in temporal and frontal lobes as well as in the cerebrospinal fluid is
associated with AD [133,134]. Thus, serotonin reuptake inhibitors improve AD symptoms,
indicating that serotonin plays a crucial role in the etiopathogenesis of the disease [135].

This neurotransmitter can be directly synthesized by different bacteria, such as
Corynebacterium spp., Streptococcus spp., and E. coli (at least in cultures) [136]. Serotonin
is synthesized from tryptophan, and GM is essential for the production of different tryp-
tophan metabolites [137]. After tryptophan is produced by GM, about 90% of serotonin
synthesis occurs within the enterochromaffin cells (by TPH enzymes) in the gut [138].
Although the brain also has the capacity to synthesize serotonin, the microbiota seems to
have the capacity to increase the serotonin synthesis in enterochromaffin cells due to the
increase in the TPH1 expression. Thus, the microbiota modulates the level of serotonin
in the organism [139]. In studies carried out with germ-free (GF) rats, a decrease in the
circulating levels of serotonin and in some cerebral regions, such as the hippocampus, has
been shown [140].

It is noteworthy that the peripheral serotonin lacks the ability to cross the BBB. How-
ever, it can impact the central serotonin production through various pathways, such as
reducing the available tryptophan, inducing the transcription of TPH1 through the produc-
tion of SCFAs [141], or by activating serotonin receptors along the vagus nerve [142,143].
The observed reduction of serotonin in the brain of patients with AD supports this link
between GM, tryptophan, and the disease [144], as it has been shown that an increase in
tryptophan intake increases serotonin levels in the hippocampus and the frontal cortex,
improving memory [145] and reducing the Aβ deposition in transgenic AD mice [146].
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2.2.2. Parkinson’s Disease

PD is the most common type of parkinsonism. More than 80% of people with parkin-
sonism suffer from this pathology. Based on epidemiological data, it is a pathology that
affects about 10 million people worldwide, with approximately 1% of the affected pop-
ulation being adults over 60 years of age, and approximately 5% over 85 years of age.
The global prevalence is 200–300 persons per 100,000 inhabitants, and the incidence is
approximately 2% in all stages of life. It is a disease that affects more men than women, at a
1.5:1 ratio [148,149].

This neurodegenerative and systemic disease is related to the presence of α-synuclein
deposits in the soma of neurons, which causes a loss of neurons in the substantia nigra
of the midbrain and the formation of Lewy bodies [150]. This leads to the nuclear motor
symptomatology that appears in this disease, such as bradykinesia, resting tremor (which
usually occurs unilaterally and with a frequency amplitude of 3–6 Hz), and other balance
and gait disorders. However, it also produces non-motor symptoms such as mood disor-
ders, dementia, anosmia, and some disturbances of the gastrointestinal system, such as
constipation [151].

The origin of the neurodegenerative process of PD has been extensively studied in
the last decades, finding several coincident patterns in patients. It is known that there is a
dysfunction of the mitochondria, which plays a fundamental role in the understanding of
the pathology, along with a decrease in the activity of complex I of the electron transport
chain, as well as mechanisms that cause parkinsonism modulated by MPTP (1-methyl-
phenyl,6-tetrahydropyridine), formed from the synthesis of meperidine [152,153].

PD has been studied on the basis of these alterations, including those whose origin
occurs in the intestine and spreads to the brain. It has been possible to observe in all
patients an increase of α-synuclein in the ENS and in the appendix, which is associated
with alterations of the ENS and parasympathetic nerves [154]. Similarly, bacterial over-
growth in the small intestine has been observed in these patients through breath tests. A
higher prevalence of Helicobacter pylori and a direct relationship of the aggravation of PD
symptomatology was observed [155,156].

In recent years, significant scientific effort has been made to better understand the
disease, implementing advanced study mechanisms such as metagenomics. Metagenomics
is the study of the function and structure of isolated nucleotide sequences, through the
extraction and analysis of soil samples of crops from the environment under study. Genetic
material is obtained, and the samples are sequenced. In this way, it is possible to identify the
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bacterial families and what function they are performing, as well as their taxonomic com-
position, which can be explored in all domains. The first metagenomic study performed for
PD was in 2015 [157], where a decrease in bacteria of the Prevotellaceae family was observed,
as well as a positive correlation between the abundance of the Enterobacteriaceae family and
the motor phenotype, specifically with gait difficulties and postural imbalance. A year later,
a study along the same lines was carried out, finding a greater presence of Enterobacteriaceae
and a lower presence of Prevotellaceae in patients with PD [158]. Evidence was also found
for the proliferation of the population of Proteobacteria, specifically Burkholderiales, Enter-
obacteria, and bacteria of the Lachnospiraceae and Peptostreptococcaceae families (see Figure 2
and Supplementary Material).

Prevotellaceae is a family of bacteria of the order Bacteroidales and has an outer cell
wall containing LPS. It is a strict Gram-negative anaerobic bacterium and is not normally
implicated in infections. In relation to PD, recent studies have shown a decrease of almost
80% of this bacterial family in stool samples compared to control groups [159]. This
distinguished the severity of constipation affecting PD patients, with a sensitivity of almost
70%. These data were also consistent with previous studies analyzing the relationship of
this bacterial family with CNS disorders, such as autism. Prevotellaceae is a commensal
microorganism that inhabits the colon, and its functions are the degradation of plant
polysaccharides, glycoproteins of the mucous layer of the intestine, and interaction with
the body’s immune system [160,161].

The enterotype of Prevotellaceae in the microbiota indicates that there is a relationship
between elevated levels of neuroactive SCFAs, the ability to biosynthesize folate and
thiamine, and representation in PD patients [162]. In addition, these patients have a higher
permeability of the intestine, which is consistent with a decrease in Prevotellaceae, which
hinders mucin synthesis. Constipation is a prevalent symptom in PD, usually appearing
years before motor symptoms, which complicates early diagnosis [163].

The increase of Enterobacteriaceae is related to the symptoms of postural instability and
gait disorders (PIGD), characteristic of PD. Enterobacteriaceae are Gram-negative bacteria
within the order Enterobacterales, and their morphology can be bacilli or cocci. They are
within the group of the coliforms [163,164]. This bacterial family can reduce nitrate to
nitrite, are anaerobic, and some can move by means of flagella [165].

Overpopulation of Enterobacteriaceae explains the motor symptomatology in PD. It
is associated with postural instability, and difficulties in gait and station. The LPS that is
produced by Enterobacteriaceae bacteria induces the creation of β amyloid. This promotes
neuroinflammation of the brain by potentiating the nuclear factor kappa light chains of
β-cells that are activated (NF-қB) [166,167].

As explained above, evidence has also been found in the proliferation of the Proteobacte-
ria population, specifically Burkholderiales, Enterobacteria, and bacteria of the Lachnospiraceae
and Peptostreptococcaceae families [168]. Recent studies have shown that patients diag-
nosed with PD have a higher proliferation of these Proteobacteria compared to control
groups. Studies have identified an increase in Clostridiaceae, Tissierellaceae, Prevotellaceae,
Desulfotomaculum, Atopobium, Planococcaceae, Granulicatella, Staphylococcaceae, Roseburia,
Paraprevotellaceae, Bifidobacterium pseudolongum, and Lachnospiraceae. The propagation of
Proteobacteria favors inflammation and increases intestinal permeability [169,170].

However, it is interesting that these studies have not always obtained the same results.
For example, recent studies showed differences in the results in the microbiota profile of
PD patients. One study found decreased Tissierellaceae, Paraprevotellaceae, Prevotellaceae,
Lachnospiraceae, Bifidobacterium pseudolongum, and Roseburia, and increased Oxalobacteraceae,
in patients with PD [171]. These results were consistent with the study conducted by
Pietrucci et al. [172], where more than 20 bacterial families with an impact on pathology
were identified. An increase of Tissierellaceae and Paraprevotellaceae was found in healthy
individuals, along with a decrease of Oxalobacteraceae. However, different results were
found in Lachnospiraceae, Prevotellaceae, Clostridiaceae, and Staphylococcaceae, which in the
first study appeared to have higher concentration levels in patients with PD, while lower
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levels were found in the study by Del Chierico et al. [171]. It seems evident that alterations
in the microbiota occur over the course of the disease, although it is not yet possible to
determine whether this is the origin or cause of the pathogenesis of PD [171,172].

In summary, it is important to note that the overall profile of the microbiota associ-
ated with PD is still unknown. Studies along these lines have attempted to delimit the
consequences of the microbial modifications found in these patients. It is still unknown
whether the effects are chronic or whether they can be reversed, and whether they are
directly associated with the course of the disease and the aggravation of symptoms.

One of the hypotheses regarding this pathology suggests its origin in the intestine
and that it reaches the brain through the interaction between both systems via the vagus
nerve [8,173]. Recent studies have shown that resection of the vagus nerve and bilateral
vagotomy decrease the risk of developing PD. Animal studies have shown that mice
induced with PD by intragastric rotenone developed Lewy bodies in the brain stem, in the
dorsal nucleus of the vagus nerve [174,175]. However, when sectioning of the vagus nerve
was performed, communication was not possible, and thus the spread of the pathology to
the brainstem was prevented [176].

On the other hand, it is known that the determining marker of the pathology is the
presence of Lewy bodies that develop in the ENS, and this is associated with an increase
in intestinal permeability [58]. Leaky gut syndrome encourages damage to this tissue
to promote the inclusion of harmful substances, and is associated with the presence of
dysbiosis, which would alter intestinal permeability and thus promote the occurrence of the
pro-inflammatory response [177,178]. This pro-inflammatory response becomes systemic
and facilitates the spread of the disease due to the alteration of bacteria, which produce
endotoxins that interact with receptors such as TLR4 [177,179]. These receptors belong to a
family of proteins found in the innate immune system. Studies in mice have shown that
knockdown of these receptors prevents the presence of bacterial alterations, so this is one
line of research that should be further explored in an attempt to block the pathological
mechanisms of PD expansion [180].

Finally, IL-10 (interleukin-10) has also been studied in relation to the inflammatory
processes associated with PD. This gene encodes the anti-inflammatory cytokine IL-10.
Impairment of this signaling pathway has become of interest in recent years as a key
pathway to prevent the development of intestinal inflammation, and therefore in rela-
tion to pharmacological treatments in this pathology [181,182]. In its anti-inflammatory
function, it is able to inhibit the synthesis of inflammatory cytokines by T lymphocytes
and macrophages [183]. The presence of active microglia in the substantia nigra has been
studied with regards to their role in inducing neurotoxic factors through excess production
of interleukin-1β (IL-1β), interleukin 6 (IL-6), and nitric oxide.

Metabolites Altered in PD

Although each neurodegenerative pathology is different and presents unique clinical
symptomatology, they are all characterized by high intestinal permeability and neuroin-
flammation. In fact, much research has indicated that PD can appear in the intestine, since
a high percentage of patients with this disease present with gastrointestinal disturbances
even before the onset of the most characteristic motor symptoms of the disease [184].

Several studies have shown that these patients suffer from metabolic and cellular
alterations that are propagated through the vagus nerve by means of the α-synuclein
protein, which is transported to the brain [185]. This protein has been found in myenteric
and submucosal neurons [186]. Although the disease is not initiated in the substantia nigra,
it is affected by the initial pathobiological process, i.e., by the aggregation of trigger proteins
of specific processes in dopaminergic neurons that are involved in decreased glutathione
levels, increased iron, neuromelanin, calcium level balance, and oxidative stress. Thus,
dopamine deficiency in PD is associated with cell loss in the substantia nigra, leading to
nigrostriatal degeneration [187,188].
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In the study of PD, when an autosomal dominant pattern is identified, mutations
in the α-synuclein protein (Ala53Thr and Ala30Pro) are present. This protein is located
in the presynaptic terminals and is a precursor of the non-amyloid compound of neural
plaques in other neurodegenerative pathologies, such as Alzheimer’s disease [189,190].
In addition, mutations in the DJ-1 protein are related to the autosomal recessive variant
of PD and its functions are gene expression, mRNA targeting, oncogenic transformation,
chaperone activity, and response to oxidative stress [191,192]. The PINK-1 gene is related
to the development of early-onset PD, although its specific functions are still being studied
in detail [193].

• PD and Polyphenols

The main neurodegenerative diseases have common cellular and molecular character-
istics in cells. Among the most important are the deposition of protein aggregates, oxidative
stress, inflammation, and neuronal apoptosis [194]. In relation to polyphenols and PD,
resveratrol, oxyresveratrol, quercetin, baicalein, hesperidin, kaempferol, turmeric, and
epigallocatechin gallate have been studied. In the latter case, it seems to have a protec-
tive effect on neurodegenerative pathologies associated with iron-chelating functions and
modulation of protective antioxidant enzymes [195].

Resveratrol [196] is associated with the inhibition of the loss of dopaminergic neurons
in animal models. It can reduce neural inflammation processes by decreasing the levels
of cyclooxygenase-2 (COX-2) in TNF-α in the substantia nigra and in mRNA. In turn, the
oxyresveratrol derivative decreases SH-SY5Y cell damage by increasing SIRT1 levels, as
well as by negatively modulating caspase-3 expression and c-Jun [197,198].

Oxidative stress is a fundamental element in the etiopathogenesis of PD. These patients
present alterations in the mitochondrial respiratory chain due to complex I inhibition [199–
201]. A large source of reactive oxygen species (ROS) is the oxidative metabolism of
dopamine, which is an essential process in dopaminergic degeneration [202,203]. At least
90% of dopamine is found in presynaptic vesicles, although a small proportion is degraded
by monoamine oxidase B (MAO-B) [204,205]. Prolonged neuroinflammation is another
source of ROS, with increased levels of pro-inflammatory cytokines in the CSF in these
patients.

Diets rich in polyphenols such as flavonoids, as well as intervention with nonsteroidal
anti-inflammatory drugs (NSAIDs), have a protective role at the onset of neurodegenerative
diseases and other pathologies associated with chronological age, since they can modulate
NF-қB signaling pathways, and therefore, they have notable therapeutic potential [206–208].

• PD and LPS

Abnormalities of the intestinal microbiota in PD patients occur frequently, as men-
tioned above. Studies have shown that this microbiota is altered, favoring an organic
inflammatory state, although it is not yet possible to know if the production of LPS and
some bacteria, as well as the genes that produce them, are the beginning or the consequence
of the etiopathogenesis of PD [209–211]. In addition, microglial cells play an essential role
in the inflammatory processes associated with neurodegenerative diseases. Chronic activa-
tion of these cells promotes neuronal damage and produces an inflammatory process with
harmful long-term effects [212,213]. The neurotoxic response is called reactive microgliosis.
LPS, an endotoxin of the outer membrane of Gram-negative bacteria, is involved in the
pathogenesis of sepsis, a cellular inflammatory process that activates lymphocytes and
macrophages [212,214]. In addition, these patients have an increased permeability of the
intestine, measured by using urinary tests, among other tools [215]. This could indicate that
certain toxic substances circulate freely through the microbiota–gut–brain axis, as explained
above, favoring the toxicity to neurons in patients with PD.

• PD and SCFAs

Short-chain fatty acids and tryptophan metabolites perform upstream signaling trigger
functions across the intestinal barrier into the bloodstream and across the BBB [8,216]. These
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metabolites regulate the immune system locally and at the CNS level, generating a pro-
inflammatory environment. In animal models, it has been possible to observe an increase
in adrenocorticotropin and corticosterone production and a decrease in neurotrophic levels,
which normalize when the intestinal microbiota is balanced [144,217]. Specifically, in the
study of PD metagenomics, a more inflammatory profile was observed in the mucosa of
these patients [218,219]. Similarly, lower levels of hydrogen-producing bacteria and lower
levels of bacterial lipopolysaccharide-binding proteins have been observed, which favor
greater intestinal permeability [220–222].

Other studies found modifications in the number of some axons associated with a
poorer cognitive profile in these patients, a worse emotional profile, and sleep disorders,
as well as a relationship with the worsening of motor symptomatology [223,224]. This is
relevant because the action of bacterial metabolic pathways involved in the metabolization
of xenobiotics are altered, and this could have a negative impact on the specific treatment
of this pathology [225].

2.2.3. Multiple Sclerosis and Amyotrophic Lateral Sclerosis

As previously mentioned, other neurocognitive disorders in which GM could be
involved include MS and ALS. MS is a chronical autoimmune disorder in which the human
immune system attacks and destroys the myelin sheath, affecting the normal propagation
of nerve impulses. Moreover, the alteration of the myelin sheath evokes neuroinflammation
and abrasion formation. These alterations produce physical and cognitive impairments
that eventually lead to paralysis and disruption of the BBB [226,227].

ALS is a neurodegenerative disease that is caused by a degeneration of the lower
and upper motor neurons [228]. The neuronal death produces neuromuscular weakness,
wasting, cramps, and fasciculations. This disease has an incidence of 1 to 2 new patients
diagnosed per 100,000 a year in the EU and Europe [229,230].

In terms of dysbiosis, significantly fewer operational taxonomic units (OTUs) classified
as Bacteroidaceae and Faecalibacterium, and a higher number of Ruminococcus OTUs have
been found in MS patients compared to healthy controls. Especially relevant is the fact that
Faecalibacterium, associated with a reduced inflammatory state due to its role in butyrate
production, appears to be less abundant in MS patients overall [231]. SCFA production has
been shown to be neuroprotective, and some of the beneficial bacteria responsible for its
production, such as Prevotella, are decreased in pathological conditions such as multiple
sclerosis [232].

Other studies have found significant increases in the relative abundance of Bacteroidetes,
and a significant reduction in Firmicutes, in ALS patients compared to controls. Furthermore,
the authors observed a decrease in gene function associated with metabolic pathways in
ALS patients, and demonstrated discrepancies in microbiota at the species level and in
relevant metabolites (see Figure 2 and Supplementary Material) [233,234].

Intestinal barrier dysfunction plays a key role in inflammatory gastrointestinal patholo-
gies and neuropathologies. Cells of the central neuronal system, astrocytes and microglia
cells, are regulated by different metabolites originating from intestinal symbiotics. The
pathway of these chemicals inhibited neurodegeneration and neuroinflammation in models
of experimental autoimmune encephalomyelitis (EAE). There is solid evidence to support
the idea that the gut microbiome as well as small-molecule metabolites from the gastroin-
testinal tract play an essential role in the pathogenesis of ALS when they reach the central
nervous system via the BBB. In an animal model of ALS, with G93A-SOD1 transgenic mice,
a clear involvement of tight junctions and the intestinal epithelium in the progression of
ALS was found. Likewise, there was evidence that probiotic ingestion and replenishment
of essential metabolites improved motor skills in these mice [235]. After a slow reduction
in the levels of A. muciniphila with the progression of the disease in these mice, treatment
with A. muciniphila favorably modulated the course and severity of the disease [236].
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Likewise, an imbalance between potentially protective microbial groups, such as
Bacteroidetes, and others with potential neurotoxic or pro-inflammatory activity, such as
Cyanobacteria, has been shown [237].

As previously mentioned, the microbiota also regulates immune cells in the gut and is
important in the metabolism of essential amino acids, such as tryptophan, phenylalanine,
and branched-chain amino acids (leucine, isoleucine, and valine). Despite the high in-
terindividual variability in the composition of the microbiota, its metabolic effects are more
stable, suggesting that these metabolic functions may be fulfilled by different microbial
communities in the hosts [232,237,238].

Metabolomic stability versus microbiome variability invites us to focus on the char-
acterization of the metabolome in health and disease states, based on the hypothesis that
some gut metabolites can be transferred to the CSF, where they might have a toxic effect
and thus impact the disease course. Based on these findings, it is plausible to consider that
the altered balance between bacteria with beneficial and detrimental effects may lead to
depletion of neuroprotective metabolites, parallel to a potential accumulation of neurotoxic
compounds [232,239].

Both MS and ALS are associated with metabolomic changes. Metabolomics may not
only have the ability to distinguish MS and ALS patients from other neurological diseases,
but also may allow a better insight into the pathophysiology of these diseases, as well as
the building of predictive models to stage the diseases and monitor progression through
diagnostic and prognostic biomarkers [234,240].

There is a clear need to identify biomarkers for both the diagnosis and the progression
and prognosis of MS, which is critical during the later stages of the disease [241]. In
recent years, metabolomics has positioned itself as a useful tool in the identification of
possible biomarkers in MS, which provides important information for the integration of
individualized interventions that may support an improved response to treatment [242].

Targeted metabolomic analysis of plasma and CSF samples from healthy controls and
patients with MS and ALS may be useful to identify neurotoxic metabolites. Studying
metabolic pathways and identifying consistent metabolic abnormalities may help establish
potential targets for therapeutic intervention [239,243].

Metabolites Altered in MS and ALS

• Multiple Sclerosis

The microbiota has been linked to myelin synthesis regulation in MS in GF mice.
Gut–brain communication may be mediated by microbially derived metabolites, such
as phenol and indole derivatives of tryptophan and phenylalanine catabolism, and may
induce neurotoxicity in MS [244,245]. These metabolites can reach the CNS through the
bloodstream and the CSF, and the abundance of neurotoxic metabolites in CSF correlates
with biomarkers of neurodegeneration and brain volume. It is important to highlight
that increased levels of LPS and LPS-binding protein in the plasma of MS patients are
associated with increased levels of pro-inflammatory cytokines, leading to deterioration of
the integrity of the BBB and perpetuating the pathogenicity of MS [246].

• MS and Tryptophan

Certain tryptophan derivatives in multiple sclerosis have been shown to directly bind
to the aryl hydrocarbon receptor on glial cells, where they have an anti-inflammatory
effect [232]. Metabolomic evaluation has shown lower levels of tryptophan in MS patients
compared to controls [242,244]. Differences in tryptophan metabolism have also been
found in progressive multiple sclerosis compared to controls or relapsing–remitting MS
(RRMS) [243,247].

Although tryptophan can also be metabolized towards serotonin, the predominant
pathway, responsible for up to 95% of its metabolism, is the kynurenine pathway (KP),
and the first major findings regarding the KP in MS patients, corroborated in several other
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studies, was that tryptophan levels are significantly lower in the CSF and the serum of
these patients [248].

A central role of kynurenine in the pathogenesis of MS has been well-established,
related to the neurodegenerative process, both in animal models and in human subjects.
The lower levels in the CSF and serum of MS patients implies measurable activation of the
KP during the disease. Strategies aimed at rebalancing the KP could be helpful therapeutic
approaches in slowing neurodegeneration in MS [248,249].

Some evaluations have proven that kynurenic acid (KYNA) levels are elevated during
acute relapses, while they are lower in the remission phase. Lower rates of KYNA have
also been found in progressive disease courses and RRMS patients compared to healthy
controls [232]. KYNA is a potent antioxidant of the central nervous system, and both in vivo
and in vitro evidence shows that KYNA can firstly halt lipid peroxidation, and secondly act
as a scavenger for ROS, which further increases its neuroprotective capabilities [248,250,251].
Based on the neuroprotective role of KYNA in MS, it has been included as a predictor in a
highly sensitive (up to 91%) model for the prediction of the disease course [252].

Quinolinic acid (QUIN) has also been evaluated as a useful neuroinflammation and
neurodegeneration biomarker in the CSF of RRMS patients. Along with neurofilaments
and neopterin, QUIN is elevated in the serum of MS patients compared to controls and is
one of the best predictors of disease severity [253].

The upregulation of the enzyme kynurenine 3-monooxygenase (KMO) in EAE rats
leads to QUIN production at higher and neurotoxic levels in the spinal cord. On the
contrary, its inhibition results in decreased levels of neurotoxic molecules and elevates
KYNA levels [254,255]. High KMO activity has been found in perivascular, subependymal,
and subpial macrophages in EAE rats, meaning that the peripheral cells allowed by the
BBB contribute to the source of neurotoxic kynurenine metabolites [256].

Chronic exposure of the rat striatum to QUIN or in vitro treatment of human neurons
with pathophysiological doses of QUIN induced cognitive dysfunction and apoptosis,
respectively [257,258].

QUIN harshly disrupts mitochondrial functioning, inducing neurodegeneration and
cell death, since it may inhibit the neutralization of ROS and other free radicals in the cells,
change the glutathione redox potential, and deplete superoxide dismutase activity [259,260].
Therefore, QUIN is a potent neurotoxin, produced in macrophages, and to a lesser extent
in microglia, and both cells are hallmarks of MS lesions in the active phase due to BBB
damage, which allows for the invasion of macrophages into the CNS [261].

It is relevant that both macrophages and microglia steadily release pro-inflammatory
cytokines, what leads to increased QUIN and other toxic KP metabolites. In this way,
neuronal injury and death occur as a consequence of the positive feedback loop that
becomes established [262].

Indoxyl sulfate (IS) is derived from the breakdown of tryptophan by colon microbes,
and its relative abundance has been found to be higher in the CSF of RRMS and secondary
progressive MS (SPMS) patients compared to controls. This metabolite seems to be sufficient
to decrease neuronal function, due to its neurotoxic effect, in cultured neurons, and this
is not dependent on impacting mitochondrial respiration or oxidative stress [263]. IS has
been validated as a neurotoxic compound due to its significant correlation with the levels
of NFL, a well-accepted biomarker of neurodegeneration, in the CSF [232,264].

• MS and Phenols

For phenylalanine catabolism/derivatives, various studies have shown a significant
decrease in phenylalanine in MS patients compared to controls, in addition to differences
in its metabolism between patients with progressive MS and RRMS [243,263,264]. Phenol-
derived metabolites directly impair neuronal physiological function, and chronic exposure
of cultured neurons to increasing concentrations of these metabolites has been shown to
lead to a dose-dependent neurotoxic effect, consisting of induced axonal damage; that is,
independent from mitochondrial dysfunction and oxidative stress, thereby representing a
novel pathway of neurotoxicity.
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The microbiota–gut–brain axis has been shown to regulate myelin-related genes
and myelination processes. Specifically, microbial-derived phenolic compounds, such
as 4-ethylphenyl sulphate and p-cresol, induce dysfunction in the myelination of neuronal
axons [265,266], which could be of great relevance not only for MS but also for other neu-
rodegenerative diseases. Other results that support these findings have revealed that the
levels of these phenol metabolites (e.g., p-cresol sulphate and N-phenylacetylglutamine)
inversely correlate to MRI measurements of cortical volume and directly correlate to neuro-
filament light-chain levels [232].

• MS and Branched-Chain Amino Acids

Metabolomic evaluation has shown higher levels of lactate and lower levels of va-
line and tyrosine in MS patients compared to controls. A metabolomic imbalance with
mitochondrial dysfunction has been detected by higher lactate levels and lower levels of
tryptophan, tyrosine, and valine in MS patients, compared to healthy controls [244]. As
biomarkers, glucose and valine allow distinguishing MS and controls, and other metabo-
lites allow distinguishing between MS and another inflammatory demyelinating disease,
neuromyelitis optica (NMO). Specifically, scyllo-inositol and glutamine are higher in MS,
and acetate, glutamate, lactate, and lysine are higher in NMO [243]. Another analysis
to characterize the relapse and remission status showed that isoleucine and valine were
downregulated in MS relapse compared to MS remission [267].

• Amyotrophic Lateral Sclerosis

Growing evidence indicates that the gut microbiome may actively contribute to ALS
pathogenesis. A shift of the microbiome profile towards reduced beneficial bacteria and
elevated intestinal inflammation has been reported in ALS, both in experimental animal
models and human studies, and even repeated antibiotic usage, which has a considerable
impact on the microbiota, has been associated with an increase in the risk of ALS [268].
There are different ALS animal models that involve dysbiosis. Moreover, the symptoms
could be modified or modulated by using different metabolites or antibiotics. These results
have shown that the GM has the capacity to modify the motor deficits or neuroinflammation
observed in ALS [269,270].

The neuroinflammation in ALS contributes to making the disease worse via different
mechanisms, such as the increase of ROS, the increase of immune system activation, or the
increase in the release of pro-inflammatory cytokines [236]. Moreover, this inflammation
occurs first in the gut, then at a systemic level [240].

Transgenic ALS animals have an altered GM. For example, G93A mice have lower
amounts of species such as Butyrivibrio fibriosolvens, Escherichia coli, and Fermicus, as well as
bacteria that produce butyrate, compared to control mice. This indicates that the GM may
have an important role in ALS onset and evolution [236].

Patients with ALS also have different GMs than healthy controls. The 16s rDNA
technique revealed that patients with ALS have more Bacteroidetes, while Firmicutes and
Megamonas are diminished, compared to healthy controls [271,272]. It has been shown
that γ-glutamyl phenylalanine could be considered as a risk factor for developing the
disease, and patients with ALS have also shown a lower level of gene function in several
metabolomic pathways [273].

Another study analyzed stool samples from ALS patients, concluding that, as in
previous studies, ALS patients showed a loss of diversity in their GM. Moreover, they
found that majority of patients had high intestinal inflammation (measured by the presence
of metabolites such as LPS) [274]. Therefore, the use of prebiotic, probiotic, or metabolite
treatments (for example, Prevotella spp., or changing butyrate metabolism) could be useful
in the treatment of ALS [275].

• ALS and SCFAs: Butyrate

As previously mentioned, the production of SCFAs by the microbiota affects various
processes, such as the absorption of nutrients, and plays a key role in energy metabolism.



Int. J. Mol. Sci. 2023, 24, 13294 17 of 38

Butyrate (one of the main SCFAs) seems to have a role in the reduction of the accumulation
of mutated proteins, not only in an ALS mouse model, but also in human intestinal epithelial
cells. Moreover, dysbiosis reduces the diversity of bacteria that produce butyrate in animal
models of ALS [234], and a recent study found differences in 15 species in patients with
ALS and healthy controls, including some of those that produce butyrate [276].

In an ALS mouse model, the reduction in the GM of butyrate-producing bacteria (for
example, Butyrivibrio fibrisolvens, Roseburia intestinalis, or Eubacterium rectale) was observed
two months before the onset of the disease. The total amount of butyrate was reduced in
ALS patients compared to healthy controls [236,274]. Finally, the use of sodium butyrate
as a treatment helped to reduce the ALS symptoms in the mice. Thus, mice treated with
sodium butyrate had better health than those who did not receive the treatment. Specifically,
treated animals showed better intestinal barrier function and a delay of 50 days for weight
loss and 38 days for death [254].

• ALS and Tryptophan

Other metabolites that are altered in ALS are those related to the tryptophan–nicotinamide
(NAM) pathway. For example, the level of NAM in CSF seems to be lower in ALS patients
than in healthy controls. The microbiota has the capacity to alter this pathway by producing
different metabolites. Some species from GM produce tryptophan, which plays a key role
in the activation of astrocytes and microglia. These results suggest that some metabolites
synthesized by the microbiota could have properties relevant to the regulation of the neu-
roinflammation observed in ALS patients or may even help to control some symptoms that
are present in ALS, such as non-motor cognitive and behavioral alterations [236,277,278].

Other GM metabolites that are downregulated or upregulated in ALS patients include
NO and GABA, and as in other neurodegenerative diseases such as AD, LPS, which is
increased in the colon and small intestine of ALS mice [236]. LPS may alter gut home-
ostasis, inflammation, and permeability, activating several immune cells to produce pro-
inflammatory cytokines, which cross the BBB and lead to neuroinflammation and neuronal
death [279,280].

3. Interventions That Improve Symptomatology through the Intestinal Microbiota

Since significant differences in the composition and abundance of the gut microbiota
have been found between healthy individuals and those with neurological disorders, and
it was possible to confirm the influence of the gut microbiome on metabolism. Microbial
dysbiosis plays a key role in the pathogenesis of common neurological disorders, and strate-
gies aimed at modulating the gut microbiota are showing great therapeutic potential [281].
Multiple factors influence the composition of the microbiota, such as diet and physical
activity. However, this review focuses on those strategies that directly provide the subject
with controlled microbial populations, thus seeking to reprogram the subject’s microbiome
(see Figure 3).

The microbiota can be modulated through different mechanisms of action. Prebiotics
are “a substrate (carbohydrate-based polyphenols and polyunsaturated fatty acids) that
is selectively utilized by host microorganisms, conferring a health benefit” [282]. Thus,
prebiotics help to maintain a healthy microbiota by enhancing the action of bacteria that
are in the gastrointestinal system. Probiotics are live microorganisms that can be orally
administrated as a food supplement or medicine (such as Lactobacillus and Bifidobacterium,
which are the most used [283]), and that, when used in the proper amount, confer health
benefits to the host [284,285]. Postbiotic products have been defined as those substances
produced by probiotic microorganisms, which have beneficial effects for the organism.
Psychobiotics include prebiotics and probiotics that, once ingested, improve the CNS
symptoms associated with psychiatric and psychological disorders [286].

Fecal microbiota transplantation (FMT) is a method for reprogramming the gut mi-
crobiome, transferring fecal material from a healthy donor to a recipient, and aiming to
normalize the composition and function of intestinal microbiota populations. FMT is the
transfer of gut microbiota from a “healthy” individual into the gastrointestinal tract of
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a diseased individual with the aim of correcting dysbiosis in the recipient [287], and it
is currently available in three forms: nasal and intestinal transplantation, oral capsule
transplantation, and an endoscopic spray.
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Figure 3. Benefits of gut microbiota interventions in neurodegenerative diseases. Beneficial effects
of fecal microbiota transplantation and the use of psychobiotics (pre- and pro-biotics) in AD, PD,
MS, and ALS in animal and human studies. Arrows represent increase or decrease compared to
healthy controls, according to the literature. Abbreviations: 5-HIAA: 5-hydroxyindolacetic acid; 5-HT:
5-hydroxytryptamine (serotonin); Aβ: amyloid beta protein; ALS: amyotrophic lateral sclerosis; CRP:
C-reactive protein; DA: dopamine; FMT: fecal microbiota transplantation; LPS: lipopolysaccharides;
MDA: malondialdehyde; NE: norepinephrine; ROS: reactive oxygen species; SCFAs: short-chain
fatty acids.

FMT has been used to treat infection with Clostridium difficile for nearly 60 years be-
cause of its remarkable effectiveness and it is increasingly used to treat other gastrointestinal
diseases [288]. FMT has shown a nearly 90% success rate for the treatment of recurrent
Clostridium difficile infection, with expansion of its application to the treatment of other gas-
trointestinal disorders [289,290]. Recently, interest in extending FMT to other pathologies
associated with gut dysbiosis has grown, particularly for functional and neurodegenerative
diseases [291].

According to the WHO (World Health Organization) and FAO (Food and Agriculture
Organization of the United Nations), probiotics are products derived from live microor-
ganisms that, if ingested in adequate amounts (>106–108 colony-forming units (CFU)/g or
>108–1010 CFU/dose of viable cells), provide beneficial effects to the host. Probiotics are
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often used with the aim of restoring homeostasis; for example, after antibiotic treatment,
which can cause alterations in the microbiota [292].

During the last 15 years, the interest of the scientific community in the study of probi-
otics and their role in modulating the functioning of the CNS has significantly increased, in
addition to interest in the moderation of cortisol levels through the interaction of neuro-
transmitters in the vagus nerve and the nerves of the ENS, in brain-derived neurotrophic
factor (BDNF) or neurotrophic factor systems, in behavior and cognitive function through
the chemistry of the CNS, in the immune system, and in the endocrine system [293,294].

3.1. Alzheimer´s Disease
3.1.1. Fecal Microbiota Transplantation

Several studies have used FMT to demonstrate the involvement of the gut microbiome
in AD pathogenesis, progression, and severity, using well-characterized mouse models of
the disease. For example, FMT from 5xFAD mice into wild-type (WT) recipients signifi-
cantly impaired memory function, decreased hippocampal neurogenesis, and increased
inflammation in the brain and colon of the recipients [295]. Fujii et al. created a humanized
mice model, observing that FMT from a human AD patient into WT mice remarkably
affected mouse behavior. Additionally, lower metabolites related to the nervous system
(i.e., γ-aminobutyrate, taurine, and valine) were noted in the feces of these animals [296].
Dodiya and colleagues, using an APPSWE/PS1L166P (APPPS1-21) mouse model of Aβ
amyloidosis, demonstrated that FMT from age-matched APPPS1-21 male mice without
antibiotics into antibiotic-treated APPPS1-21 male mice reinstituted the gut microbiome
and partially restored Aβ pathology and microglial morphology [297]. Similarly, Wang
et al. (2021) treated 3-month-old APPSWE/PS1∆E9 mice with antibiotic cocktails prior to
FMT from 16-month-old APPSWE/PS1∆E9 mice and showed a significant increase in Aβ
plaques in the recipient mice [298].

Recent studies, conducted primarily in mice but also in humans, have found that
FMT positively affects AD subjects. Sun et al. (2019) performed FMT from WT mice
into APPSWE/PS1∆E9 transgenic mice, producing a significant improvement of cognitive
deficits and reducing the brain deposition of Aβ. Additionally, they observed that FMT
treatment increased synaptic plasticity, mitigated neuroinflammation, and reversed the
changes of the gut microbiota and SCFAs (butyrate) [299]. FMT from WT mice into another
transgenic mouse model of AD (ADLPAPT mice) ameliorated the formation of Aβ plaques
and neurofibrillary tangles, glial reactivity, and cognitive impairment [300]. Furthermore,
in an interesting study, old (30- to 32-week-old) 5xFAD mice were treated with FMT from
either young (10- to 12-week-old) or age-matched (30- to 32-week-old) WT donor mice.
Improvements in spatial memory and learning, and a significant reduction in amyloid
plaque load, in the old 5xFAD recipient mice was observed. Moreover, old 5xFAD mice
that received FMT from young donors showed the most robust changes, highlighting the
crucial role of donor age in FMT efficacy [301].

In human studies, two case studies showed promising results. In the first study, an
82-year-old male patient received FMT from his 85-year-old wife, to treat recurrent Clostrid-
ium difficile infection. Improvements in AD symptoms (mood, memory, and cognitive
function) occurred as early as 2 months after FMT and persisted at the 6-month follow-up
visit [302]. The second case study involved a 90-year-old woman with AD and severe
Clostridium difficile infection who underwent FMT from a healthy 27-year-old man (donor).
An improvement in cognitive function, microbiota diversity, and SCFA production was
observed [303].

3.1.2. Prebiotics and Probiotics

Studies in animal models have shown the benefits of the use of probiotics for the
improvement of behaviors associated with certain psychopathologies, such as obsessive-
compulsive disorder (OCD) and autism spectrum disorder (ASD), as well as in higher
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abilities such as memory and attention. However, there is still little evidence regarding the
use of prebiotics and probiotics in AD [304–306].

Recent studies have shown that these products modify the intestinal microbiota and
improve cognitive functioning through the expression of neurotransmitter receptors and
neuromodulators [307]. Specifically, studies in animal models showed inhibition of oxida-
tive stress and cell apoptosis. It has also been verified that it improves metabolic processes
by restoring the mitochondria membrane potential [8,308].

Studies using the oligosaccharide Morinda officinalis (OMO) in an animal model showed
that the group treated with this product had better cell morphology, as well as higher levels
of dopamine, noradrenaline, 5-hydroxytryptamine (5-HT), and 5-hydroxyindole acetic acid
(5-HIAA). The group that ingested the product showed inhibition of malondialdehyde
(MDA) production, which has been associated with the mechanisms of neurodegeneration
in AD. In addition, OMO increases the levels of anti-inflammatory cytokines [309–311].

Other studies in animal models have addressed the mechanisms of action of inulin,
which produces short-chain fatty acids and is able to reduce oxidative stress [312,313]. A
study by Pistollato et al. (2016) showed that inulin intake facilitated the proliferation of
Prevotella, which is associated with the production of short-chain fatty acids. This same
study showed that this product is associated with an increase of the metabolite scyllo-
inositol in the hippocampus and a decrease of myo-inositol, which has been associated
with demyelination and glia cell proliferation [314].

Regarding probiotics, studies in relation to AD have observed the impact of decreased
dysbiosis. Ingestion of a dose of 15 × 109 CFU of Lactobacillus acidophilus, Bifidobacterium
bifidum, and Bifidobacterium longum improved memory and plasticity in rats. Intervention
with Lactobacillus acidophilus, Lactobacillus fermentum, Bifidobacterium lactis, and Bifidobac-
terium longum in AD rats improved memory and learning, as well as reduced the size and
number of Aβ plaques [315,316].

On the other hand, L. plantarum is related to the production of metabolites involved in
chemical mechanisms in the brain, in addition to functioning as a neuronal protective factor.
Specifically, strain MTCC1325 produces acetylcholine in the hippocampus and cerebral
cortex, which explains the improvement in behavior and memory [317].

In humans, the first study on AD and the use of probiotics used Lactobacillus aci-
dophilus, Lactobacillus casei, Bifidobacterium bifidum, and Lactobacillus fermentum at doses of
2 × 109 CFU/g and evaluated the effects on cognitive function using the Mini Mental State
Examination. The researchers found an improvement in the evaluated functions, as well as
a reduction of MDA [315,317–319] (see Figure 3).

3.2. Parkinson’s Disease
3.2.1. Fecal Microbiota Transplantation

Among the findings showing that gut microbial changes play an important role in the
induction and progression of PD are studies on FMT. Sampson et al. (2016) revealed that
FMT from PD patients into genetically susceptible ASO (alpha-synuclein-overexpressing)
mice, a mouse model of PD, enhanced motor impairment compared to mice that received
FMT from healthy donors. Additionally, an altered SCFAs profile was found in mice
receiving FMT from PD patients, with a lower concentration of acetate, but increased
propionate and butyrate [320].

There are several animal studies supporting FMT as a promising alternative therapy
for PD. In MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD mice, Sun
et al. found that FMT from healthy mice alleviated physical impairment and reduced gut
microbial dysbiosis, increasing the abundances of Firmicutes and Clostridiales, while reduc-
ing the abundances of Proteobacteria, Turicibacterales, and Enterobacteria. FMT decreased
fecal SCFAs and increased striatal DA and 5-HT levels in PD mice [321], as well as inhibited
the activation of microglia and neuroinflammation [321,322]. Increased DA levels were also
found in MPTP-induced PD mice, pretreated with an antibiotic cocktail, that had received
FMT from normal mice with fasting, mimicking the diet treatment [323]. Recently, another
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study in MPTP mice reported that FMT from normal healthy mice significantly improved
the motor dysfunction in PD mice. Moreover, FMT decreased inflammation in the colon as
well as in the substantia nigra and reconstructed the composition of the gut microbiota in
MPTP mice [324].

In humans, the first case study on FMT to treat PD was conducted in a 71-year-
old male patient with PD and constipation, with stool obtained from a 26-year-old male.
The symptoms of constipation were improved after FMT. The tremor in his legs almost
disappeared 1 week after FMT treatment, but gradually reappeared in the right lower
limb after 2 months [325]. In a case series published by Segal et al. (2021), six patients
with PD and constipation were treated with FMT, with motor, non-motor, and constipation
improvements reported in five of the patients four weeks after FMT. Only one of the patients
had adverse side effects [326]. Similar results regarding motor, non-motor, and constipation
symptoms were found in a study with 11 PD patients [327], along with observation of an
increased abundance of Blautia and Prevotella after FMT, while the abundance of Bacteroidetes
significantly decreased.

In a study carried out by Xue et al. (2020), 15 PD patients showed improved motor and
non-motor symptoms 1 month after FMT. Ten of the patients received FMT via colonoscopy
and five received FMT via nasal-jejunal tube. Three patients refused to continue at the
three-month follow-up, and the adverse events were mild (five cases). Interestingly, colonic
FMT showed significant improvement and longer maintenance of efficacy compared to
naso-intestinal FMT, highlighting the importance of the route of administration in FMT
efficacy [328]. Recently, a double-blind, placebo-controlled pilot study, using orally admin-
istered, lyophilized FMT twice weekly for 12 weeks, reported improvements in subjective
motor and non-motor symptoms, gut transit, intestinal motility, and constipation in PD
patients. Moreover, proportions of selective families within the phylum Firmicutes sig-
nificantly increased after FMT, while the proportion of Proteobacteria was significantly
reduced [329].

3.2.2. Prebiotics and Probiotics

Recent studies have demonstrated the positive effects of the intake of these products
on the symptomatology associated with PD, although the literature is currently limited.
Specifically, Tamtaji et al. (2019) studied the response to the administration of a probi-
otic containing Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri, and
Lactobacillus fermentum. After intake for 12 weeks, significant differences were observed
between the control group and the group of participants who took the probiotic. The
concentrations of C-reactive protein and malondialdehyde decreased, and glutathione
levels increased, thus improving the level of oxidative stress. The patients who received
the probiotic had better scores on the Movement Disorders Society–Unified Parkinson’s
Disease Rating Scale, a unified scale for the assessment of symptoms associated with PD,
after the intervention [330].

Another symptom that improves after ingestion of a probiotic in combination with
prebiotics is constipation, a common gastrointestinal symptom in PD. A study in an animal
model that evaluated the neuroprotective function of probiotics in the dopaminergic neu-
rons of the substantia nigra showed improvements in motor functioning in those mice that
took the probiotic. Specifically, the neuroprotective effects led to improvements in balance,
motor coordination, and gait pattern [330].

Regarding cognitive dysfunction, a study by Jia et al. in 2016 observed the neuro-
protective role of chitosan oligosaccharide (COS), which is obtained from the shells of
certain crustaceans. The oxidative stress inhibition capacity of chitosan showed positive
results, decreasing the blood lipid levels. In addition, higher levels of superoxide dismu-
tase and glutathione peroxidase enzyme activity were found, leading to a reduction of
oxidative damage. COS also inhibited the inflammatory response by reducing the release
of pro-inflammatory cytokines [331].
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These results provide a starting point for alternative interventions. However, it is
necessary to further study the effects of probiotics and prebiotics in PD. The studies
carried out to date have usually analyzed the effect of these products on the digestive
symptomatology associated with the pathology, affirming their neuroprotective and neuro-
modulatory effects in the different systems of the organism [332] (see Figure 3).

3.3. MS and ALS
3.3.1. Fecal Microbiota Transplantation

Different animal studies have explored the use of FMT in MS, principally using the
experimental autoimmune encephalomyelitis (EAE) model, which can simulate the clinical
manifestations and pathophysiological characteristics of MS. Berer et al. (2017) transferred
microbiota from human MS-discordant monozygotic twin- or healthy twin-derived micro-
biota to a transgenic mouse model of spontaneous brain autoimmunity, observing that gut
microbiota from MS-affected twins induced a significantly higher incidence of CNS-specific
autoimmunity than microbiota from healthy twins [333]. In another study, FMT from MS
patients into germ-free mice produced more severe symptoms of EAE compared to mice
that received FMT from healthy controls [334]. Surprisingly, Liu and colleagues found
that FMT from EAE mice (at the peak of EAE disease) into naive mice, treated to induce
EAE, ameliorated disease in the recipient animals as compared to FMT from healthy naive
mice. This effect was micro-RNA (miR)-dependent. Specifically, they showed that miR-30d
was enriched in the feces of peak EAE and untreated MS patients. Thus, the increase in
miR-30d induced an increase in the abundance of Akkermansia muciniphila, which increased
the regulatory T cells’ ability to suppress EAE symptoms [335].

Other studies have used FMT as a therapeutic approach to MS treatment. Li et al.
(2020) found that FMT from normal control mice into mice with EAE rectified, to a certain
degree, the altered gut microbiota in EAE mice. Furthermore, FMT-treated mice showed
alleviated clinical symptoms, delayed onset of EAE, reduced activation of microglia and
astrocytes, and protection of the BBB, myelin, and axons [336]. Similar clinical results were
observed by Wang et al. (2021), along with a decreased number of infiltrating cells in the
spinal cords and regulated gene expression to improve inflammation in FMT-treated EAE
mice [337].

Several case studies in MS patients have been published. Borody et al. (2011) reported
observations of three MS patients that received FMT for constipation. In a study involving
these three patients, a 30-year-old man underwent five FMT infusions, with positive results
for his constipation and MS (at least 15 years without relapse). Two patients with ‘atypical’
MS, a 29-year-old male and an 80-year-old female, received 10 and 5 FMT infusions,
respectively. Progressive improvement in neurological symptoms was observed after FMT
and maintained for at least three (male) and two (female) years [338]. Similar results
were obtained in two case studies of patients with MS and recurrent Clostridium difficile
infection: a 61-year-old female with secondary progressive MS received a single FMT,
showing immediate stabilization on the Expanded Disability Status Scale (EDSS), and her
Functional System scores minimally improved over the next 10 years [339]. A 52-year-old
female with RRMS received lyophilized FMT orally, improving her strength and EDSS
score after one year [340].

Engen et al. (2020) published a case study of a 48-year-old male with RRMS and re-
peated evaluations over 12 months (with two FMT interventions). FMT was associated with
an increased abundance of Faecalibacterium prausnitzii (butyrate-producing organism) and
SCFAs, as well as increased serum BDNF levels and improved gait/walking metrics [341].
Recently, Al and colleagues reported that FMT was safe and tolerable in a clinical trial
involving nine RRMS patients. Despite that the study was terminated early, the authors
also concluded that FMT normalized elevated gut permeability and could beneficially alter
the gut microbiota of these patients [342].

There are currently no reported animal studies on ALS and FMT. However, a clinical
trial is ongoing (NCT03766321) involving 42 ALS patients (28 FMT-treated and 14 placebo).
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The study duration will be 12 months per patient [343]. Additionally, a recent case report
was published by Lu et al. (2023), in which a 48-year-old woman with ALS and moderate
to severe constipation was treated with washed microbiota transplantation (WMT), an
improved methodology of FMT. WMT caused an improvement of her constipation and a
plateau of her ALS symptoms. Several months later, she underwent antibiotic treatment due
to a scalp trauma, resulting in ALS deterioration. Rescue with WMT successfully stopped
the progression of the disease, with rapid improvement. After WMT, the diversity and
composition of the patient’s gut microbiota were closer to those of the healthy donors [344].

3.3.2. Prebiotics and Probiotics

Treatment with the probiotic Lactobacillus farciminis has been shown to reduce intestinal
hyperpermeability in MS. Specifically, a study carried out in an EAE rat model showed
that neuroinflammatory activity was reduced, as well as the response of the hypothalamic–
pituitary–adrenal system. Faecalibacterium prausnitzii has an anti-inflammatory effect
through the production of butyrate and the release of microbial molecules with anti-
inflammatory action [345,346].

The first scientific evidence in this line of research was obtained through a study of
the relationship between peripheral tolerance and EAE. Mice that were vaccinated with
enterotoxigenic Escherichia coli achieved complete recovery in cases of mild EAE. These
studies showed that animals that were exposed to prophylaxis had a lower number of
inflammatory infiltrates in the gray matter, and a reduction of T cell expression. Similarly,
through stimulation of FoxP3+ Treg cells, the anti-inflammatory properties were enhanced
by secretion of IL-4, IL-10, IL-13, and TGF-β [347–349].

Other studies have focused on analyzing the role of B. fragilis PSA, an anaerobic
Gram-negative bacillus, in MS. This compound is involved in certain immune system
mechanisms by regulating Th1/Th2 levels and preventing intestinal inflammation. In
a study by Ochoa-Repáraz et al. (2010), previously purified PSA was administered and
showed protective and therapeutic effects against EAE. These authors proposed that B.
fragilis PSA regulates mechanisms that allow disease amelioration [350].

Studies have also been carried out with Bifidobacterium animalis [351] or a combination
of Lactobacillus strains in mice with induced EAE, showing potential therapeutic effects in
ALS. For example, an increase of FoxP3+ Treg, IL-4, and IL-10 was found in mesenteric
lymph nodes. However, the separated probiotic strains did not produce therapeutic
effects in diseased mice [352]. The effect of another probiotic combination containing
Lactobacillus, Bifidobacterium, and Streptococcus showed that this compound works similarly
to Bifidobacterium animalis in its mechanisms of action, inhibiting Th1/Th17 polarization
through T cells [353].

A small number of studies have been conducted on the impact of probiotics and
prebiotics in ALS. A clinical trial analyzing the impact of L. rhamnosus HA-114 showed
that this supplement improves cognitive functioning of the hypothalamus, reversing neu-
rodegeneration in ALS. One of the mechanisms of action of L. rhamnosus HA-114 may be
through improving the permeability of the intestinal barrier, and thus reducing metabolic
endotoxemia [354]. In a prospective longitudinal study in ALS patients treated with a
probiotic supplement (a mixture of five lactic acid bacteria), the gut microbial composition
was influenced by the probiotic. However, the biodiversity of the GM did not become
closer to that of the control group [238].

In an interesting study carried out on G93A transgenic mice (an ALS model), treatment
with 2% butyrate restored GM homeostasis, improved gut integrity, and prolonged the life
span of the animals. Additionally, abnormal Paneth cells were significantly decreased in
the animals treated with butyrate [355] (see Figure 3). Polyphenols are another compound
with potential neuroprotective effects in ALS [356], which should be further investigated.

In summary, a number of novel interventions are currently being implemented to
improve the most characteristic symptomatology of neurodegenerative diseases. The use
of prebiotics, probiotics, and psychobiotics is a treatment option that is reporting significant
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benefits to these patients. Evidence of this can be found in the different experimental
studies that have been published in the last decade, all of which aim to promote public
awareness of the best tools to use in these pathologies. More specifically, they target the
scientific and health community, who must take as a starting point the latest advances and
empirical evidence in order to create individualized intervention proposals with sufficient
guarantees of success in improving the associated symptoms.

4. Conclusions

The microbiota–gut–brain axis maintains an active and bidirectional communication
that can be influenced by lifestyle habits (e.g., diet and physical activity), and modulated
through interventions focused on the gut microbiota, including fecal microbiota transplan-
tation and the use of pre- and pro-biotics supplementation. Although it is not possible to
confirm that the alterations produced in the microbial profile are a cause or a consequence of
the symptomatology of each neurodegenerative disease, the modification of the microbiota
is suggested as a therapeutic target for the treatment of these pathologies.

As many of the studies on neurodegenerative diseases have been conducted during
the clinical phase of the disease, it is currently difficult to determine a causal relationship
relating to the function of the microbiota. However, there is evidence pointing to a role of the
microbiota in the onset and progression of neurodegenerative diseases (e.g., studies of fecal
microbiota transplantation have shown that altered microbiota can induce characteristic
symptomatology of neurodegenerative pathologies in healthy animals).

The present review drew the following essential conclusions on the use of the micro-
biota as a therapeutic target in neurodegenerative processes:

• There is growing evidence supporting that the onset and progression of neurodegener-
ative diseases are partially modulated by the gut microbiota. Both animal and human
studies in AD, PD, MS, and ALS have shown an altered composition of the intestinal
microbiota and its metabolites.

• There are some common metabolomic alterations in AD, PD, MS, and ALS, such as
the presence of neurotoxins (i.e., LPS), a reduction in some neurotransmitters (e.g.,
GABA or serotonin) and anti-inflammatories cytokines (e.g., IL-10 and IL-22), an
increase of pro-inflammatory cytokines, and upregulation and downregulation of
different metabolites, such as SCFAs (specifically butyrate reduction). Moreover, these
alterations can be moderated through the regulation of the microbiota.

• Among the microbiota reprogramming of interventions with positive results, fecal
microbiota transplantation and psychobiotics are presented as potential therapeutic
tools in AD, PD, MS, and ALS.

Deeper knowledge of the gut microbiota and the mechanisms of action of its metabo-
lites is essential to approaching treatment of neurodegenerative diseases in an integrative
manner. This would mean improvement of the disease progression and symptoms, both at
the cognitive and neurophysiological levels.

5. Limitations of Study

Although this study is a comprehensive narrative review, some limitations have been
identified that need to be considered:

• This is a developing field of study. This means that in some pathologies, it is not yet
possible to find many studies that consolidate the data found.

• The studies analyzed have different research methodologies, with different samples
and models (human and animal). This could be a limitation for establishing represen-
tative results. However, the growing number of publications in recent years allows
trends and relationships to be established.

• As indicated in the Section 4, in some cases it is not possible to determine whether
microbial modifications are a cause or a consequence of the symptomatology associated
with neurodegenerative pathologies. However, this interaction indicates that the
microbiota–gut–brain axis may be used as a therapeutic target in these diseases.
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Sőti, C.; Sanfeliu, C.; et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease
pathology: From antioxidant to epigenetic therapy. Ageing Res. Rev. 2021, 67, 101271. [CrossRef] [PubMed]

197. Tao, J.; An, Y.; Xu, L.; Wang, Y.; Wang, C.; Li, P.; Li, M.; Yan, D.; Wang, M.; Zhong, G.; et al. The protective role of microbiota in the
prevention of MPTP/P-induced Parkinson’s disease by resveratrol. Food Funct. 2023, 14, 4647–4661. [CrossRef]

198. Su, C.F.; Jiang, L.; Zhang, X.W.; Iyaswamy, A.; Li, M. Resveratrol in Rodent Models of Parkinson’s Disease: A Systematic Review
of Experimental Studies. Front. Pharmacol. 2021, 12, 644219. [CrossRef]

199. Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid.
Med. Cell. Longev. 2019, 2019, 9613090. [CrossRef] [PubMed]

200. Wang, X.; Zhou, Y.; Gao, Q.; Ping, D.; Wang, Y.; Wu, W.; Lin, X.; Fang, Y.; Zhang, J.; Shao, A. The Role of Exosomal microRNAs
and Oxidative Stress in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 3232869. [CrossRef]

201. Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging
Cell 2019, 18, e13031. [CrossRef]

202. Arab, H.H.; Safar, M.M.; Shahin, N.N. Targeting ROS-Dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 Pathways by Dapagliflozin
Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson’s Disease Rat Model. ACS Chem. Neurosci.
2021, 12, 689–703. [CrossRef]

203. He, L.; Wang, J.; Yang, Y.; Li, J.; Tu, H. Mitochondrial Sirtuins in Parkinson’s Disease. Neurochem. Res. 2022, 47, 1491–1502.
[CrossRef] [PubMed]

204. Akdemir, Ü.; Bora Tokçaer, A.; Atay, L. Dopamine transporter SPECT imaging in Parkinson’s disease and parkinsonian disorders.
Turk. J. Med. Sci. 2021, 51, 400–410. [CrossRef] [PubMed]

205. Latif, S.; Jahangeer, M.; Maknoon Razia, D.; Ashiq, M.; Ghaffar, A.; Akram, M.; El Allam, A.; Bouyahya, A.; Garipova, L.; Ali
Shariati, M.; et al. Dopamine in Parkinson’s disease. Clinica Chimica Acta 2021, 522, 114–126. [CrossRef]

https://doi.org/10.1155/2019/1767203
https://doi.org/10.1002/ibd.21375
https://www.ncbi.nlm.nih.gov/pubmed/21319274
https://doi.org/10.1002/ajmg.a.36229
https://www.ncbi.nlm.nih.gov/pubmed/24214728
https://doi.org/10.3233/CH-2008-1090
https://www.ncbi.nlm.nih.gov/pubmed/18503127
https://doi.org/10.1007/s12264-022-00934-6
https://www.ncbi.nlm.nih.gov/pubmed/35994167
https://doi.org/10.1186/s13024-020-00408-1
https://doi.org/10.1186/s12974-022-02496-w
https://doi.org/10.1126/scitranslmed.abj2658
https://doi.org/10.3390/ijms21051772
https://doi.org/10.1083/jcb.202012095
https://doi.org/10.1016/j.bbapap.2019.03.001
https://doi.org/10.1007/s12031-013-0099-0
https://doi.org/10.1021/acs.jcim.8b00687
https://www.ncbi.nlm.nih.gov/pubmed/30789733
https://doi.org/10.1016/j.expneurol.2018.07.018
https://doi.org/10.1186/s12974-021-02158-3
https://doi.org/10.1007/s12035-023-03369-w
https://doi.org/10.1016/j.arr.2021.101271
https://www.ncbi.nlm.nih.gov/pubmed/33571701
https://doi.org/10.1039/D2FO03379H
https://doi.org/10.3389/fphar.2021.644219
https://doi.org/10.1155/2019/9613090
https://www.ncbi.nlm.nih.gov/pubmed/31827713
https://doi.org/10.1155/2020/3232869
https://doi.org/10.1111/acel.13031
https://doi.org/10.1021/acschemneuro.0c00722
https://doi.org/10.1007/s11064-022-03560-w
https://www.ncbi.nlm.nih.gov/pubmed/35220492
https://doi.org/10.3906/sag-2008-253
https://www.ncbi.nlm.nih.gov/pubmed/33237660
https://doi.org/10.1016/j.cca.2021.08.009


Int. J. Mol. Sci. 2023, 24, 13294 33 of 38

206. Aryal, S.; Skinner, T.; Bridges, B.; Weber, J.T. The Pathology of Parkinson’s Disease and Potential Benefit of Dietary Polyphenols.
Molecules 2020, 25, 4382. [CrossRef] [PubMed]

207. Salis, C.; Papageorgiou, L.; Papakonstantinou, E.; Hagidimitriou, M.; Vlachakis, D. Olive Oil Polyphenols in Neurodegenerative
Pathologies. Adv. Exp. Med. Biol. 2020, 1195, 77–91.

208. Singh SSen Rai, S.N.; Birla, H.; Zahra, W.; Rathore, A.S.; Singh, S.P. NF-κB-Mediated Neuroinflammation in Parkinson’s Disease
and Potential Therapeutic Effect of Polyphenols. Neurotox. Res. 2020, 37, 491–507. [CrossRef] [PubMed]

209. Chen, S.J.; Lin, C.H. Gut microenvironmental changes as a potential trigger in Parkinson’s disease through the gut–brain axis.
J. Biomed. Sci. 2022, 29, 54. [CrossRef]

210. Zhu, M.; Liu, X.; Ye, Y.; Yan, X.; Cheng, Y.; Zhao, L.; Chen, F.; Ling, Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s
Disease. Front. Immunol. 2022, 13, 937555. [CrossRef]

211. Hirayama, M.; Ohno, K. Parkinson’s Disease and Gut Microbiota. Ann. Nutr. Metab. 2021, 77 (Suppl. 2), 28–35. [CrossRef]
212. Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl.

Neurodegener. 2020, 9, 42. [CrossRef]
213. Gotoh, M.; Miyamoto, Y.; Ikeshima-Kataoka, H. Astrocytic Neuroimmunological Roles Interacting with Microglial Cells in

Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 1599. [CrossRef]
214. Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092. [CrossRef]
215. Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The Gut Microbiome Alterations and

Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Mol. Neurobiol. 2019, 56, 1841–1851. [CrossRef]
[PubMed]

216. Eicher, T.P.; Mohajeri, M.H. Overlapping Mechanisms of Action of Brain-Active Bacteria and Bacterial Metabolites in the
Pathogenesis of Common Brain Diseases. Nutrients 2022, 14, 2661. [CrossRef]

217. Park, J.; Kim, C.H. Regulation of common neurological disorders by gut microbial metabolites. Exp. Mol. Med. 2021, 53, 1821–1833.
[CrossRef] [PubMed]

218. Chen, S.J.; Chen, C.C.; Liao, H.Y.; Lin, Y.T.; Wu, Y.W.; Liou, J.M.; Wu, M.S.; Kuo, C.H.; Lin, C.H. Association of Fecal and Plasma
Levels of Short-Chain Fatty Acids With Gut Microbiota and Clinical Severity in Patients With Parkinson Disease. Neurology 2022,
98, 848–858. [CrossRef] [PubMed]

219. Wallen, Z.D.; Demirkan, A.; Twa, G.; Cohen, G.; Dean, M.N.; Standaert, D.G.; Sampson, T.R.; Payami, H. Metagenomics of
Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 2022, 13, 6958. [CrossRef]
[PubMed]

220. Vascellari, S.; Palmas, V.; Melis, M.; Pisanu, S.; Cusano, R.; Uva, P.; Perra, D.; Madau, V.; Sarchioto, M.; Oppo, V.; et al. Gut
Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. mSystems 2020, 5, e00561-20. [CrossRef]

221. Qian, Y.; Yang, X.; Xu, S.; Huang, P.; Li, B.; Du, J.; He, Y.; Su, B.; Xu, L.M.; Wang, L.; et al. Gut metagenomics-derived genes as
potential biomarkers of Parkinson’s disease. Brain 2020, 143, 2474–2489. [CrossRef]

222. Castillo-Álvarez, F.; Marzo-Sola, M.E. Role of the gut microbiota in the development of various neurological diseases. Neurologia
2022, 37, 492–498. [CrossRef]

223. O’Keeffe, G.W.; Sullivan, A.M. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson’s
disease. Park. Relat. Disord. 2018, 56, 9–15. [CrossRef] [PubMed]

224. Gordián-Vélez, W.J.; Chouhan, D.; España, R.A.; Chen, H.I.; Burdick, J.A.; Duda, J.E.; Cullen, D.K. Restoring lost nigrostriatal
fibers in Parkinson’s disease based on clinically-inspired design criteria. Brain Res. Bull. 2021, 175, 168–185. [CrossRef] [PubMed]

225. Yang, Q.; Wang, Y.; Zhao, C.; Pang, S.; Lu, J.; Chan, P. α-Synuclein aggregation causes muscle atrophy through neuromuscular
junction degeneration. J. Cachexia Sarcopenia Muscle 2023, 14, 226–242. [CrossRef]

226. Dopkins, N.; Nagarkatti, P.S.; Nagarkatti, M. The role of gut microbiome and associated metabolome in the regulation of
neuroinflammation in multiple sclerosis and its implications in attenuating chronic inflammation in other inflammatory and
autoimmune disorders. Immunology 2018, 154, 178–185. [CrossRef] [PubMed]

227. Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.F. Impact of microbiota on central nervous system and neurological
diseases: The gut-brain axis. J. Neuroinflamm. 2019, 16, 53. [CrossRef]

228. Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H.
Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [CrossRef]

229. Oskarsson, B.; Gendron, T.F.; Staff, N.P. Amyotrophic Lateral Sclerosis: An. Update for 2018. Mayo Clin. Proc. 2018, 93, 1617–1628.
[CrossRef]

230. Niedermeyer, S.; Murn, M.; Choi, P.J. Respiratory Failure in Amyotrophic Lateral Sclerosis. Chest 2019, 155, 401–408. [CrossRef]
231. Cantarel, B.L.; Waubant, E.; Chehoud, C.; Kuczynski, J.; DeSantis, T.Z.; Warrington, J.; Venkatesan, A.; Fraser, C.M.; Mowry, E.M.

Gut Microbiota in Multiple Sclerosis: Possible Influence of Immunomodulators. J. Investig. Med. 2015, 63, 729–734. [CrossRef]
232. Ntranos, A.; Park, H.J.; Wentling, M.; Tolstikov, V.; Amatruda, M.; Inbar, B.; Kim-Schulze, S.; Frazier, C.; Button, J.; Kiebish, M.A.;

et al. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma. Brain 2022, 145, 569–583. [CrossRef]
233. Cox, L.M.; Calcagno, N.; Gauthier, C.; Madore, C.; Butovsky, O.; Weiner, H.L. The microbiota restrains neurodegenerative

microglia in a model of amyotrophic lateral sclerosis. Microbiome 2022, 10, 47. [CrossRef]
234. Zeng, Q.; Shen, J.; Chen, K.; Zhou, J.; Liao, Q.; Lu, K.; Yuan, J.; Bi, F. The alteration of gut microbiome and metabolism in

amyotrophic lateral sclerosis patients. Sci. Rep. 2020, 10, 12998. [CrossRef]

https://doi.org/10.3390/molecules25194382
https://www.ncbi.nlm.nih.gov/pubmed/32987656
https://doi.org/10.1007/s12640-019-00147-2
https://www.ncbi.nlm.nih.gov/pubmed/31823227
https://doi.org/10.1186/s12929-022-00839-6
https://doi.org/10.3389/fimmu.2022.937555
https://doi.org/10.1159/000518147
https://doi.org/10.1186/s40035-020-00221-2
https://doi.org/10.3390/ijms24021599
https://doi.org/10.1126/science.abi6087
https://doi.org/10.1007/s12035-018-1188-4
https://www.ncbi.nlm.nih.gov/pubmed/29936690
https://doi.org/10.3390/nu14132661
https://doi.org/10.1038/s12276-021-00703-x
https://www.ncbi.nlm.nih.gov/pubmed/34857900
https://doi.org/10.1212/WNL.0000000000013225
https://www.ncbi.nlm.nih.gov/pubmed/34996879
https://doi.org/10.1038/s41467-022-34667-x
https://www.ncbi.nlm.nih.gov/pubmed/36376318
https://doi.org/10.1128/mSystems.00561-20
https://doi.org/10.1093/brain/awaa201
https://doi.org/10.1016/j.nrl.2019.03.017
https://doi.org/10.1016/j.parkreldis.2018.06.025
https://www.ncbi.nlm.nih.gov/pubmed/29934196
https://doi.org/10.1016/j.brainresbull.2021.07.016
https://www.ncbi.nlm.nih.gov/pubmed/34332016
https://doi.org/10.1002/jcsm.13123
https://doi.org/10.1111/imm.12903
https://www.ncbi.nlm.nih.gov/pubmed/29392733
https://doi.org/10.1186/s12974-019-1434-3
https://doi.org/10.1038/nrdp.2017.71
https://doi.org/10.1016/j.mayocp.2018.04.007
https://doi.org/10.1016/j.chest.2018.06.035
https://doi.org/10.1097/JIM.0000000000000192
https://doi.org/10.1093/brain/awab320
https://doi.org/10.1186/s40168-022-01232-z
https://doi.org/10.1038/s41598-020-69845-8


Int. J. Mol. Sci. 2023, 24, 13294 34 of 38

235. Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and
enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209.

236. Martin, S.; Battistini, C.; Sun, J. A Gut Feeling in Amyotrophic Lateral Sclerosis: Microbiome of Mice and Men. Front. Cell. Infect.
Microbiol. 2022, 12, 839526. [CrossRef]

237. Nandwana, V.; Nandwana, N.K.; Das, Y.; Saito, M.; Panda, T.; Das, S.; Almaguel, F.; Hosmane, N.S.; Das, B.C. The Role of
Microbiome in Brain Development and Neurodegenerative Diseases. Molecules 2022, 27, 3402. [CrossRef]

238. Di Gioia, D.; Bozzi Cionci, N.; Baffoni, L.; Amoruso, A.; Pane, M.; Mogna, L.; Gaggìa, F.; Lucenti, M.A.; Bersano, E.; Cantello, R.;
et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Med. 2020, 18, 153.
[CrossRef]

239. Lee, H.; Lee, J.J.; Park, N.Y.; Dubey, S.K.; Kim, T.; Ruan, K.; Lim, S.B.; Park, S.H.; Ha, S.; Kovlyagina, I.; et al. Multi-omic analysis
of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nat. Neurosci. 2021, 24, 1673–1685.
[CrossRef]

240. Tiwari, P.; Dwivedi, R.; Bansal, M.; Tripathi, M.; Dada, R. Role of Gut Microbiota in Neurological Disorders and Its Therapeutic
Significance. J. Clin. Med. 2023, 12, 1650. [CrossRef]

241. Liu, Z.; Waters, J.; Rui, B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent
advances. Biomed. J. 2022, 45, 594–606. [CrossRef]

242. Bogie, J.F.J.; Haidar, M.; Kooij, G.; Hendriks, J.J.A. Fatty acid metabolism in the progression and resolution of CNS disorders. Adv.
Drug Deliv. Rev. 2020, 159, 198–213. [CrossRef]

243. Bhargava, P.; Anthony, D.C. Metabolomics in multiple sclerosis disease course and progression. Mult. Scler. J. 2020, 26, 591–598.
[CrossRef]

244. Signoriello, E.; Iardino, P.; Casertano, S.; De Lucia, D.; Pucciarelli, A.; Puoti, G.; Chiosi, E.; Lus, G. 12-months prospective
Pentraxin-3 and metabolomic evaluation in multiple sclerosis patients treated with glatiramer acetate. J. Neuroimmunol. 2020, 348,
577385. [CrossRef]

245. Yang, J.; Hamade, M.; Wu, Q.; Wang, Q.; Axtell, R.; Giri, S.; Mao-Draayer, Y. Current and Future Biomarkers in Multiple Sclerosis.
Int. J. Mol. Sci. 2022, 23, 5877. [CrossRef]

246. Kalyan, M.; Tousif, A.H.; Sonali, S.; Vichitra, C.; Sunanda, T.; Praveenraj, S.S.; Ray, B.; Gorantla, V.R.; Rungratanawanich, W.;
Mahalakshmi, A.M.; et al. Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells 2022, 11, 4038. [CrossRef]

247. Rival, M.; Galoppin, M.; Thouvenot, E. Biological Markers in Early Multiple Sclerosis: The Paved Way for Radiologically Isolated
Syndrome. Front. Immunol. 2022, 13, 866092. [CrossRef]

248. Sandi, D.; Fricska-Nagy, Z.; Bencsik, K.; Vécsei, L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression,
Biomarkers and Neuroprotective Therapy—Kynurenines Are Important Players. Molecules 2021, 26, 3423. [CrossRef]

249. Di Majo, D.; Cacciabaudo, F.; Accardi, G.; Gambino, G.; Giglia, G.; Ferraro, G.; Candore, G.; Sardo, P. Ketogenic and Modified
Mediterranean Diet as a Tool to Counteract Neuroinflammation in Multiple Sclerosis: Nutritional Suggestions. Nutrients 2022, 14,
2384. [CrossRef]

250. Lovelace, M.D.; Varney, B.; Sundaram, G.; Franco, N.F.; Ng, M.L.; Pai, S.; Lim, C.K.; Guillemin, G.J.; Brew, B.J. Current Evidence
for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front. Immunol. 2016, 7, 246. [CrossRef]

251. Joisten, N.; Ruas, J.L.; Braidy, N.; Guillemin, G.J.; Zimmer, P. The kynurenine pathway in chronic diseases: A compensatory
mechanism or a driving force? Trends Mol. Med. 2021, 27, 946–954. [CrossRef]

252. Lim, C.K.; Bilgin, A.; Lovejoy, D.B.; Tan, V.; Bustamante, S.; Taylor, B.V.; Bessede, A.; Brew, B.J.; Guillemin, G.J. Kynurenine
pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 2017, 7, 41473.
[CrossRef]

253. Rajda, C.; Galla, Z.; Polyák, H.; Maróti, Z.; Babarczy, K.; Pukoli, D.; Vécsei, L. Cerebrospinal Fluid Neurofilament Light Chain Is
Associated with Kynurenine Pathway Metabolite Changes in Multiple Sclerosis. Int. J. Mol. Sci. 2020, 21, 2665. [CrossRef]

254. Zhang, L.; Hu, K.; Shao, T.; Hou, L.; Zhang, S.; Ye, W.; Josephson, L.; Meyer, J.H.; Zhang, M.R.; Vasdev, N.; et al. Recent
developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm. Sin. B 2021, 11, 373–393.
[CrossRef]

255. Lee, J.M.; Tan, V.; Lovejoy, D.; Braidy, N.; Rowe, D.B.; Brew, B.J.; Guillemin, G.J. Involvement of quinolinic acid in the neuropatho-
genesis of amyotrophic lateral sclerosis. Neuropharmacology 2017, 112, 346–364. [CrossRef]

256. Lamb, Y.N. Ocrelizumab: A Review in Multiple Sclerosis. Drugs 2022, 82, 323–334. [CrossRef]
257. Banati, R.B.; Newcombe, J.; Gunn, R.N.; Cagnin, A.; Turkheimer, F.; Heppner, F.; Price, G.; Wegner, F.; Giovannoni, G.; Miller, D.H.;

et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Brain 2000, 123, 2321–2337. [CrossRef]
258. Parravicini, C.; Lecca, D.; Marangon, D.; Coppolino, G.T.; Daniele, S.; Bonfanti, E.; Fumafalli, M.; Raveglia, L.; Martini, C.;

Gianazza, E.; et al. Development of the first in vivo GPR17 ligand through an iterative drug discovery pipeline: A novel
disease-modifying strategy for multiple sclerosis. PLoS ONE 2020, 15, e0231483. [CrossRef]

259. Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2023, 15, e1583. [CrossRef]
260. Lassmann, H. Multiple Sclerosis Pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [CrossRef]
261. Bargiela, D.; Chinnery, P.F. Mitochondria in neuroinflammation—Multiple sclerosis (MS), leber hereditary optic neuropathy

(LHON) and LHON-MS. Neurosci. Lett. 2019, 710, 132932. [CrossRef]

https://doi.org/10.3389/fcimb.2022.839526
https://doi.org/10.3390/molecules27113402
https://doi.org/10.1186/s12916-020-01607-9
https://doi.org/10.1038/s41593-021-00944-z
https://doi.org/10.3390/jcm12041650
https://doi.org/10.1016/j.bj.2022.01.004
https://doi.org/10.1016/j.addr.2020.01.004
https://doi.org/10.1177/1352458519876020
https://doi.org/10.1016/j.jneuroim.2020.577385
https://doi.org/10.3390/ijms23115877
https://doi.org/10.3390/cells11244038
https://doi.org/10.3389/fimmu.2022.866092
https://doi.org/10.3390/molecules26113423
https://doi.org/10.3390/nu14122384
https://doi.org/10.3389/fimmu.2016.00246
https://doi.org/10.1016/j.molmed.2021.07.006
https://doi.org/10.1038/srep41473
https://doi.org/10.3390/ijms21082665
https://doi.org/10.1016/j.apsb.2020.08.006
https://doi.org/10.1016/j.neuropharm.2016.05.011
https://doi.org/10.1007/s40265-022-01672-9
https://doi.org/10.1093/brain/123.11.2321
https://doi.org/10.1371/journal.pone.0231483
https://doi.org/10.1002/wsbm.1583
https://doi.org/10.1101/cshperspect.a028936
https://doi.org/10.1016/j.neulet.2017.06.051


Int. J. Mol. Sci. 2023, 24, 13294 35 of 38

262. Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015, 14,
183–193. [CrossRef] [PubMed]

263. Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; et al.
Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation
via the aryl hydrocarbon receptor. Nat. Med. 2016, 22, 586–597. [CrossRef] [PubMed]

264. Liu, W.C.; Tomino, Y.; Lu, K.C. Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects
of AST-120. Toxins 2018, 10, 367. [CrossRef] [PubMed]

265. Needham, B.D.; Funabashi, M.; Adame, M.D.; Wang, Z.; Boktor, J.C.; Haney, J.; Wu, W.L.; Rabut, C.; Ladinsky, M.S.; Hwang, S.J.;
et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 2022, 602, 647–653. [CrossRef]

266. Laudani, S.; Torrisi, S.A.; Alboni, S.; Bastiaanssen, T.F.S.; Benatti, C.; Rivi, V.; Moloney, R.D.; Fuochi, V.; Furneri, P.M.; Drago, F.;
et al. Gut microbiota alterations promote traumatic stress susceptibility associated with p-cresol-induced dopaminergic dysfunc-
tions. Brain Behav. Immun. 2023, 107, 385–396. [CrossRef]

267. Kim, H.H.; Jeong, I.H.; Hyun, J.S.; Kong, B.S.; Kim, H.J.; Park, S.J. Metabolomic profiling of CSF in multiple sclerosis and
neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS ONE 2017, 12, e0181758. [CrossRef]

268. Luo, S.; Ma, C.; Zhu, M.Q.; Ju, W.N.; Yang, Y.; Wang, X. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment
of Neurodegenerative Diseases With Emphasis on Alzheimer’s Disease. Front. Cell Neurosci. 2020, 14, 21. [CrossRef]

269. Rowin, J.; Xia, Y.; Jung, B.; Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 2017, 5, e13443.
[CrossRef]

270. Klionsky, D.J.; Abdelmohsen, K.; Abe, A.; Abedin, M.J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C.M.;
Adams, P.D.; Adeli, K.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).
Autophagy 2016, 12, 1–222. [CrossRef]

271. Ogbu, D.; Zhang, Y.; Claud, K.; Xia, Y.; Sun, J. Target Metabolites to Slow Down Progression of Amyotrophic Lateral Sclerosis in
Mice. Metabolites 2022, 12, 1253. [CrossRef]

272. Spielman, L.J.; Gibson, D.L.; Klegeris, A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenera-
tive diseases. Neurochem. Int. 2018, 120, 149–163. [CrossRef]

273. Hong, D.; Zhang, C.; Wu, W.; Lu, X.; Zhang, L. Modulation of the gut–brain axis via the gut microbiota: A new era in treatment of
amyotrophic lateral sclerosis. Front. Neurol. 2023, 14, 1133546. [CrossRef]

274. Zhang, H.; Chen, L.; Tian, J.; Fan, D. Differentiating Slowly Progressive Subtype of Lower Limb Onset ALS From Typical ALS
Depends on the Time of Disease Progression and Phenotype. Front. Neurol. 2022, 13, 872500. [CrossRef] [PubMed]

275. Druml, W. Intestinaler Crosstalk. Med. Klin. Intensivmed. Notfmed. 2018, 113, 470–477. [CrossRef]
276. Niccolai, E.; Di Pilato, V.; Nannini, G.; Baldi, S.; Russo, E.; Zucchi, E.; Martinelli, I.; Menicatti, M.; Bartolucci, G.; Mandrioli, J.; et al.

The Gut Microbiota-Immunity Axis in ALS: A Role in Deciphering Disease Heterogeneity? Biomedicines 2021, 9, 753. [CrossRef]
277. Kang, I.; Bucala, R. The immunobiology of MIF: Function, genetics and prospects for precision medicine. Nat. Rev. Rheumatol.

2019, 15, 427–437. [CrossRef]
278. Huang, S.; Wang, Z.; Zhou, J.; Huang, J.; Zhou, L.; Luo, J.; Wan, Y.Y.; Long, H.; Zhu, B. EZH2 Inhibitor GSK126 Suppresses

Antitumor Immunity by Driving Production of Myeloid-Derived Suppressor Cells. Cancer Res. 2019, 79, 2009–2020. [CrossRef]
279. Tinkov, A.A.; Martins, A.C.; Avila, D.S.; Gritsenko, V.A.; Skalny, A.V.; Santamaria, A.; Lee, E.; Bowman, A.B.; Aschner, M. Gut

Microbiota as a Potential Player in Mn-Induced Neurotoxicity. Biomolecules 2021, 11, 1292. [CrossRef]
280. Page, M.J.; Kell, D.B.; Pretorius, E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. Chronic

Stress 2022, 6, 247054702210763. [CrossRef] [PubMed]
281. Sherwin, E.; Dinan, T.G.; Cryan, J.F. Recent developments in understanding the role of the gut microbiota in brain health and

disease. Ann. N. Y. Acad. Sci. 2018, 1420, 5–25. [CrossRef] [PubMed]
282. Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.;

Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP)
consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [CrossRef]
[PubMed]

283. Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria–Gut–Brain
Signals. Trends Neurosci. 2016, 39, 763–781. [CrossRef] [PubMed]

284. Zhang, Q.; Chen, B.; Zhang, J.; Dong, J.; Ma, J.; Zhang, Y.; Jin, K.; Lu, J. Effect of prebiotics, probiotics, synbiotics on depression:
Results from a meta-analysis. BMC Psychiatry 2023, 23, 477. [CrossRef] [PubMed]

285. Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein
Cell 2021, 12, 360–373. [CrossRef]

286. Ma, L.; Tu, H.; Chen, T. Postbiotics in Human Health: A Narrative Review. Nutrients 2023, 15, 291. [CrossRef]
287. Ooijevaar, R.E.; Terveer, E.M.; Verspaget, H.W.; Kuijper, E.J.; Keller, J.J. Clinical Application and Potential of Fecal Microbiota

Transplantation. Annu. Rev. Med. 2019, 70, 335–351. [CrossRef]
288. Sun, Y.; Baptista, L.C.; Roberts, L.M.; Jumbo-Lucioni, P.; McMahon, L.L.; Buford, T.W.; Buford, T.W.; Carter, C.S. The Gut

Microbiome as a Therapeutic Target for Cognitive Impairment. J. Gerontol. Ser. A 2020, 75, 1242–1250. [CrossRef] [PubMed]

https://doi.org/10.1016/S1474-4422(14)70256-X
https://www.ncbi.nlm.nih.gov/pubmed/25772897
https://doi.org/10.1038/nm.4106
https://www.ncbi.nlm.nih.gov/pubmed/27158906
https://doi.org/10.3390/toxins10090367
https://www.ncbi.nlm.nih.gov/pubmed/30208594
https://doi.org/10.1038/s41586-022-04396-8
https://doi.org/10.1016/j.bbi.2022.11.004
https://doi.org/10.1371/journal.pone.0181758
https://doi.org/10.3389/fncel.2020.00021
https://doi.org/10.14814/phy2.13443
https://doi.org/10.1080/15548627.2015.1100356
https://doi.org/10.3390/metabo12121253
https://doi.org/10.1016/j.neuint.2018.08.005
https://doi.org/10.3389/fneur.2023.1133546
https://doi.org/10.3389/fneur.2022.872500
https://www.ncbi.nlm.nih.gov/pubmed/35665030
https://doi.org/10.1007/s00063-018-0475-1
https://doi.org/10.3390/biomedicines9070753
https://doi.org/10.1038/s41584-019-0238-2
https://doi.org/10.1158/0008-5472.CAN-18-2395
https://doi.org/10.3390/biom11091292
https://doi.org/10.1177/24705470221076390
https://www.ncbi.nlm.nih.gov/pubmed/35155966
https://doi.org/10.1111/nyas.13416
https://www.ncbi.nlm.nih.gov/pubmed/28768369
https://doi.org/10.1038/nrgastro.2017.75
https://www.ncbi.nlm.nih.gov/pubmed/28611480
https://doi.org/10.1016/j.tins.2016.09.002
https://www.ncbi.nlm.nih.gov/pubmed/27793434
https://doi.org/10.1186/s12888-023-04963-x
https://www.ncbi.nlm.nih.gov/pubmed/37386630
https://doi.org/10.1007/s13238-020-00814-7
https://doi.org/10.3390/nu15020291
https://doi.org/10.1146/annurev-med-111717-122956
https://doi.org/10.1093/gerona/glz281
https://www.ncbi.nlm.nih.gov/pubmed/31811292


Int. J. Mol. Sci. 2023, 24, 13294 36 of 38

289. Beck, B.R.; Park, G.S.; Jeong, D.Y.; Lee, Y.H.; Im, S.; Song, W.H.; Kang, J. Multidisciplinary and Comparative Investigations of
Potential Psychobiotic Effects of Lactobacillus Strains Isolated From Newborns and Their Impact on Gut Microbiota and Ileal
Transcriptome in a Healthy Murine Model. Front. Cell. Infect. Microbiol. 2019, 9, 269. [CrossRef]

290. Liao, J.F.; Cheng, Y.F.; You, S.T.; Kuo, W.C.; Huang, C.W.; Chiou, J.J.; Hsu, C.C.; Hsieh-Li, H.H.; Wang, S.; Tsai, Y.C. Lactobacillus
plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse
models of Parkinson’s disease. Brain Behav. Immun. 2020, 90, 26–46. [CrossRef]

291. Matheson, J.A.T.; Holsinger, R.M.D. The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases:
A Review. Int. J. Mol. Sci. 2023, 24, 1001. [CrossRef]

292. Sampaio, K.B.; Fusco, V.; Alves, J.L.d.B.; de Souza, E.L. Probiotics: Concepts, evolution, and applications. In Probiotics for Human
Nutrition in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–24.

293. Adıgüzel, E.; Çiçek, B.; Ünal, G.; Aydın, M.F.; Barlak-Keti, D. Probiotics and prebiotics alleviate behavioral deficits, inflammatory
response, and gut dysbiosis in prenatal VPA-induced rodent model of autism. Physiol. Behav. 2022, 256, 113961. [CrossRef]
[PubMed]

294. Dikeocha, I.J.; Al-Kabsi, A.M.; Eid, E.E.M.; Hussin, S.; Alshawsh, M.A. Probiotics supplementation in patients with colorectal
cancer: A systematic review of randomized controlled trials. Nutr. Rev. 2021, 80, 22–49. [CrossRef] [PubMed]

295. Kim, N.; Jeon, S.H.; Ju, I.G.; Gee, M.S.; Do, J.; Oh, M.S.; Lee, J.K. Transplantation of gut microbiota derived from Alzheimer’s
disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav. Immun. 2021, 98, 357–365.
[CrossRef] [PubMed]

296. Fujii, Y.; Nguyen, T.T.T.; Fujimura, Y.; Kameya, N.; Nakamura, S.; Arakawa, K.; Morita, H. Fecal metabolite of a gnotobiotic
mouse transplanted with gut microbiota from a patient with Alzheimer’s disease. Biosci. Biotechnol. Biochem. 2019, 83, 2144–2152.
[CrossRef]

297. Dodiya, H.B.; Kuntz, T.; Shaik, S.M.; Baufeld, C.; Leibowitz, J.; Zhang, X.; Gottel, N.; Zhang, X.; Butovsky, O.; Gilbert, J.A.; et al.
Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J. Exp. Med. 2019, 216,
1542–1560. [CrossRef]

298. Wang, M.; Cao, J.; Gong, C.; Amakye, W.K.; Yao, M.; Ren, J. Exploring the microbiota-Alzheimer’s disease linkage using short-term
antibiotic treatment followed by fecal microbiota transplantation. Brain Behav. Immun. 2021, 96, 227–238. [CrossRef]

299. Sun, J.; Xu, J.; Ling, Y.; Wang, F.; Gong, T.; Yang, C.; Ye, S.; Wei, D.; Song, Z.; Chen, D.; et al. Fecal microbiota transplantation
alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry 2019, 9, 189. [CrossRef]

300. Kim, M.S.; Kim, Y.; Choi, H.; Kim, W.; Park, S.; Lee, D.; Kim, D.K.; Kim, H.J.; Choi, H.; Hyun, D.W.; et al. Transfer of a healthy
microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 2020, 69, 283–294. [CrossRef]

301. Elangovan, S.; Borody, T.J.; Holsinger, R.M.D. Fecal Microbiota Transplantation Reduces Pathology and Improves Cognition in a
Mouse Model of Alzheimer’s Disease. Cells 2022, 12, 119. [CrossRef]

302. Hazan, S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report. J. Int.
Med. Res. 2020, 48, 030006052092593. [CrossRef]

303. Park, S.H.; Lee, J.H.; Shin, J.; Kim, J.S.; Cha, B.; Lee, S.; Kwon, K.S.; Shin, Y.W.; Choi, S.H. Cognitive function improvement after
fecal microbiota transplantation in Alzheimer’s dementia patient: A case report. Curr. Med. Res. Opin. 2021, 37, 1739–1744.
[CrossRef]

304. Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of
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