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Abstract: An important mechanism for the development of intervertebral disc degeneration (IDD)
is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-
therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected
result, or give a short period of time. This explains the relevance of high-tech medical care, which
is part of specialized care and includes the use of new resource-intensive methods of treatment
with proven effectiveness. The aim of the review is to update knowledge about new high-tech
methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches
to IDD management in patients resistant to previously used therapies, including: cell therapy
(stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic
technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for
influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of
inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl
oxidase; corticostatin; etc.).
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1. Introduction

High-tech medical care (HTMC) is a part of specialized care and includes the use
of new and unique methods of treatment (resource-intensive, and as a rule, with proven
effectiveness) [1]. HTMC can be provided for a number of profiles, including: vertebrology,
traumatology, orthopedics, neurosurgery, etc. [1]. HTMC is used in a wide range of
human diseases, which are characterized by complex mechanisms of pathogenesis and
a progressive type of course, as well as when classical and new approaches to therapy
are not effective enough or are not effective at all (Figure 1). Severe intervertebral disc
degeneration (IDD) and the progressive type of IDD are indications for the use of high-tech
therapies [2] (Figure 2).
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It is likely that IDD begins to develop in adolescence and progresses at a variable
rate, leading to the formation of degenerative or traumatic herniated intervertebral discs
(IVDs), chronic back pain, and disabling complications (spinal canal stenosis, spinal root
compression, paresis, paralysis, etc.). The mechanisms of development and progression
of IDD continue to be studied, but so far, there is no single point of view [3] (Figure 3). In
recent years, cytokine imbalance became considered as one of the important pathogenic
mechanisms for IDD, which affects the risk of developing persistent vertebrogenic back
pain, progressive apoptosis of chondrocytes, and other cells of the nucleus pulposus (NP)
and fibrous ring (AF). Knowledge about the molecular mechanisms of acute and chronic
inflammation and the role of these in degeneration of IVDs, based on a critical analysis
of preclinical and clinical studies of the last decade, was presented by us in a previous
publication [3].

Inflammatory response is viewed as a negative mechanism for severe degenerative
damage to IVDs. It is likely that a balanced inflammatory response is needed to reduce the
risk of development and rate of IDD progression, as well as for the most complete (most
possible for a particular patient) restoration of the function of damaged IVDs. Cytokine
imbalance affects the overall effect of chronic inflammation in patients with IDD and the
expected therapeutic response to pharmacotherapy [4]. In turn, pharmacotherapy of a
cytokine imbalance in IDD conducted by prescribing both well-known (“classical”) and
new drugs [4] can have various effects, including: (1) an anti-inflammatory effect (directing
a protective immune response in patients with IDD in the direction of reducing chronic
inflammation); and (2) a regenerative effect (directing a protective immune response in
patients with IDD towards healing).
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Unfortunately, well-known classical approaches and new approaches to the man-
agement of IDD do not always give the expected therapeutic response. The attention of
scientists and clinicians is drawn to genetic, cellular, and other methods of HTMC for
cytokine imbalance correction in patients with severe IDD. At the same time, the absolute
high-producing cytokine imbalance (as possible variant of cytokine balance disorders in
patients with IDD) may be most unfavorable in terms of IDD progression rate and the for-
mation of severe chronic back pain (Figure 4), as we discussed earlier [3]. It is probably the
leading indication for the use of HTMC methods (Figure 2) in adult patients with IDD, who
lack the expected therapeutic response to classical and new methods of pharmacotherapy
and surgery [4]. Such new methods, in particular, and persistent inflammatory processes in
general in patients with IDD, are of undoubted scientific and clinical interest. However, we
did not find any previously published narrative reviews on this topic.
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ation (IDD) [3]. Note: SNV—single-nucleotide variant; anti—anti-inflammation cytokines; pro—pro-
inflammation cytokines; solid line—well-studied mechanisms of IDD; dotted line—insufficiently
studied mechanisms of IDD; down arrow—decreased cytokine level; up arrow—increased cytokine
level; and red exclamation point in a yellow hexagon—a dangerous situation.

The aim of the review is to update knowledge about new high-tech methods based on
cytokine imbalance correction in IDD.

2. Promising High-Tech Methods for Correcting Cytokine Imbalance in Intervertebral
Disc Degeneration

The use of HTC techniques for cytokine imbalance correction in IDD is a new promis-
ing direction in the non-surgical treatment of this disease in adults, but not in children.
However, indications for their use in adolescents may be extended, since, as is known, the
onset of degenerative processes in NP and AF begins much earlier than the onset of clinical
symptoms of IDD. Figure 5 presents promising HTMC methods for correcting cytokine
imbalance in IDD, which are proposed for use both in the form of independent (separate)
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and combined methods; for example, stem cell implantation (independent method) or a
combination of stem cell implantation with exosome therapy (combined method).
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3. Cell Therapy
3.1. Stem Cell Implantation

Mesenchymal stem cells (MSCs) are considered as a source of cells for gene therapy
and implantation. It is known that MSCs are non-committed pluripotent stem cells that are
present in various tissues. They are available and easy to manipulate [5], but MSCs must be
differentiated into chondrocyte-like cells before implantation in patients with IDD. Growth
factors of the family of bone morphogenetic proteins are used to differentiate MSCs into
chondrocytes [6]. In recent years, a differentiation factor from the cyclooxygenase (COX)
family was studied as a more specific factor for the differentiation of MSCs, and members
of the Brachyury transcription factor family are considered as MSCs adhesion factors [7].
The cultivation of MSCs with IVD cells is used to induce a disk-like phenotype [8], and
cultivation of MSCs under conditions of a three-dimensional system promotes the formation
of a chondrocyte-like phenotype [9].

Increasingly, MSCs are being used in clinical trials for severe IDD and severe low
back pain in humans. The mechanisms of action of MSCs are not fully understood.
However, they are known to reduce the levels of pro-inflammatory cytokines in the pro-
inflammatory/degenerative microenvironment of IVDs [10]. Preconditioning of MSCs
with IL-1β increases the secretion of hIL-6, hIL-8, hMCP-1 (monocyte chemoattractant
protein 1), and other pro-inflammatory biomarkers of IDD. On the other hand, MSCsec
suppress the expression of genes encoding bIL-6, bIL-8, and metalloproteinase 1 (MMP-1).
In contrast, MMP-3 and the tissue inhibitor of metalloproteinase 2 (TIMP-2) increase the
expression of these genes. Increased aggrecan deposition was found in MSCsec-treated
degenerating IVDs, although no differences were observed in other EMC components.
Protein analysis of MSCsec-treated IVD supernatant revealed a significant increase in
chemokine ligand 1 (CXCL-1), MCP-1, macrophage inflammatory protein 3 alfa (MIP-3α),
IL-6, IL-8, and growth-related oncogenes alfa/beta/gamma (GRO-α/β/γ) and decreased
interferon gamma (IFN-γ), IL-4, IL- 5, IL-10, and TNF-α. At the same time, MSCsec-treated
IVD supernatants did not stimulate neo-angiogenesis and neurogenesis in vitro [11]. The
immunomodulatory paracrine effect of MSCs in IDD (without a clear effect on extracellular
matrix remodeling) was shown in the course of studies and suggests that the mechanism
of action of MSCs depends on the cytokine feedback loop [12]. Delivery of MSCs to
degenerating IVDs increases the population of Tie2-positive progenitors (differentiation
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clusters) and prevents apoptosis of NP and AF cells. Additionally, they may induce a
proliferative response in NP and AF cells of degenerative IVDs [13]. Human umbilical
cord-derived MSCs and chondroprogenitor derivatives may reduce back pain, inflamma-
tion, and promote cell regeneration in IVDs in a rat model of IDD [14]. Lithium chloride
preconditioning (medium level) mechanically induced an increase in cellular reactive ox-
idative species (ROS) and ERK-1/2 (extracellular signal-regulated kinase 1/2) activation,
which is closely associated with increased cell and ECM survival in IVDs. Treatment with
preconditioned adipose-derived stem cells (ADSCs) showed a better therapeutic effect than
control transplantation of ADSCs, with better preservation of NP cells and deposits of ECM
in degenerative IVDs [15].

3.2. Implantation of Autologous Cultured Cells

Degenerated IVDs can be populated with in vitro cultured cells. To prevent immune
reactions, such cells must be autologous. The use of NP material selected at the time of
microdiscectomy may be one of the approaches to obtaining cells for in vitro cultivation.
However, the possibility of introducing autologous cultured cells or implants after surgery
in IVDs is debatable [16]. The simplest approach to repair degenerating IVD using au-
tologous cultured cells is the injection of cells grown ex vivo [17]. This approach allows
achieving a significant therapeutic response in patients with IDD.

Another approach to using autologous cells for transplantation into a degenerating
IVD is to culture the cells in a 3D culture system. A sufficient number of artificial three-
dimensional matrices for culturing IVD cells was proposed [18]. At the same time, Gruber
et al. [19] used autologous cells cultured in a conventional monolayer culture, which were
then populated in a three-dimensional matrix in accordance with the cavity formed in
the degenerating IVD. At 33 weeks, NF and AF cell structures were similar to that of
healthy IVDs.

3.3. Tissue Engineering

Cell therapy has some limitations in IDD therapy during in vitro studies, in vivo
studies, and in many clinical studies [20]. Transplantation of MSCs may be an effective
treatment for mild to moderate IDD. However, multifunctional tissue engineering treatment
has advantages in severe IDD requiring structural support [21–23]. Tissue engineering
(co-administration of growth factors, MSCs, and scaffold) is more important because of the
positive results of using various types of functional polymers (alginate, chitosan, collagen,
gelatin, hyaluronic acid, polyurethane, polyethylene glycol, and polyglycolic and polylactic
acids). This high-tech method based on cells and scaffolds is considered as a more effective
method for the treatment of severe IDD in humans [23].

Biomaterials for tissue engineering can be developed in the form of injections to
mimic and preserve the structures of the IVD extracellular matrix, taking into account its
degenerative changes at an early stage of the disease. Therapeutic small molecules or drugs
can be incorporated into biomaterials to stop the pathological cascade that underlies the
development of IDD. All of these biomaterials can be delivered to degenerating IVDs using
percutaneous, minimally invasive procedures, in addition to existing treatments for early
and mild disease [24]. Additionally, biomaterials can serve as an advanced cell delivery
system in degenerating IVDs to support transplantation of MSCs, to repopulate native cells
in IVDs with mild to severe degeneration associated with lower cellularity in IVD tissues.

A tissue engineering strategy based on precision biomaterials, taking into account the
severity of the degenerative process in IVDs, is aimed at providing a regenerative effect
in early, mild, and severe IDD. This is necessary to develop customized biomaterials and
tissue engineering strategies to halt disease progression, stimulate NP and AF cell regen-
eration, and alleviate discogenic pain syndrome. Due to the advantages of an individual
approach, many researchers are developing various tissue engineering methods to replace
degenerating IVD in animal models [25,26].
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4. Gene Technologies
4.1. Gene Modifications

Current gene technology for IDD therapy is based on the adeno-associated virus (AAV)
gene delivery systems. However, there is a limitation (for example, immune responses
to viral proteins) [27–31]. The knockdown-mediated self-complement AAV serotype 6
(ADAMTS-4) induces a long-term and effective increase in aggrecan synthesis in degener-
ating human NP cells. Self-complementary AAV (scAAV) vectors, which do not express
any viral genes and are not associated with any known diseases in humans, are attractive
vectors for delivering therapeutic genes to degenerative IVDs [32]. Thus, scAAV-6, scAAV-2,
and scAAV-3 demonstrated high and prolonged expression of transgenic green fluorescent
protein with transduction efficiency of 98.6%, 91.5%, and 89.6%. Unlike scAAV-6, scAAV-2,
and scAAV-3, serotypes reduced NP cell viability by 25% and 10%, respectively. Moreover,
scAAV-6 did not affect the expression of inflammation markers, ECM proteins, and the
catabolic process in degenerating IVDs [33].

Lentivirus and AAVs are traditional viral vectors used in gene therapy for severe
IDD. New genetic technologies of RNAi (RNA interference) and short palindromic repeat
method (CRISPR) further enhanced their benefits. Non-viral vectors, such as polyplex
micelles and exosomes, are promising vectors for IDD [34]. Editing the epigenome of
inflammatory receptors with lentiviral CRISPR can be considered as a promising strategy
for gene therapy for severe IDD [35].

Other viral vector-mediated gene transfers into NP and AF cells are also being actively
studied, including: retrovirus; baculovirus; and lentivirus [36]. Additionally, virus-free
gene transfer into IVD cells is possible: RNA interference (RNAs); targeted destruction
of microbubbles by ultrasound; Micelle/Cas9 polyplex associated with cluster regulatory
intervals, and short palindromic repeats (CRISPR/Cas9)) [36]. Bi et al. [36] attenuated
H2O2-induced acute inflammation in IVD cells by overexpressing the Klotho gene using
RNAs in a rat model of IDD and by inhibiting Toll-like receptor 4 (TLR-4). Knockdown of
the Klotho gene with RNAs reduced anti-inflammatory and protective effects in the animal
model of IDD. Accordingly, the Klotho gene expression possibly regulates TLR4-NF-κB
signaling [37,38].

CRISPR/Cas9 is a convenient and versatile tool for genome modification. It is an
accurate and effective method of gene technology for treatment of severe IDD. Additionally,
CRISPR/Cas9 is easier to use than other genome editing technologies [36]. This system
is used in both viral and non-viral delivery methods [39]. Regarding IDD gene therapy
strategy, regulation of TNF-1 receptor (TNFR-1) and IL-1 receptor (IL1R-1) signaling by the
CRISPR lentivirus epigenome editing system was tested in NP and AF cells of degenerating
human IVDs to suppress overexpression of TNFR-1 and IL1R-1, and related inflammatory
responses [40]. These studies demonstrated that expression of TNFR-1 was suppressed
by increasing aggrecan levels and decreasing MMP-3 levels when editing the genome of
the transforming granulocyte growth factor receptor type 1 (TGFR-1). However, IL1R-
1 expression was not downregulated and did not show any changes in aggrecan and
MMP-3 levels in degenerating IVDs after IL1R-1 genome editing [35]. The ability of the
CRISPR/Cas9 genome editing system can be demonstrated through the regulation of
TNFR-1 only, but not regulation of IL1R-1 [35].

The transient receptor potential vanilloid type 4 (TRPV4) gene was successfully
knocked out in vitro using the CRISPR/Cas9 gene editing system in persons with chronic
low back pain [41]. Cambria et al. investigated the role of the TNFR4 gene in regula-
tion of IL-6 and IL-8 expression via CRISPR and reduction in the risk of severe chronic
inflammatory development caused by AF cell hyper-physiological stretching [41].

All the presented HTMC methods of gene modification can be considered as promising
high-tech methods for correcting cytokine imbalance in severe IDD in humans [10]. Despite
a sufficient number of studies demonstrating the flexibility of the method of direct gene
delivery using virus-based vectors in NP and AF cells of degenerating IVDs, the question of
which gene should be delivered remains open. Researchers’ attention is focused on genes
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encoding anabolic factors (tumor growth factor beta 1 (FGT-β1); latent membrane protein
1 (LMP-1); COX-9; and anti-catabolic factor TIMP-1). Potential target genes are those
encoding transcription factors for MMPs, TIMPs, disintegrin, and chondrocyte-specific
transcription factors [42,43], as well as key genes associated with the inflammatory response
such as the IL1B gene [3,44].

The first studies on exogenous gene delivery in vivo were carried out by Nishida
et al. [45]. The authors used an AAV carrying the FGTB1 gene in rabbits and noted a
significant increase in the expression of FGT-β31, as well as proteoglycan in IVDs. When
LMP-1 was introduced into the rabbit IVD tissue in vivo, an increase in the expression
of anti-inflammatory cytokines, bone morphogenetic proteins 2 and 7 (BMP-2, BMP-7),
and aggrecan was observed, which confirms the expediency of using this factor as a new
high-tech method for IDD in humans [46].

COX-9 has no effect on proteoglycan synthesis. However, when the COX9 gene is
transferred into degenerating human IVD cells, the synthesis of type II collagen increases.
Transfection of the COX9 gene in the adenoviral vector into degenerating rabbit IVD
ensured preservation of the structure characteristic of unaffected IVD, while typical degen-
erative changes in IVD were observed in the control group of animals [47]. Additionally,
the TIMP1 gene was delivered to a degenerating human IVD using an adenovirus vector.
This manipulation contributed to an increase in the content of proteoglycan in IVD cell
culture [48].

Despite the positive results of the use of injection methods of IDD therapy in humans,
when a toxic microenvironment is formed, there is a decrease in the supply of glucose
and oxygen nutrients, as well as an “acidification” of the environment, and the question
remains of how long the expression of a genetically engineered construct is possible under
these conditions [16].

4.2. MicroRNA

There is growing evidence that many cellular processes (cell proliferation, apoptosis,
and pro-inflammatory cytokine release) are regulated by a new class of small non-coding
RNAs known as microRNAs (miRNAs), which are 19–25 nucleotides long [49]. MiRNAs
may play an important role in various disorders (for examples, cancer, neurodegeneration,
and aging) [50–52]. MiRNAs mediate their biological functions through base pairing with
the 3′-untranslated regions (3′UTRs) of their miRNAs targets to suppress protein translation
and/or induce miRNAs degradation [49]. MiRNAs make up only 1–3% of the human
genome, but can regulate up to about 30% of human protein-coding genes [53].

MiRNAs may play an important role in IDD development. Additionally, they may be
promising therapeutic targets in patients with severe IDD [54,55]. Thus, miR-34a dysregu-
lation plays a key role in apoptosis of cartilage end plate chondrocytes and degradation
of the extracellular matrix in IVD [56]. MiR-34a expression is induced by IL-1β, and
miR-34a silencing can prevent IL-1β-induced suppression of type II collagen synthesis
in chondrocytes. In addition, miR-34a is a GDF-5 repressor [4]. So, GDF-5 deficiency
significantly reduced the expression of aggrecan and collagen type II miRNAs and the
content of prostaglandins. The GDF5 gene mutation not only altered the growth and
differentiation of NP cells, reduced the synthesis of the extracellular matrix, and induced
IVD degeneration, but also affected the height or length of IVDs, long bones, causing a
change in their height [57]. Insertion of the GDF5 gene has significant clinical implications
for the repair of ECM in degenerated IVDs [58].

MiR-15b levels are elevated in people with IDD. Suppression of miR-15b reduced
IL-1β-induced degradation of ECM structures in human NP by increasing the expression
of SMAD-3 (TGFβ signal transducers) [59].

MiR-202-3p was shown to suppress IL-1β-induced MMP-1 production in degenerative
IVDs. Conversely, anti-miR-202-3p treatment markedly increased MMP-1 production. In
addition, mutation of the miR-202-3p binding site in the 3′-UTR of MMP-1 mRNA abolished
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miR-202-3p-mediated repression of reporter activity. These results suggest that miR-202-3p
may regulate expression of MMP-1 in human NP and contribute to IDD development [60].

IL-6 may aggravate IDD by causing ferroptosis of cartilage cells, which is caused by
inhibition of miR-10a-5p and subsequent de-repression of the IL-6R signaling pathway [61].
The IL-6/miR-10a-5p/IL-6R axis may be a new target for IDD treatment.

4.3. Molecular Inducers of Intervertebral Disc Degeneration

LncRNA and the taurine-activated gene 1 (TUG1) were involved in IDD development.
Suppression of TUG1 gene expression can protect NP cells from TNF-α-induced apoptosis
and senescence while simultaneously stimulating proliferation by blocking the Wnt/β-
catenin pathway [62]. LncRNA expression of the zinc finger antisense 1 (ZFAS1) gene is
associated with increased risk and severity of IDD [63]. LncRNA HOX transcript antisense
RNA (HOTAIR) promotes NP cell aging and apoptosis, as well as degradation of ECM in
IVD via the Wnt/β-catenin activation pathway [64].

Overexpression of the X-inactive specific transcript (XIST) gene, which is a key effector
gene for X-chromosome inactivation in mammals, contributed to IL-1β-induced NP cell
degeneration. It is suggested that the XIST gene may also contribute to the development
and progression of IDD through NP apoptosis and degradation of EMC structures [65].
MiR-499a-5p expression was lowered in NP cells in patients with IDD and could bind
to XIST, while its upregulation reversed the effects of overexpression of XIST in NP cells
treated with IL-1β [65].

MiR-34a-5p can bind to HOTAIR lncRNA and promote NP apoptosis by targeting
NOTCH-1 [66]. MiR-153-3p binds to LINC00641 to suppress NP cell autophagy and
promotes NP cell death [67]. MiR-326 is downregulated in IDD and is involved in the
mechanisms by which LncRNA small nucleolar RNA host gene 1 (SNHG1) overexpression
promotes NP cell proliferation [68]. MiR-499a-5p can suppress NP cell apoptosis and ECM
structures degradation in IVDs by targeting COX-4 [69]. Additionally, overexpression of
the XIST gene in NP cells can promote cellular apoptosis and degradation of EMC through
targeting miR-499a-5p [65].

The PIEZO1 gene (a mechanically sensitive ion channel gene) may play an important
role in the regulation of inflammation activity of NLRP-3 (main component of the inflam-
masome type of the same name (NLRP-3 inflammasome)) [70]. PIEZO1-siRNA is used
to suppress ex-downregulation of the PIEZO1 gene, which inhibits the activation of the
Ca/NF-κB pathway in NLRP-3 inflammasome and ultimately slows down the inflamma-
tory response in IVDs. In addition, LINC00969 regulates the thioredoxin-interacting protein
(TXNIP) gene transcription, acting as a competitive miR-335-3, and thereby regulates
NLRP-3 inflammasome activity [4].

5. Technologies for Intervertebral Disc Inflammatory Cascade Mediated by Abnormal
Inflammasome Activation

Inflammasome is a macromolecular protein complex that finely regulates caspase 1
activation. Additionally, it regulates IL-1β and IL-18 expression [71]. A sensitive component
of the inflammasome is part of the oligomerization nucleotide-binding domain containing
protein (NOD)-like receptor (NLR) proteins [72,73]

NLRP-3 senses “danger” in the form of lysosomal destabilization or a decrease in the
intracellular level of K+ [72]. It is known that the conformational change in NLRP-3 occurs
as a result of activation of a secondary protective mechanism (leakage of cathepsin B into
the cytoplasm and outflow of K+ from the cell) in the presence of microbial or non-microbial
pathogens that cannot be digested by lysosomes [72]. Such conformational changes in
NLRP-3 lead to oligomerization and recruitment of the macromolecular assembly of the
caspase associated with apoptosis, recruited by the domain-containing (ASC) spotted
protein [72–74]. An important component for the formation of NLRP-3 is the enzymatic
effector—caspase 1. This enzyme can perform various functions that are not related to the
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inflammasome, but its main function in the formation of the inflammasome is the cleavage
of pro-IL-1β to the active form of the pro-inflammatory cytokine IL-1β [72,75].

Activation of caspase 1 inside the inflammasome leads to pyroptosis [75]. Pyroptosis is
associated with cell swelling, increased permeability of the cell membrane, and cell rupture.
As a result, pro-inflammatory mediators (for example, pro-IL-1α) are released into the
extracellular space [72,75,76]. Damage to the cell membrane is mediated by the substrate of
caspase 1—gasdermin D. It provides the formation of oligomers of N-terminal fragments
inside the cell membrane after its cleavage, followed by the formation of pores [77]. Gasder-
min D pores are permeable to macromolecules and mediate unconventional extracellular
release of mature IL-1β, IL-18, and active caspase 1 [78].

The Nod-like receptor 1 (NLRP-1), Nod-like receptor 3 (NLRP-3), NLRC-4, Pyrin,
and AIM-2 (absent in melanoma 2 protein) are known to be mainly involved in inflam-
masome formation [79]. As with other NLRs, NLRP-3 consists mainly of three domains:
the amino-terminal pyrine domain (PYD), the NACHT nucleotide-binding domain, and
the carboxy-terminal leucine-rich repeat sequence (LRR) domain [77,79]. Upon stimula-
tion of extracellular inflammation, NLRP-3 is induced by transcription and controls post-
translational modification. Activated NLRP-3 additionally recruits ASCs through PYD-PYD
homotypic interactions and induces ASC assembly into large mottled structures [80].

The NLRP-3 inflammasome plays an important role in the development of IDD. So,
NLRP-3 inflammasome activation and the IDD process mediated by NLRP-3 inflammasome
involve the regulation of multiple signaling pathways. For example, the NF-κB pathway is
mainly involved in the initiation of NLRP-3 inflammasome, but Fas-associated protein with
death domain and caspase-8 are also involved in the induction of NLRP-3 inflammasome
expression [81,82].

Intracellular oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunc-
tion, and lysosome rupture induced by various intrinsic and extrinsic stimuli in cells of
degenerating IVDs are also involved in NLRP-3 inflammasome activation. Other sig-
naling pathways, including the TXNIP/NLRP-3/caspase-1 [83], Piezo 1/NLRP-3 [70],
LINC00969/miR-335-3p/TXNIP (LINC00969 competitive endogenous RNA) [71], and
cGAS/Sting/NLRP-3 axes (STING is an endoplasmic reticulum protein that stimulates the
production of type I interferon; cGAS is a cytosolic DNA sensor that stimulates the synthe-
sis of type I interferon) [84] are also associated with the regulation of inflammation activity
through NLRP-3. In addition, there is increasing evience that NLRP-3 inflammasome
targeting technology is a new HCMC strategy for IDD treatment.

It should be recognized that so far knowledge about the mechanisms of NLRP-3
inflammasome activation in degenerating IVDs and about higher regulatory molecular
pathways is limited. The study of the role of other inflammasomes in the development of
IDD needs further study [85].

Melatonin inhibits the IL-1/NF-κB pathway and reduces mitochondrial reactive oxy-
gen species (mtROS) in vivo and in vitro [86]. Additionally, it slows down IDD develop-
ment by inhibiting the activation of inflammatory system via NLRP-3.

Administration of MCC-950 (as NLRP-3 inflammasome inhibitor) inhibited NLRP-3
inflammasome activation by Acne propionibacteria and reduced inflammatory response and
apoptosis in degenerating IVDs in vivo [87]. In addition, fullerol nanoparticles can inhibit
discogenic back pain by inhibiting NLRP-3 inflammasome activation [88–90].

However, targeted therapy still lacks selective inhibitors of NLRP-3 inflammasome,
and the current use of targeted activity of NLRP-3 inflammasome in IDD treatment is
limited to animal experiments [85].

6. Senolytics

The concept of senolytic therapy is that apoptosis can be selectively initiated in degen-
erating NP and AF cells by inhibiting survival mechanisms activated during aging. Zhu
et al. [91] first demonstrated this concept by suppressing the very large B-cell lymphoma
(BCL-XL) and EFNB1 survival pathways, which are highly activated by senescent cells,
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and other senolytic targets emerged [92–94]. During the degeneration of IVDs, a signifi-
cant number of senescent cells are formed. The use of senolytics significantly inhibits the
pathophysiological mechanism of the survival of old cells, which ultimately brings entire
IVD tissue into an anti-aging state. This suggests that senolytics may be a new potential
HTMC method for suppressing the active process of IVD cell degeneration, mitigating the
symptomatic progression of IDD [44].

The study by Novais et al. [95] demonstrated that administration is a combination
of senolytics (dasatinib and quercetin) on viability, phenotypic characteristics, and ECM
structures in degenerative IVDs. Additionally, senolytics significantly prevented the pro-
gression of senescence of NP and AF cells in mouse IDD models. This combination of
senolytics may be a new HTCM method for treatment of severe IDD [96]. Quercetin has
similar anti-degenerative effects, which was demonstrated in an in vitro study [97]. These
senolytic effects in IDD are potentially regulated through the NF-κB axis signaling pathway.

The senolytic ABT-263 is a formulation loaded into poly(lactic-co-glycolic acid) (PLGA-
ABT) nanoparticles. A single intradiscal injection of PLGA-ABT can provide local delivery
of the drug to avascular degenerating IVDs, prevent potential systemic toxicity caused by
systemic senolytic administration, and morbidity caused by repeated drug injections into
IVDs [98]. This HTMC method results in senescent cells elimination from degenerative
IVDs, decreased pro-inflammatory cytokines overexpression, decreased MMPs expression,
and inhibited IDD progression. Additionally, degenerative structure of IVD is restored [98].

Klotho senolytic reduces ECM degradation and neo-angiogenesis in IDD through
inhibition of the Ras-1/PAK-1/MMP-2 signaling axis (by inhibition of Ras-associated
substrate botulinum toxin C3 1 (Ras-1)/PAK-1 and MMP-2 protein expression by exogenous
co-administration with Klotho with Ras-1 inhibitor) [99].

7. Exosomal Therapy

Exosomes are a type of extracellular vesicles that are 50–100 nm in diameter that origi-
nate from multivesicular endosomes. Exosomes are released by almost all cell types and
contain various molecules (cytokines, lipids, proteins, and non-coding RNAs). Exosomes
take part in intercellular communications, transferring their content between different
cells of human tissues [100]. Transferred exosomal mRNA can be translated after en-
tering another cell. It was proposed to name this type of RNA “exosomal shuttle RNA
(esRNA)” [101].

Exosome secretion was shown to increase in response to inflammation, hypoxia, and
an acidic microenvironment. Exosome secretion can be used for induction of immuno-
suppression and stimulation of neo-angiogenesis via miRNA delivery [102]. Delivery of
miRNA by exosomes is contraindicated in cancer patients, but it may be useful in the
treatment of IDD. It is assumed that exosomes restore damaged tissue and can maintain
their therapeutic efficacy by transferring biologically active molecules and acting on target
molecules that regulate gene expression and the phenotype of damaged recipient cells [101].
In addition, exosomes are able to survive under extreme conditions. They can confer
resistance to oxidative stress in recipient cells [103].

Bone marrow-derived MSC-derived exosomes (BMSC-Exos) were found to reduce IL-
1β-induced secretion of pro-inflammatory cytokines and activation of MAPK signaling by
delivering miR-142-3p that targets mixed-origin kinase 3 (MLK-3) [104]. Exosomes derived
from NP cells can not only induce differentiation of MSCs into NP-like cells in vitro, but
also promote MSC migration and suppression of the Notch1 pathway [105]. NP cells from
a rodent model of IVD hernia were found to produce miR-223-containing exosomes that
suppress inflammation through modulation of the NF-κB pathway [106].

Exosomes derived from human placenta MSCs (hPLMSC) bearing AntagomiR-4450
(miR-4450 inhibitors) were tested for their therapeutic effect on mouse NP cells in vivo
and in vitro. Inhibition of miR-4450 activates ZNF-121 (zinc finger protein 121), which
facilitates inflammation, apoptosis, and damage to NP cells [107].
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The exposure to doxorubicin significantly stimulated NLRP-3 expression, causing
pyroptosis in H9c2 cells [108]. However, processing of exosomes derived from embryonic
stem cells can inhibit pyroptosis in degenerating IVDs cells.

Lu et al. [109] believe that exosomes can be used as an alternative to MSC therapy in
the treatment of IDD. They found that treatment with exosomes derived from MSCs had
the same effect on NP cell proliferation as therapy with MSCs. Exosomes derived from
MSCs prevent the progression of IDD, enhance antioxidant and anti-inflammatory effects
in NP cells, or prevent apoptosis [110].

It is not known whether exosomes can regulate pyroptosis of NP cells during the
progression of IDD. However, MSCs can inhibit NP cell pyroptosis by downregulating
NLRP-3 inflammasome expression in a lipopolysaccharide-induced model. When MSCs
were additionally treated with GW-4869 (neutral sphingomyelinase inhibitor) to inhibit
exosome secretion, the antipyroptotic effect of the MSCs disappeared. This indicated
that the effect of MSCs on pyroptosis may be caused by exosomes derived from them.
Treatment with exosomes derived from MSCs significantly reduced the expression of
the NLRP-3 inflammasome and decreased caspase activation, thereby suppressing the
secretion of pro-inflammatory cytokines (IL-1β and IL-18) in NP cells upon stimulation
with lipopolysaccharide [111].

It was shown that miR-410 regulates cell proliferation and apoptosis and acts as a
prognostic biomarker in multifactorial inflammatory diseases [112]. Significantly elevated
levels of miR-410 expression were reported to decrease the production of pro-inflammatory
cytokines such as IL-10, TNF-α, IL-1β, and IL-6 [113]. Compared to healthy volunteers,
miR-410 levels were reduced in patients with wet age-related macular degeneration [114].
MiR-410 levels in exosomes derived from MSCs were significantly higher than in exosomes
derived from fibroblasts. These results indicate that miR-410 could be a potential mediator
of NP cell pyroptosis. In addition, exosomal miR-410 derived from MSCs significantly
inhibited the pyroptosis response by downregulating the NLRP-3/caspase-1 pathway in
LPS-treated NP cells. Suppression of NLRP-3 by administration of exosomal miR-410
resulted in decreased levels of caspase-1 and GSDMD (gasdermin D), thereby attenuating
pyroptosis of NP cells in degenerating IVDs. However, more evidence of an association
between miR-410 and NLRP-3 is still required [111] in patients with IDD.

Exosomes in human umbilical cord MSCs (hucMSC) effectively improve NP cell
viability and protect them from pyroptosis by targeting METTL-14 (methyltransferase-
like protein 14) by methyltransferase, which catalyzes m6A modification. The METTL-14
protein is abundant in NP cells from IDD patients, which stabilize NLRP-3 mRNA in an
IGFBP2-dependent manner (binding protein for IGF-I and -II). Such a pathogenic axis can
be blocked by hucMSC exosomes, since these exosomes directly degrade METTL-14 via
esRNA (for example, miR-26a-5p) [115].

Thus, cell scaffolds and exosome therapy are two new high-tech methods for correct-
ing cytokine imbalances and degenerative processes in IVDs. The combination of these
high technologies allows them to further enhance their therapeutic potential to stimulate
proliferation and growth of NP cells, as well as their ability to regulate ECM metabolism in
IDD development. This combination may help to more effectively inhibit this pathological
process, in contrast to less successful classical therapeutic technologies for IDD [4]. Both
ECM and exosomes have very low immunogenicity compared to cell therapy, which is an
advantage for the clinical use of dECM@exo (EMC/exosomes) [4,116]. It is known that
dECM@exo provides the best efficacy in IDD due to the synergistic effect of the extracel-
lular matrix and exosomes and is more suitable for the IVD microenvironment [117,118].
Exosomes obtained from adipose-derived mesenchymal stem cell (ADSC) can slow down
catabolism in degenerating IVDs by reducing the activity of MMPs. On the one hand,
by slowing down the catabolism of the extracellular matrix, it is possible to correct the
violation of its metabolism in IDD. On the other hand, dECM degradation is slowed down,
allowing exosomes to remain in IVDs for up to 28 days. Storage of exosomes with dECM
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also allows exosomes to inactivate NLRP-3 inflammasome and inhibit pro-inflammatory
cytokines overexpression in IVDs [116] in patients with IDD.

So, exosomes have the potential to be a more effective HTMC method for IDD in
humans than MSCs-based [119]. Additionally, it is possible to genetically modify exosomes
to express special ligands such as chemokine receptors that will better guide them to IVDs
injury sites and deliver small molecule drugs directly to target sites, allowing exosomes to
act as a targeted drug delivery mechanism [120]. While avascular nature of IVD poses a
threat to the efficacy of systemically administered MSC-exosomes, attempts to extend their
half-life may make this delivery method more popular [121].

8. Other Technologies
8.1. Factors Induced by Hypoxia

The hypoxia inducible protein (HIF) family consists of members of α- and β-subunits
that come into action through formation of heterodimers under hypoxic conditions. HIF
proteins have three distinct α-subunits (HIF-1α, HIF-2α, and HIF-3α) and one β-subunit,
which is not affected by hypoxia. Heterodimers stimulate the expression of target genes
by binding a consensus sequence called the hypoxia-sensitive element in the promoter
regions [122].

HIF-2α activity is increased by hypoxia stimulation and TNF-α in NP cells, which
depends on the duration of stimulation and dose. At the same time, TNF-α regulates
hypoxia-induced erythropoietin expression, which is mediated primarily by HIF-2α rather
than HIF-1α [123]. HIF-2α mediates the upregulation of MMP-13 and ADAMTS-4 by
potentiating TNF-α/NF-κB signaling [124]. In turn, this plays an essential role in the
regulation of the expression of genes that promote NP cell catabolism in degenerating IVDs.
NF-κB protein is increased by TNF-α stimulation, while NF-κB inhibition reduces TNF-α-
induced expression of HIF-2α protein and catabolic factors MMP-13 and ADAMTS-4 (A
Disintegrin And Metalloproteinase 4) in degenerative IVD cells. Suppression of HIF-2α
expression leads to slower degradation of the extracellular matrix, which may represent a
new therapeutic strategy for IDD.

In addition, HIF-1α regulates the expression of type II collagen and aggrecan via
the NOTCH-1 pathway in human NP cells. Receptors, ligands, and target genes of the
NOTCH signaling pathway are expressed in NP and AF cells of degenerating IVDs, and
the NOTCH signaling is critical for maintaining NP cell proliferation in hypoxic IVD
niche [125]. However, the role of HIF-1α in regulation of cytokine balance in human IDD
remains debatable.

8.2. Peptide NEMO-Binding Domain

It is known that the IDD process is mediated by NF-κB [4]. Mechanical compression of
hNP/fibrin constructs leads to increased expression of MMP-3 and IL-8. Supplementation
of the medium with 10 µM NEMO binding domain peptide (NBD) at the time of loading
increased the viability of NP and AF cells and reduced expression levels of the MMP3
gene. Damage to IVDs in rats resulted in increased expression of the MMP3, IL1B, and IL6
genes. Injections of 250 µg NBD during IVD injury resulted in a decrease in the IL6 gene
overexpression and a decrease in the severity of the local inflammatory process.

The NBD peptide reduced exercise-induced levels of IL-1β and MMP-3 in hNPC/fibrin
constructs, while increasing NP and AF cell viability as well as slowing down the rate of
progression of IDD in rats, including down-regulation of IL-6. Therefore, NBD may be a
potential HTMC method for correcting cytokine imbalance in IDD in humans [126].

8.3. Lysyl Oxidase

Lysyl oxidase (LOX) is an enzyme that in humans is encoded by the LOX gene. It
catalyzes the conversion of lysine molecules into highly reactive aldehydes, which form
crosslinks in ECM proteins in IVDs. LOX can protect chondrocytes from TNF-α-induced
apoptosis and has an anti-apoptotic role in TNF-α-treated rat NP cells. This suggests that
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LOX may be a promising treatment for IDD. The LOX gene expression was significantly
reduced in TNF-α-treated NP cells. Exogenous LOX can maintain TNF-α-induced activity
of degenerating NP cells, decrease the rate of apoptosis, and stimulate EMC secretion in
degenerating IVDs [127]. Additionally, LOX inhibits the Fas/FasL and p53 pathways [128],
which play a role in the molecular mechanisms of IDD.

8.4. Cortistatin

Cortistatin (CST) is a cyclic neuropeptide that exhibits various properties in various
physiological and disease processes [129]. Corresponding results in several autoimmune
disease models, including inflammatory bowel disease and rheumatoid arthritis, showed
that CST may be a natural endogenous anti-inflammatory factor [130]. In addition, CST
is an attractive candidate for a new high-tech strategy for the treatment of degenerative
and inflammatory conditions [131], including IDD. The recent study showed that CST im-
proved metabolism, suppressed apoptosis, and attenuated inflammation in TNF-α-induced
chondrocytes, and also combated articular cartilage degeneration in osteoarthritis [132].

NP cell apoptosis exacerbates the severity of IDD, and inhibition of NP cell apoptosis
through the mitochondrial pathway may improve IDD. CST expression in NP cells de-
creases during aging and development of TNF-α-induced IDD. Exogenous CST treatment
may reduce TNF-αmediated catabolism and apoptosis of degenerating IVDs. Furthermore,
CST can inhibit mitochondrial dysfunction in NP cells and prevent IDD by targeting the
activation of mitochondrial ROS-dependent NLRP3 inflammasomes [133].

8.5. Tenomodulin

Tenomodulin is a tendon/ligament-specific biomarker. It is an anti-angiogenic factor
with abundant expression in IVDs. However, it is not yet clear whether tenomodulin
contributes to the maintenance of homeostasis in degenerating IVDs by inhibiting vascular
ingrowth into this normally avascular tissue. Tenomodulin acts as an inhibitor of angiogene-
sis in IVD homeostasis and protects against age-related degeneration of IVDs [134], making it
promising for HTMC methods to correct the inflammatory response and apoptosis in IDD.

8.6. Bioactive Lipids

Increased production of prostaglandin E2, a proinflammatory eicosanoid derived from
arachidonic acid, is characteristic of degenerating NP and AF cells [135]. There is a hy-
pothesis that a decrease in anti-inflammatory metabolites synthesis from polyunsaturated
fatty acids may occur simultaneously. This hypothesis is supported by the observation
that lipoxin A4 (LXA-4) has a significant effect on a rat model of non-compressible lumbar
IVD hernia by inhibiting eicosapentaenoic acid, Janus kinase (JNK), and NF-κB/p65, re-
ducing pro-inflammatory cytokines (IL-1β, TNF-α, etc.), as well as through the regulation
of the expression of anti-inflammatory cytokines (TGF-β and IL-10) [136]. Interestingly,
14-epoxyeicosatetraenoic acid and 15-epoxyeicosatetraenoic acid (14,15-EET) derived from
arachidonic acid protected rat NP cells from TNF-α-induced apoptosis in vitro by inhibiting
the NF-κB pathway. Local administration of 14,15-EET prevented IDD progression [137].
Notably, a suite of soluble epoxide hydrolase enzymes can metabolize 14,15-EET and
thus limit their beneficial effects, especially in the prevention of IDD. Therefore, inhi-
bition of epoxide hydrolase enzymes to increase the half-life of EET may form a new
approach to the prevention and treatment of IDD. Other studies [135–137] demonstrated
that there is a delicate balance between pro-inflammatory prostaglandin E2 (and possibly
other pro-inflammatory eicosanoids) and anti-inflammatory LXA-4 (and possibly resolvins,
protectins, and maresins) and 14,15-EET (and other epoxyeicosatetraenes acids). If this
balance could be shifted more towards LXA-4 and EET, then this could prevent cytokine
imbalance in IDD. Interestingly, both prostaglandin E2 and LXA-4 (including resolvins,
protectins, and maresins) downregulate overexpression of pro-inflammatory cytokines
(IL-1β, IL-6, TNF-α) and MMPs and thus elicit their anti-inflammatory effects. Conversely,
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IL-1β, IL-6, and TNF-α increase COX-2 expression and enhance prostaglandin E2 and other
pro-inflammatory eicosanoids production.

The paradoxical effect of prostaglandin E2 to suppress IL-1β, IL-6, and TNF-α pro-
duction, while having a pro-inflammatory effect, suggests that there is cross-talk be-
tween prostaglandin E2 and pro-inflammatory cytokines. This is intended to limit the
inflammatory process in degenerating IVDs. Paradoxically, arachidonic acid forms both
prostaglandin E2 and LXA-4 precursors. This means that regulation of the arachidonic
acid pathway is critical in cytokine balance regulation in IVDs. It was reported that many
inflammatory conditions in which increased prostaglandin E2 production are also char-
acterized by arachidonic acid deficiency and decreased LXA-4 overproduction [138–141].
In these states of arachidonic acid deficiency, administration of arachidonic acid increases
LXA-4 production without altering prostaglandin E2 synthesis [138,142].

Hyperglycemia induced by chemicals (alloxan and streptozotocin) in experimental
animal models in type 1 and type 2 diabetes mellitus can be prevented by various n-3
and n-6 fatty acids, especially arachidonic acid and LXA-4 [143–145]. In addition, these
experimental animals are noted to have low levels of arachidonic acid and LXA-4 in
plasma and tissues [146,147] and elevated plasma levels of prostaglandin E2 [148]. Thus, it
appears that both IDD and diabetes mellitus are inflammatory conditions, and both of them
benefit from anti-inflammatory treatment strategies. This may explain why hyperglycemia
(diabetes mellitus) exacerbates the severity of IDD, as shown in a study by Shan et al. [149].

8.7. Nanoparticles and Delivery Systems

Teixeira et al. [150] previously investigated anti-inflammatory nanoparticles. Chitosan
(Ch)/Df/poly-γ-glutamic acid (γ-PGA) nanoparticles were able to inhibit and restore E2
prostaglandin production by activated macrophages in vitro. At the same time, it reduces
overexpression of IL-6 and TNF-α [151]. The effect of these nanoparticles on the control
of inflammation in IDD is being investigated. These nanoparticles were proven to be an
effective drug delivery system that can be combined with other technologies.

Chitosan is a natural biodegradable polysaccharide. It is used for HTMC (drug
delivery systems, gene therapy, and tissue engineering) [152]. Chitosan is nontoxic, bio-
chemically active, and a biocompatible substance [153]. Chitosan and γ-PGA are ions with
opposite charges that spontaneously self-assemble in a pH-controlled environment. Electro-
static interactions between chitosan and γ-PGA were previously studied [153]. Ch/γ-PGA
polyelectrolytes are stable at pH 5.0 and were proposed as delivery systems for various
proteins/molecules in various contexts: stromal factor-1 [154], IFN-γ [155], and Df (di-
clofenac) [154]. It was previously shown that Ch/γ-PGA nanoparticles with Df are an
effective in vitro delivery system for anti-inflammatory drugs [154].

Intradiscal injection of Ch/Df/c-PGA nanoparticles reduced pro-inflammatory me-
diators (IL-6, IL-8, and prostaglandin E2) in a cell culture model of pro-inflammatory/
degenerative IVDs. This anti-inflammatory delivery system also downregulated both
MMP-1 and MMP-3 expression, but upregulated collagen II and aggrecan synthesis in
degenerating IVDs. Ch/Df/c-PGA injection appears to be a promising intradiscal therapy
for IDD. Moreover, the versatility of Ch/c-PGA nanoparticles allows them to be combined
with other high-tech IDD therapies [150].

Also, co-administration nanoparticles (as an effective delivery system) with MSCs can
be used for cytokine balance modulation [105] in patients with IDD.

9. Discussion

This narrative overview demonstrates the place of high technology in the evolution of
treatments for IDD in humans (Figure 6).
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in humans.

The problem of cytokine imbalance correction in IDD is far from being resolved. This
explains the need to develop new high-tech methods, since the available methods of treating
IDD do not always give the expected therapeutic response. The total number and variety
of methods for solving this problem are increasing. Recent researchers demonstrated
the need to consider the IDD process at a deep pathophysiological level. At the same
time, inflammation, as a typical pathological process, occupies a central position in the
pathophysiological processes of IDD. Considering possible therapeutic options in terms of
the pathophysiology of inflammation, the correction of cytokine imbalance in severe IDD
by the HCMT methods presented in this narrative review is very promising (Table 1). These
perspectives are based on the results of pre-clinical and clinical studies of the molecular
mechanisms of these HCMT methods for IDD treatment.

Table 1. High-tech medical technologies for cytokine imbalance correction in patients with interverte-
bral disc degeneration.

Method Mechanism
of Action

Evidence
Class References

I. Cell therapy

Stem cell implantation

Suppression of pro-inflammatory cytokines synthesis
(IL-6, IL-8, IL-5, IFN-γ, IL-1β, TNF-α, etc.).
Supression of MMP-1 syntesis.
Increased anti-inflammatory cytokines synthesis
(IL-4, IL-10).
Increased production of MMP-3 and TIMP-2,
Tie-2-positive cells (clusters of differentiation).
Prevention agaist cell death in degenerative IVDs.
Reduction in proliferative response in
degenerative IVDs.
Increased deposition of agrecan and other
IVD structures.
Prevention of neoangiogenesis and neurogenesis in
degenerating IVDs.

B [10–14,23,25,26]
Implantation of autologous cells

Tissue engineering
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Table 1. Cont.

Method Mechanism
of Action

Evidence
Class References

II. Gene Technologies

Gene modifications

Increased deposition of agrecan and other IVD structures.
Overexpression of the KLOTHO gene (regulation of the
TLR4-NF-KB signaling pathway).
The TRPV4 gene knockout (prevention of chronic
vertebrogenic pain syndrome due to the influence of
IL-6, IL-8).
Introduction of the FROB1 gene (increased proteoglycan
production in degenerating IVDs).
Introduction of the LMP1 gene (increased expression of
IL-4, IL-10, BMP-2, BMP-7, and aggrecan in
degenerating IVDs).
Introduction of the COX9 gene (increased type II collagen
synthesis in degenerating IVDs).
Introduction of the TIMP1 gene (increased proteoglycan
content in degenerating IVDs).
Introduction of the GDF5 gene (increased synthesis of
ECM structures in degenerating IVDs.

B [3,35–38,40–48,58]

MicroRNA

Suppression of miR-34a (prevention of premature death of
end plate chondrocytes and degradation of ECM
structures through hyperproduction of IL-1β and
repression of GDF-5).
Suppression of miR-15b (prevention of overproduction of
IL-1β by increasing SMAD-3 expression).
Intoduction of miR-202-3p (suppression of IL-1β-induced
MMP-1 production).
Introduction of miR-10a-5p (inhibition of IL-6-induced
ferroptosis of cartilage cells).

B [56,59–61]

Downregulation of miR-34a-5p (prevention of HOTAIR
lncRNA binding and NP apoptosis by targeting
NOTCH 1 receptors).
Suppression of miR-153-3p in degenerating IVDs
Prevention of LINC00641 binding (suppression of NP cell
autophagy and NP cell death).
Downregulation of miR-326 (LncRNA SNHG1
overexpression promotes NP cell proliferation in
degenerating IVDs).
Introduction of miR-499a-5p (inhibition of NP cell
apoptosis and ECM degradation in degenerating IVDs by
targeting COX4).
Suppression of the XIST gene expression in NP
(prevention of cell apoptosis and EMC degradation by
targeting miR-499a-5p).
Regulation of the TXNIP gene transcription via
LINC00969 (a competitive miR-335-3 and thereby
regulating the activity of the NLRP3 inflammasome).

B [65–69,71]
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Table 1. Cont.

Method Mechanism
of Action

Evidence
Class References

Molecular
inductors

Suppression of LncRNA TUG1 expression (protection
against TNF-α-induced apoptosis and senescence by
blocking the Wnt/β-catenin pathway).
Suppression of LncRNA ZFAS1 expression (reduction in
the risk and severity of IDD).
Suppression of LncRNA HOTAIR expression contributes
(prevention of aging and apoptosis of NP cells, as well as
degradation of EMC structures via
Wnt/β-catenin activation).
Suppression of the XIST gene expression contributes
(prevention of IL-1β-induced degeneration of NP cells).
Introducrion PIEZO1-siRNA (suppression of Piezo1
expression, inhibition of Ca/NF-κB pathway activation in
the NLRP-3 inflammasome, decrease in inflammatory
response in degenerating IVDs).

C [62–65,70]

III. Technologies for Influencing Inflammatory Cascade in Degenerative Intervertebral Discs
Mediated by Abnormal Inflammasome Activation

Inflammasome inhibitor
NLRP-3 MCC-950 +

Propionibacterium acne

Inhibition of NLRP-3 inflammasome activation.
Reduction in inflammatory response in
degenerating IVDs.
Reduction in apoptosis in degenerating IVDs.

B [87]

Fullerol nanoparticles Inhibition of NLRP3 inflammasome activation (decrease
in vertebrogenic back pain). B [88]

IV. Senolytics

Combination of dazatinib
(Src/tyrosine kinase inhibitor)

+ Quetercin (natural
flavonoid)

Binding to BCL-2.
Modulation of transcription factors, cell cycle proteins,
pro- and anti-apoptotic proteins, growth factors and
protein kinases.
Inhibition of pathophysiological survival mechanisms of
old cells in degenerating IVDs.

C [44,95–97]

PLGA-ABT

Binding to BCL-2.
Modulation of transcription factors, cell cycle proteins,
pro- and anti-apoptotic proteins, growth factors and
protein kinases.
Inhibition of pathophysiological mechanisms of survival
of old cells in degenerating IVDs.
Inhibition of hyperproduction of pro-inflammatory
cytokines (IL-1β, IL-6, and TNF-α).
Restoration of degenerated IVDs structures.

C [44,98]

Senolytic Klotho

Binding to BCL-2.
Modulation of transcription factors, cell cycle proteins,
pro- and anti-apoptotic proteins, growth factors and
protein kinases.
Inhibition of pathophysiological mechanisms of survival
of old cells in degenerating IVDs.
Inhibition of the Rac1/PAK1/MMP-2 signaling axis.
Reduction in IVDs structures degradation.
Inhibition of neoangiogenesis in degenerated IVDs.

C [44,99]
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Table 1. Cont.

Method Mechanism
of Action

Evidence
Class References

V. Exosomal Therapy

Exosomes derived from bone
marrow MSCs (BMSC-Exos)

Inhibition of IL-1β-induced of pro-inflammatory
cytokines overexpression (IL-1β and IL-18).
Activation of MAPK signaling by miR142-3p delivery,
which targets MLK-3.
Inhibition of pyroptosis associated with NLRP-3
expression in degenerated IVDs.

B [104,110]

Exosomes originating from
NP cells

Induction of differentiation of MSCs into NP-like cells.
Stimulation of MSCs migration.
Inhibition of the NOTCH-1 pathway.

B [105]

Exosomes containing miR-223
isolated from cells of the NP
model of rodent herniation

Modulation of the NF-κB pathway.
Inhibition of inflammatory in degenerating IVDs. B [106]

Exosomes derived from
hPLMSC bearing
antago-miR-4450

(miRNA-4450 inhibitors)

Inhibition of miR-4450.
Activation of ZNF-121.
Reduction in inflammation in degenerating IVDs.
Reduction in apoptosis in degenerating IVDs.
Reduction in NP cells degradation.

B [107]

Exosomes derived from
embryonic stem cells

Inhibition of pyroptosis associated with NLRP3
overexpression in degenerating IVDs. B [108]

Exosomal miR-410 derived
from MSCs

Inhibition of pyroptosis by suppression of the
NLRP3/caspase-1 pathway (decrease in caspase-1 and
GSDMD levels).
Inhibition of pro-inflammatory cytokines overexpession
(IL-10, TNF-α, IL-1β, and IL-6).

C [111,113]

Exosomes of hucMSC and
miR-6a-5p

Protection of IVDs cells from pyroptosis by targeting
METTL-14 required.
Stabilization of NLRP-3 mRNA in an IGFBP2-dependent
manner by methyltransferase catalyzing
m6A modification.

B [115]

Exosomes derived from ADSC

Inhibition of MMPs activity.
Inactivation of NLRP3 inflammasome.
Inhibition of pro-inflammatory cytokines release (IL-1β,
TNF-α, and IL-6).

C [116]

VI. Other Technologies

Factors induced by hypoxia

Inhibition of HIF-2α expression.
Retardation of degenerative processes in IVDs.
Upregulation of MMP-13 and ADAMTS-4 by potentiation
of TNF-α/NF-κB signaling.

C [123,124]

Inhibition of HIF-1α.
Regulation of expression of collagen type II and aggrecan
via the NOTCH-1 pathway in degenerating IVDs.

C [125]

NEMO-binding domain

Increased cell viability of degenerating IVDs by inhibition
of the MMP3 gene expression.
Decrease in MMP-3 and pro-inflammatory cytokines
(IL-1β, IL-6) levels in degenerating IVDs.

C [126]

Lysyl oxidase

Protection of chondrocytes from apoptosis induced
by TNF-α.
Inhibition of the Fas/FasL and p53 89 pathway involved
in degenerating IVDs.

C [127,128]
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Table 1. Cont.

Method Mechanism
of Action

Evidence
Class References

Cortistatin

Improvement of metabolism.
Reduction in apoptosis in degenerating IVD.
Reduction in inflammatory in TNF-α-induced
chondrocytes.
Inhibition of mitochondrial dysfunction by targeting the
activation of mitochondrial ROS-dependent NLRP-3
inflammasomes in degenerating IVDs.

C [131–133]

Tenomodulin Inhibition of neoangiogenesis in degenerating IVDs.
Protection against age-related degeneration of IVDs. C [134]

VII. Bioactive Lipids

LXA-4
Inhibition of eicosapentaenoic acid, JNK and NF-kB/p65.
Inhibition of IL-1β, TNF-α, and other
pro-inflammatory cytokines.

C [136]

14,15-EET Protection of NP cells from TNF-α-induced death.
Inhibition of the NF-κB pathway. B [135–137]

Prostaglandin E2
Inhibition of pro-inflammatory cytokines overexpression
(IL-1β, IL-6, TNF-α).
Decrease in MMPs levels in degenerating IVDs.

C [135–137]

Nanoparticles and delivery
systems

Chitosan nanoparticles (Ch/Df/γ-PGA) inhibit and
restore prostaglandin E2 production by activated
macrophage.
Reduction in production of IL-6, IL-8 and partially TNF-α.
Suppression of MMP-1 and MMP-3 overexpression.
Upregulation of collagen II and aggrecan synthesis in
degenerating IVDs.
Ensuring an effective delivery system of
anti-inflammatory drugs in IDD.

C [150,151,154]

Note: 14,15-EET—14 epoxyeicosa-tetraenoic acid and 15 epoxyeicosa-tetraenoic acid; ADSC—adipose-derived
mesenchymal stem cell; Ch—chitozane; COX-1—cyclooxeginase 1; IDD—intervertebral disk degeneration; IFN-
γ—interferone gamma; IL-1β—interleukine 1 beta; IL-5—interleukine 5; IL-6—interleukine 6; IL-8—interluekine
8; GSDMD—gasdermin D; hucMSC—human umbilical cord mesenchymal stem cells; hPLMSC—human placenta
mesenchymal stem cells; JNK—Janus nucleus kinase; LXA-4—lipoxin A4; MSCs—mesenchymal stem cells; MMP-
1—metalloproteinase 1; MMP-3—metalloproteinase 3; MLK-3—mixed origin kinase 3; NP—nucleus pulposus;
PLGA-ABT—ABT263—drug loaded into poly(lactic-co-glycolic acid) nanoparticles; TNF-α—tumor necrosis factor
alpha; γ-PGA—gamma-polyglutaric acid; and ZNF-121—zinc finger protein 121.

The HTMC methods presented in this review affect various molecular signaling path-
ways for the activation of the inflammatory response in IDD, which predominantly involves
cytokines and other inflammatory mediators. Cell therapy, gene therapy, exosomal therapy,
and other HTMC methods for correcting cytokine imbalance can slow down the progression
of IDD and prevent the inflammatory response by reducing the level of pro-inflammatory
cytokines or by increasing the level of anti-inflammatory cytokines. Such a therapeutic
strategy would improve tissue regeneration and healing in damaged/degenerating IVDs
by stimulating NP and AF cell proliferation, deposition of aggrecan, collagen, and other
important molecules in the structures of IVDs (Figure 7).



Int. J. Mol. Sci. 2023, 24, 13333 21 of 28Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 7. Molecular mechanisms of action of new high-tech methods for correcting cytokine imbal-
ance in intervertebral disc degeneration (modified by the authors from Shnayder et al. [4]). 

These HTMC methods show potentially greater efficiency in the regulation of cyto-
kine status in IDD, but require large economic and labor resources. However, stepwise 
IDD therapy (from symptomatic therapy for mild IDD to pathogenetic therapy for severe 
IDD) can help improve the expected therapeutic response, reduce the severity of chronic 
back pain, improve the quality of life of patients, and reduce the risk of disability. 

10. Conclusions 
This narrative review demonstrates progress in addressing chronic inflammation in 

general and cytokine imbalance, particularly in patients with IDD. New HTMC methods 
are directly or indirectly involved in the regulation of protective immune responses in the 
direction of reducing inflammation and cytokine imbalance, stimulating the regeneration 
of NP and AF cells of degenerating IVDs, blocking signaling pathways for the activation 
of pro-inflammatory cytokines, and their receptor overexpression. In addition, they can 
directly participate in the restoration of degenerative IVD structures. In the future, the use 
of these HTMC methods holds promise in cases of drug-resistant IDD and severe back 
pain. It is necessary to conduct further studies of the effectiveness and safety of these 
methods in real clinical practice. 

Author Contributions: Conceptualization, N.A.S. and R.F.N.; methodology, N.A.S. and M.M.P.; 
software, A.V.A.; validation, G.V.M. and A.R.A.; formal analysis, E.A.N. and D.S.K.; investigation, 
G.A.C. and N.P.G.; resources, N.V.L. and M.A.-Z.; data curation, M.M.P. and R.F.N.; writing—orig-
inal draft preparation, A.V.A., V.V.T. and M.A.N.; writing—review and editing, N.A.S.; visualiza-
tion, A.V.A.; supervision, N.A.S.; project administration, R.F.N. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research received no external funding. 

Figure 7. Molecular mechanisms of action of new high-tech methods for correcting cytokine imbal-
ance in intervertebral disc degeneration (modified by the authors from Shnayder et al. [4]).

These HTMC methods show potentially greater efficiency in the regulation of cytokine
status in IDD, but require large economic and labor resources. However, stepwise IDD
therapy (from symptomatic therapy for mild IDD to pathogenetic therapy for severe IDD)
can help improve the expected therapeutic response, reduce the severity of chronic back
pain, improve the quality of life of patients, and reduce the risk of disability.

10. Conclusions

This narrative review demonstrates progress in addressing chronic inflammation in
general and cytokine imbalance, particularly in patients with IDD. New HTMC methods
are directly or indirectly involved in the regulation of protective immune responses in the
direction of reducing inflammation and cytokine imbalance, stimulating the regeneration
of NP and AF cells of degenerating IVDs, blocking signaling pathways for the activation
of pro-inflammatory cytokines, and their receptor overexpression. In addition, they can
directly participate in the restoration of degenerative IVD structures. In the future, the use
of these HTMC methods holds promise in cases of drug-resistant IDD and severe back pain.
It is necessary to conduct further studies of the effectiveness and safety of these methods in
real clinical practice.
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